
Two-armed Bandits with Delayed Responses 

by 

* Stephen E. Eick 

Technical Report No. 456 
December 1985 

* Partially supported under NSF grants DMS 8301450 co:A. Berry, principal 
investigator) and DMS8319924 (M.L~ Eaton, principal investigator) and the 
University of Minnesota Statistics Alumni Fellowship. Adapted in part from the 
author's dissertation. 



Summary 

A general model for a two-armed bandit with delayed responses is introduced and 

solved with dynamic programming. 

e which has prior distributionµ. 

One arm has geometric lifetime with parameter 

The other arm has known mean lifetime A. The 

response delays completely change the character of optimal strategies from the 

no delay case; in particular, the bandit is no longer a stopping problem. The 

delays also introduce an extra parameter pinto the state space. In clinical 

trial applications this parameter represents the number of patients previously 

treated with the unknown arm who are still living. The value function is 

investigated as a function of p, µ, and K. 

1. Introduction 

Consider a clinical trial in which patients arrive sequentially at times O, 

1,•••, n - 1 (n =mis allowed). Each patient receives one of two irreversible 

treatments, say x and y. The first patient is treated at time o. When the 

second patient arrives at time 1 it is known that either the first patient has 

survived to time 1 or not. When the third patient arrives at time 2, it is 

known whether the second patient has survived and also whether a first patient 

who had survived until time 1 has also survived until time 2. Et cetera. As 

the trial progresses, information about relative treatment effectiveness 

accrues. The objective is to assign treatments to maximize total patient 

survival time, possibly discounting for future successes. 

Bandit problems have been studied extensively in the statistical 

literature. Authors making significant contributions include Robbins (1952), 



Bradt, Johnson, and Karlin (1956), Bellman (1956), Gittins and Jones (1974), and 

Berry and Fristedt (1985). However, when applied to clinical trials, all papers 

in the bandit literature assume that the previous patient lifetimes are known 

before the next patient is treated. For clinical trials, this assumption is 

unrealistic because it is infeasible to wait for the first patient to respond 

before treating the second. The inability to account for response delays is 

cited frequently as one of the problems in using adaptive strategies in clinical 

trials (see Armitage, 1985, p.22, and Simon, 1977). I address the problem of 

maximizing the expected total patient lifetime when treatment assignment is 

based on partial information, the censored lifetimes, rather than the exact 

lifetimes. 

There are two arms, x and y. I assume that arm xis unknown: the lifetimes 

of patients treated with x are conditionally iid given unknown parameters. On 

the other hand, army is known: the lifetimes of patients treated with y are 

identical and known, or what is equivalent in the current setting, are random 

variables with a common, known mean. I take a Bayesian approach and assume that 

the unknown parameters are themselves random variables. As the trial proceeds, 

Bayes' theorem is used to update the prior distribution. This approach 

facilitates allowing treatment assignments to depend on the accumulating data. 

1.1. Distributional Assumptions 

Let Z. be the lifetime of the patient treated at time j - 1. If this 
J 

patient receives treatment x, or in other words if arm xis pulled at stage j, 

then Zj = Xj. If, however, this patient receives treatment y then zj = Yj. I 
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assume that x1,•••, Xn given e £ (0,1) are conditionally iid geometric random 

variables with probability mass function 

c1-0)et, t = 0,1,2,···· ( 1.1) 

This is consistent with the assumption that the probability of a patient 

surviving any particular time period is constant and equals a, and that, given 

8, the time periods are independent within and across patients. The patients 

treated with y have known expected lifetime K: 

E(Yj] = K, j = 0,1,2,···· 

The random variable e has prior distributionµ. The conditional expected 

lifetime of a patient treated with xis E[Xje] = 8/(1-8). I restrict 

consideration to thoseµ for which E[XjµJ = E[e/(1-e)jµ] < m. One consequence 

of this restriction is that {8 = 1} is a µ-null event. 

For each j, either Xj or Yj can be observed but not both. Using treatment x 

initially provides information about e which may be useful for treating future 

patients. However, E[Xjµ] may be less than Kin which case a patient treated 

with x has a smaller life expectancy than one treated with y. This conflict 

between effective treatment and gathering information characterizes bandits more 

generally (Berry and Fristedt 1985). 

