A CONCENTRATION INEQUALITY FOR THE SUM OF INDEPENDENT SYMMETRICALLY DISTRIBUTED RANDOM VARIABLES.

G. Kallianpur

Technical Report No. 50

University of Minnesota*
Minneapolis, Minnesota
*Research supported by U. S. Army Research Office - Durham - under .Grant DA-ARO-D-31-124-G562.

Bounds on the Lévy concentration function [1] have been obtained by Kolmogorov ([2], [3]) and applied by him in [2]. A strengthened version of Kolmogorov's result has recently been given by B. A. Rogozin [4] who bases his proof on an inequality stated below. It is of interest in the study of central limit theorems (see [1]) to obtain bounds on the concentration function of the sum of independent symmetrically distributed random variables. We shall show how Rogozin's inequality can also be used to derive such a bound.

The concentration function of a random variable X is defined as

$$
\begin{equation*}
Q_{X}(a)=\max _{-\infty<x<\infty} \operatorname{Prob}\{x \leq X \leqq x+a\} \tag{1}
\end{equation*}
$$

: Rogozin's inequality. is the following:
Let $X_{k}(k=1, \ldots, n)$ be independent random variables such that
$P\left(X_{k}=x_{k}\right)=P\left(X_{k=}=-x_{k}\right)=\frac{1}{2} \quad$ where $x_{k} \geqq 1_{k}>0$.

If $S=\sum_{k=1}^{n} x_{k}$ and $L \geqq \max _{k} 1_{k}$, then
(2)

$$
Q_{S}(L) \leqq C . L\left(\sum_{k^{1}}^{(\rangle_{k}} 1^{2}\right)^{-\frac{1}{2}} \quad \text { when } C \text { is a positive absolute constant. }
$$

From the above inequality it is easy to deduce that (2) holds for independent symmetric random variables X_{k} whose probability mass is concentrated entirely outside the interval $\left(-\mathrm{I}_{\mathbf{k}}, 1_{\mathbf{k}^{\prime}}\right)$.

Lemma. Let $X_{k}(k=1, \ldots, n)$ be independent random variables, symmetrically distributed about zero and such that $\left|X_{k}\right| \geqslant l_{k}$ with probability one. Then for $I \geq \max _{k} 1_{k}, Q_{S}\left(L_{1}\right)$ has the same bound as in (2).

To prove the lemma, observe that if we define $T=\sum_{k=1}^{n} \epsilon_{k} Z_{k}$ where
the random variables $\left\{\epsilon_{k}\right\},\left\{Z_{k}\right\}$ are mutually independent such that Z_{k} is distributed as $\left|\mathrm{x}_{\mathrm{k}}\right|$ and $\epsilon_{\mathrm{k}}=+1$ or -1 with equal probability, then $\mathcal{L}(\mathrm{T})$, the probability law or distribution of T equals $\mathcal{X}^{\prime}(\mathrm{S})$. Let $z_{k}(k=1, \ldots, n)$ be fixed numbers with $z_{k} \geqq 1_{k}>\theta$ and let $T^{\prime}=\sum_{k=1}^{\prod_{n}} \epsilon_{k} z_{k}$. We may then apply Rogozin's result to T^{\prime} and obtain

$$
\mathrm{Q