Based on (1.1), a sufficient statistic fore is (S,F), where Sis the number 

of patient survival periods for those treated with x and Fis the number of 

failures observed on x. I denote the conditional distribution of e given 

(S,F) = (s,f) by (s,f)µ. Whens= f = 0, (0,0)µ = µ. Temporarily, (s,f)µ is 
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defined only for the integer pairs (s,f) which occur with positive probability 

underµ. However, in Chapter 5 I extend the domain of (s,f)µ to continuous 

arguments. 

1.2. Summary of Results 

The major results in this paper concern the value of the bandit, which is 

the expected discounted patient lifetime when the best treatment allocation is 

used. I define the value in Chapter 2. In Chapter 3 I use dynamic programming 

to calculate the value of finite horizon bandits, those in which only finitely 

many patients are treated. An interesting result in Section 3.2 is that in 

general the delayed response bandit is not a stopping problem. The bandit state 

summarizes all information available when the current patient must be treated. 

Chapter 4 investigates the value as a function of the state for fixedµ. 

Chapter 5 extendsµ to a family of distributions which generalize the beta 

family. Chapter 6 considers the value as a function of the distribution forµ 

in this class. 

2. Notation 

2.1. The Discount Sequence 

The discount sequence, A= (a1,a2 ,•••), is a summable sequence of 

nonnegative numbers. It determines the weights associated with patients yet to 

be treated and incorporates the unknown aspects of the number of patients yet to 

be treated (see Berry and Fristedt, 1985, Ch. 3). The horizon of A is the index 

of the last nonzero element in A: horizon A= inf{j:a
1 

= O for all i>j}. If 
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this set is empty the horizon of A is defined to be~. 

Some important discount sequences are 

A= (1,1,•••,1,0,0,•••), (2.1) 

2 
A= (1,a,a ,•••), (2.2) 

2 n-1 
A= (1,a,a ,•••, a ,0,0,•••). (2.3) 

Discount sequence (2.1) is called the uniform. This sequence models a trial 

in which the number of patients treated is precisely known. In the previous 

example the discount sequence was uniform with horizon 3. 

Sequence (2.2) is the geometric with factor a. For the sequence to be 

summable, a< 1. The uniform and geometric are the most common discount 

sequences in the literature. Both (2.1) and (2.2) are special cases of (2.3) 

with a= 1 and n ~ w, respectively. 

After j patients have been treated the appropriate discount sequence for the 

bandit presenting itself at that time is 

A(j) - (a a •••) 
- j+1'j+2' • 

The discount sequence A(j) is derived from A by deleting the first j elements in 

A. For the geometric discount sequence, 

which differs from the original sequence by a positive multiple. This property 

often makes the geometric more tractable than the other discount sequences. 

5 



In many situations infinite horizon discount sequences are much more 

difficult to work with than finite horizon sequences. The horizon n truncation 

of A, 

is often a convenient approximation to A for n large. 

The jth tail mass of A is the sum of the discount sequence A(j-1 ): 

m 

Yj =Ia .. 
i~ 1 

By assumption, Yj < m for every j. 

2.2. The State Space 

The bandit state consists of three components. __ The first component is the 

pair (µ,p) whereµ is the current distribution of e and pis the number of 

patients which have been treated with x and are still surviving. These patients 

form an "information bank." Information accrues with time from this "bank" as 

patients respond, positively or negatively. The second component is K. This 

component does not include patients treated with y because they cannot change 

K. The third component is the discount sequence A. A bandit with state 

(µ,p;K;A) is called the (µ,p;K;A)-bandit. 

To illustrate the states, consider a trial in which three patients are 

treated, each receiving equal weight. The initial state is {µ,O;K;A), where 

A= (1,1,1,0,0,•••). Suppose the patient arriving at time O is treated with x. 
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The state at time 1 is random depending on whether or not the first patient 

survives to time 1. If the patient does survive, then at time 1 state is 

( 1 ) 
((1,0)µ,1;K;A ). There has been one success, S = 1, no failures, F = O, one 

patient is in the information bank, P = 1, and two patients remain to be 

treated, A ( 1 ) = ( 1 , 1 , O, O, • • • ) • 

Now suppose that the patient arriving at time 1 is treated with y and both 

patients survive to time 2. 
(2) Then the state is ((2,0)µ,l;K;A ). Two successes 

have been observed on the patient treated with x at time O, S = 2, and no 

failures have been observed, F = O. The information bank still contains one x

observation, P = 1; they-observation is not in the information bank because the 

distribution of y is known. One patient remains to be treated, A( 2) 

{1,0,0,•••). 

Suppose the third and final patient is given treatment x and that patients 2 

and 3 do not survive till time 3 while toe first patient does. Then the state 

(3) (3) is {(3,1)µ,l;K;A ), where A = {O,O,•••). A zero discount sequence 

indicates trial completion. 

2.3. Strategies 

A strategy or policy tis a function defined on the state space, 

t:{{µ,p;K;A)} -> {x,y}, indicating which treatment to use when the current 

state is (µ,p;K;A). The treatment indicated for any patient can depend on past 

selections, the censored results, and the future number of patients to be 

treated. In the previous example it was known at time 1 that the first patient 

had received treatment x and had survived one time period; the second selection 
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(yin the example) can depend on this information. 

Recall that Zj is the lifetime of the patient treated at time j - 1. 

worth of a strategy Tis the expected discounted patient lifetime, 

The 

where Z's in (2.4) are determined by a strategy T. The objective is to choose a 

strategy t which maximizes (2.4). 

2.4. An Example 

The example in this Section illustrates the state space, strategies, and 

their worths in a simple, but concrete setting •. 

Suppose the discount sequence for the (µ,p;K;A)~bandit is A= (2,1,0,•••). 

Assume e has density 2(1-u)1co, 1)(u)du, and assume K = 1. Let T be a strategy 

indicating x for the first patient. This patient's expected lifetime is 

E[X] = E[E[XleJ] = f11e1(1-e)}2(1-8)d8 = 1, 
0 

Let s<x) F(x) and P(x) denote the random number of successes, failures, and 

information bank size at time 1 given that x was selected at time o. There are 

two possibilities for the bandit state depending on whether the first patient 

survives or fails: 

(2.5) 

or 
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( (S(x) ,F(x) )µ,P(x) ;K;A (l)) = ( (O, 1 )µ,O;ic;A (l)), (2.6) 

with probabilities 1/3 and 213, respectively. Given a success the conditional 

expected lifetime of the next patient treated with xis 2 and given a failure 

the conditional expected lifetime is 1/2. 

At time 1 the second patient must be treated. There are two possible 

selections for both of the possible states at time 1. Lett be the strategy z 

indicating z at stage 2 regardless of the result from stage 1, where z = x or 

y. The remaining two possibilities are t which indicates x if (2.5) and y if xy 

(2.6) and t which indicates y if (2.5) and x if (2.6). yx 

Then the worths of the various strategies are 

W(t ) 
X 

2 + (1/3)2 + (2/3)(1/2) = 3, 

W( t ) 2 + K 
y 

W(t ) = 2 + (1/3)2 + (2/3) K xy 

:::r 3' 

= 10/3, 

W(t ) = 2 + (1/3)K + (2/3)(1/2) = 8/3. yx 

The best among those strategies which indicate x initially is t • When a 
xy 

success is observed initially the strategy t indicates~ again. This is 
xy 

intuitively plausible since a success on x suggests that a is large. 

Conversely, when a failure is observed on x, a is likely to be small. In this 

case t indicates y for the second patient. 
xy 

Strategies t and t ignore the result of the first treatment. The worst 
X y 
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strategy is T • When an initial success is observed on x it indicates y. When 
yx 

an initial failure is observed on x it indicates x again. The initial success 

on x suggests the superiority of x and so indicating y after a success on x has 

dubious merit. Similarly, indicating x after an initial failure is 

unreasonable. 

The other possible initial selection is y. Let a be a strategy indicating y 

initially. In this case the state at time 1 is (µ,O;K;A(l)) and there are two 

possible selections. Let a indicate x at time 1 and a indicate y. Then 
X y 

W(o ) = 2 + 1 = 3 
X 

W(o ) = 2 + 1 = 3. 
y 

The strategy maximizing the worth over all strategies is Txy· It is not 

surprising that this strategy indicates arm x initially. Since E[XjµJ = K, 

treating the first patient with x has the same expected lifetime as y but also 

provides information about e. This result is true in general for two-armed 

bandits with one arm known. 

2.5. The Sate for the Strategy T 

The distribution of the state at a fixed point in time depends on the past 

selections. For any strategy t, lets;, F}, and P} be the random number of arm 

x successes, failures, and patients who are then in the bank at time j when 

following t. Then the state at time j when following Tis ccs;,F;)µ,P;;K;A(j)). 

When j = 1, I suppress j and write S(z), F(z), and P(z), where the initial 

selection is z = x or y. 

10 



There is a simple relationship betweens}, F}, and PJ. Since P} is the 

number of patients surviving from time j - 1 to j, s} is the sum of all PI for 

i ~ j. Similarly F: is the total number of patients treated with x, including 
J 

T any initially in the information bank, minus Pj. The geometric lifetime 

assumption implies that P: is conditional on P: 1 and e has a binomial 
J J-

distribution. 

The following lemma summarizes these relationships. Let 

l 1 if T indicates x at time j, 

O if t indicates y at time j. 

Lemma 2.1. At time j the random variables s}, F;, and P} satisfy 

s: = 
J 

j-1 
p + I !Ti - P:, 

1=1 J 

2.6. The Value of a Bandit 

(2.7) 

The value of the (µ,p;K;A)-bandit is the supremum of the worth of at over 

all strategies t: 

V = V(µ,p;K;A) = sup W(t), 
T 

where W(t) is defined at (2.4). The supremum over strategies that indicate x 
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initially is 

(x) 
V (µ,p;K;A) sup{W(T) IT indicates x initially}, 

and v<Y) is defined analogously. A strategy T which attains Vis said to be 

optimal. Arm z is optimal if there exists an optimal strategy T which indicates 

that arm initially, that is, if v<z) = V. 

An intuitively reasonable strategy is one that always indicates the arm 

which currently has the larger expected lifetime. Such a strategy is said to be 

myopic. 

myopic. 

In the example in Section 2.4 the strategies t , a , and o are all 
xy X y 

However, only t is optimal. When A has horizon xy 
a myopic strategy 

is optimal. In this case the value function does not depend on p. More 

generally, as Section 2.4 shows, a myopic strategy is optimal only in the most 

special settings. 

3. The Dynamic Programming Solution 

3.1. The Fundamental Equation of Dynamic Programming 

The value function satisfies the fundamental equation of dynamic 

programming: 

V(µ,p;K;A) 
(x) (y) 

= V (µ,p;K;A) V V (~,p;K;A), 

where 

12 
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When A has horizon n < m, (3.1), (3.2), and (3.3) can be used to calculate V 

recursively. The starting points are all possible states for which the discount 

sequence is A(n-l), which has horizon 1: 

(n-1) { } V(µ,p;K;A ) = a E[XlµJ v K. n 

Calculating (3.2) and (3.3) by first conditioning one and using (2.7) leads 

to: 

(3.4) 

V(y) (µ,p;K;A) 

p . -· (1) l (~)E[eJ(1-e)P J lµ]V((j,p-j)µ,j;K;A ). 
j=O J 

(3 .5) 

The difference in binomial weighting terms between (3.4) and (3.5) is due to the 

different number of possible successes. For V(x) there are p + 1 patients in 

the information bank for arm x who can survive to time 1, but for V(y) only p 

can survive on arm x. 

A consequence of the upcoming Theorem 6.7 is that the value terms in (3.4) 

and (3.5) are ordered: for j = O,•••,p, 

V((j,p+1-j)µ,j;K;A(l)) ~ V((j,p-j)µ,j;K;A(l)) 

~ V { (j + 1 , p-j ) µ , j + 1 ; K; A ( 1 ) ) • (3 .6) 
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The intuition behind (3.6) is that observing one less failure or one more 

success increases the conditional expecteq lifetime of patients treated with x. 

Arm xis optimal if and only if V(x) ~ v<Y>. This holds when the weighted 

average of the p + 1 terms V({j,p+1-j)µ,j;K;A) exceeds that of the p terms 

V((j,p-j)µ,j;K;A) by more than K - E[XlµJ, the initial life expectancy 

difference. So arm xis optimal when the information gained from treating the 

first patient with x leads to future allocations that make up for the loss due 

to treating the first patient with x instead of with y. 

3.2. Stopping Problems 

In the two-armed bandit with army known one might expect the optimal 

strategy to indicate arm x initially if ever. For there is more opportunity to 

take advantage of whatever is learned if arm xis pulled sooner rather than 

later. This result is true in some generality in the classical bandit (Berry 

and Fristedt, 1979, Section 2). When it is true there is an optimal strategy 

which indicates x until stage N and then indicates y at all subsequent stages. 

The stopping stage N is random and can be O or~ with positive probability. 

Surprisingly, simple examples show that this result is not true in the 

current setting with p > O. The intuitive reason is that army can be selected 

initially while waiting for patients in the information bank of arm x to 

respond. The next theorem says that such a counterexample is not possible when 

p = O and the discount sequence A is either geometric or uniform. 



Theorem 3.2. Suppose p = O and either (i) A is geometric with discount 

factor a, or (ii) A is uniform with horizon n. Then arm xis optimal initially, 

if ever. 

Proof. I prove case (i) only; case (ii) is proved by assuming that army is 

optimal and interchanging the first x selection with the initial selection on y. 

Suppose y is uniquely optimal in the (µ,O;K;A)-bandit. If y is selected at 

stages 1 ton for n ~ 1, then the (µ,O;K;anA)-bandit presents itself. But the 

optimal selections in the (µ,O;K;A)- and (µ,O;K;anA)-bandits are identical 

because the respective discount sequences differ only by a positive multiple. 

So if xis optimal for the first time at some stage in the future, it is also 

optimal initially. o 

4. Properties of the Value Function 

4.1. A Bound on the Value Function 

The following theorem provides upper and lower bounds for the value of the 

(µ,p;K;A)-bandit. I use this theorem to extend finite horizon results to 

infinite horizons. For the upper bound the value is less than it would be if 

the experimenter were acting optimally for the (µ,p;K;A )-bandit and were to be n 

told the value 8 at stage n + 1. For the lower bound the value exceeds that of 

the (µ,p;K;A )-bandit plus a correction for stages n + 1 to~ 
n 

Theorem 4.1. For any (µ,p;K;A)-bandit, 
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( 4 .1) 

Proof. This is a standard result in the bandit literature. See, for 

example, Berry and Fristedt (1985), Theorem 2.6.1. o 

An easy consequence of Theorem 4.1 is that V(µ,p;K;A) is continuous in A 

when A has the t 1 topology. 

4.2. The Value as a Function of K 

The next theorem says that V(µ,p;K;A) is an increasing function of K. This 

result is very intuitive since the expected lifetime of any patient treated with 

y increases as K increases. 

Theorem 4.2. The value function V(u,p;K;A) is a continuous, convex, 

nondecreasing function of K for allµ, p, and A. 

Proof. Continuity follows from convexity since all convex functions are 

continuous. The proof of convexity and monotonicity is divided into two parts. 

When the horizon of A is finite, convexity follows by induction using (3.4), 

(3.5), and (3.1). When the horizon is infinite the result follows by 

approximating V(µ,p;K;A) with V(µ,p;K;A ). o n 

An argument similar to the proof of Theorem 4.2 shows that V(µ,p;K;A) is 

actually piecewise linear in K when the horizon of A is finite. 
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4.3. Value as a Function of p 

The next result is that V(u,p;K;A) is nondecreasing as a function of p. The 

proof, which is omitted, depends on the following idea: if the number of 

patients in the information bank, p, is increased, the experimenter can ignore 

the additional information and do at least as well. 

Theorem 4.3. The value function V(µ,p;K;A) is nondecreasing in p for all u, 

K, and A. 

Asp-> m, the value of the (µ,p;K;A)-bandit converges to the expected 

lifetime of the first patient treated plus the value from stage 2 on if the 

experimenter were to be told eat stage 2. 

Theorem 4.4. For allµ, K, and A, Asp-> ro, 

Proof. I will show that --

(4.4) 

An analogous result holds for V(y). 

Given e, the number of patients who survive to time 1 is binomial with 

sample size p and probability of success e. The sufficient statistics fore at 

time 1 are S(x) and F(x). Asp-> 00 , the posterior distribution of 

(els(x),F(x)) converges weakly to the true value e*, say. If supp(µ) c [0,1-t] 
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for some t > 0, then 0/(1-e) is bounded on the support ofµ. Hence 

[ e (x) (x) ] [ e ] e* E 1_8 v Kl(S ,F )µ -> E 1_0 v Kjo 0* = ~ v K (4.5) 

by the weak convergence theorem. Under this assumption, (4.4) follows from 

(4.5). The result for generalµ (with finite life expectancy as required in the 

introduction) follows by approximation. o 

A consequence of Theorem 4.4 is that for sufficiently large p the initial 

selection should maximize the life expectancy of the first patient treated. 

That is, for this case the myopic strategy is optimal. 

5. Prior Distributions 

This section introduces a family of prior distributions which generalize the 

beta distribution. I extend the priorµ to a family of distributions (s,f)µ 

whereµ= (0,0)µ ands and fare continuous. I continue to assume thatµ is not 

a one-point measure and I also assume in this chapter that µ({0,1}) = o. 

5.1. Prior Distributions of the Form (s,f)µ 

Define (s,f)µ by 

d(s,f)µ(e) = b- 1 (s,f)es(1-0/dµ{8), 

where 

b(s,f) 

18 

( 5. 1 ) 



The parameters sand fare real numbers restricted so that (s,f)µ exists and 

E[Xl(s,f)µ] < 00 • For nonnegative, integrals and f this definition agrees with 

the previous definition of (s,f)µ as the conditional distribution of (els,f). 

The dominating measureµ may be any nondegenerate measure on (0,1) such that 

(5.1) is finite. This family of prior distributions is natural in view of (3.4) 

and (3.5). 

The parameters sand fare interpreted as the prior number of successes ?nd 

failures on arm x. The prior (s,f)µ would be the posterior distribution of e if 

s successes and f failures were observed when e - µ. 

Definition 5.1. Let n = n(µ) be the set of all (s,f) for which (s,f)µ is 

defined, and for which E[Xj(s,f)u] < 00 • Then n is the consideration region for 

µ. 

In the sequel I assume that (s,f) En. The next proposition characterizes 

the consideration region. 

Proposition 5.2. The pair (s,f) E Q if and only if b(s,f-1) < 00 

This class of distributions generalizes the beta distribution which is the 

subject of Example 5.3. 

Example 5.3. Let 

dµ(0) 
-1 -1 

e c1-e) lco,,)<e)cte, 

then 

19 



be(s,f) 

and (s,f)µ has a beta distribution with parameters (s,f) and density 

d(s,f)µ(6) s-1 f-1 
0 {1-6) lco,1)d8/b{s,f). 

The beta function, b{s,f), is finite whenever both sand fare positive. The 

mean lifetime on xis 

E[e/(1-e)ls,f] = b(s+1,f-1 )/b{s,f) s/ ( f-1 ) , 

which is finite if and only if f > 1. In this case the consideration region is 

Q = {0,w)x(1 ,w). o 

5.2. The Value in Terms of b-functions 

Theorem 5.6 expresses the value of the {(s,f)µ,p;K;A)-bandit in terms of 

maxima of linear combinations of b-functions. The decomposition is interesting 

but I do not exploit it in the sequel. 

Theorem 5.6. When the horizon of A is finite, b{s,f)V((s,f)µ,p;K;A) is the 

maximum of linear combinations of b-functions. 

Proof. The proof follows from induction on the horizon of A. o 

6. Stochastic Monotonicity 

An important property of the prior distribution {s,f)µ is a stochastic 
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ordering of the bandit state space. I use this ordering to prove that 

V((s,f)µ,p;K;A) is nondecreasing ins and nonincreasing inf. 

Definition 6.1. A random v~riable W with respect to (s,f)µ is said to be 

stochastically monotone if P{W ~ wl(s,f)µ} is nondecreasing ins and 

nonincreasing inf for every w. The relation is strict if there exists aw such 

that there is strict increase ins and decrease inf. 

Stochastic monotonicity is preserved under monotone transformations. This 

is stated formally in the following lemma. 

Lemma 6.2. Let g be a nondecreasing function. Suppose Wis stochastically 

monotone. Then g(W) is stochastically monotone and strictly monotone provided W 

is strictly monotone and g is strictly increasing. Furthermore, if 

E[g(W)l(s,f)µ] < 00 then E[g(W)l(s,f)µ] is continuous and nondecreasing ins and 

nonincreasing inf. 

6.1. Applications of Stochastic Monotonicity 

The next theorem shows that both e and X are stochastically monotone. Its 

proof depends on the following lemma which expresses the partial derivative with 

respect to s of E[g(B)l(s,f)µ] in terms of the covariance between g(0) and 

log(e). 

Lemma 6.3. Let g be a measurable function defined on (0,1) such that 

E[g(e)js,f] < 00 for (s,f) E o. For (s,f) in the interior of n, 
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~(g(a)l(s,f)µ] = cov[log(e),g(e)l(s,f)µ}. ( 6. 1 ) 

~- This is a standard consequence of the dominated convergence theorem. o 

The stochastic monotonicity of e and X follows. 

Theorem 6.~. Supposeµ is not a one-point measure and µ{{0,1}) 

Bothe and X are strictly stochastically monotone. 

1. Then 

Proof. First it will be shown that e is strictly stochastically monotone. 

Fix q > O and let 

g(e) - 1 - 1 - -{e~q} - -{log(e)~log(q)} 

Since g(8) is a nondecreasing function of log(e), cov(g(S),log(S)) ~ 0. By 

(6.1), 

oE[g(e)ls,fJ/as cov(g(e),log(e)) ~ o. 

Therefore P{e ~ qls,f} is a nondecreasing function of s. Strictness follows 

sinceµ is assumed not to be concentrated at a single point. The argument that 

8 is a decreasing function off is similar. 

The stochastic monotonicity of e implies that of X. For any nonnegative 

integer x, 

P{X ~ xi s,f} = E[P{X ~ xlells,f] 

which is the expectation of an increasing function of a. o 
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Recall that PT is the number of patients in the information bank at time n n 

when following strategy t. The next theorem says that PT is stochastically n 

monotone for strategies which ignore the accumulating data. I define these 

strategies next. 

Definition 6.5. A strategy tis deterministic if 

t = (z
1

,z
2
,•••) 

where each z is either x or y independently of any past selections and their n 

results. 

Lemma 6.6. For every n and deterministic strategy T, Pt is stochastically n 

monotone. 

Proof. I will show that ---

(6.2) 

is nondecreasing in a. Assuming this, 

P{P~ ~ xj(s,f)µ} = E[P{P~ ~ xje}I (s,f)µ), 

is the expectation of a nondecreasing function of e. The result then follows 

from Lemma 6.2. 

It remains to prove that (6.2) is nondecreasing in e. Proceed by 

induction. Fix n = 1 and consider the distribution of PI given e: 
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l P{bin(p,8) ~ xJp,e} if z1 

P{bin(p+1,0) ~ xlp,0} if z1 

y, 

= x. 

In both cases (6.3) is increasing in e for O < x < p. 

(6.3) 

The result for general n follows by conditioning on P~_1 and using 

induction. o 

6.2. The Value as a Function of (s,f) 

The main result presented in this Section is that V((s,f)µ,p;K;A)-bandit is 

nondecreasing ins and nonincreasing inf. 

Theorem 6.7. Supposeµ is not a one-point measure and µ({0,1}) = O. For 

all p, K, and A, V((s,f)µ,p;K;A) is continuous as a function of (s,f), and is 

nondecreasing ins and nonincreasing inf. 

Proof. I prove the finite horizon case by induction and then extend to 

infinite horizons by approximating with (4.1). When A has horizon 1 the result 

is immediate. Suppose the theorem holds when the horizon ism< n. Let A have 

horizon n. Consider v<x): 

ex) I V ((s,f)µ,p;K;A) = a1E[X (s,f)µJ 

+ E[V((S(x)+s,F(x)+f)µ,P(x);K;A( 1))1(s,f)µ], (6.4) 

where the horizon of A( 1) is n - 1. Theorem 6.4 applies to the first term on 

the right-hand side of (6.4). Writing 

S(x) = P{x) and F(x) = p + 1 - P{x) 
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and substituting into the second term on the right-hand side of (6.4), 

(6.5) 

The result for the second term follows from (6.5) by induction and Lemma 

6.6. A similar argument applies to v<Y). The inductive step is complete since 

v = v<x) v v<Y). o 

The following corollary characterizes v<x) and v<Y) as functions of (s,f) 

and K. 

Corollary 6.8. Supposeµ is not a one-point measure and µ({0,1}) = o. The 

functions v<x)((s,f)µ,p;K;A) and V(y)((s,f)µ,p;K;A) are continuous ins, f, and 

K, nonincreasing ins and nondecreasing ins and K. Furthermore, provided 

a
1 

¢ O, v<x)((s,f)µ,p;K;A) is increasing ins and decreasing inf and 

V(y)((s,f)µ,p;K;A) is decreasing in K. 

7. Discussion 

In this paper I present a model for the two-armed bandit with delayed 

responses. The response delays introduce a new parameter pinto the state space 

which changes the character of the solution; it is no longer a stopping problem. 

The important results are Theorems 4.2, 4.3, and 6.7 which show V((s,f)~,p;K;A) 

is nondecreasing ins, p, and Kand nonincreasing inf. These results describe 

the value as a function of the state but provide little insight into the optimal 
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strategies. In a future paper I will characterize the optimal strategies by 

describing the optimal arm as a function of the state. 
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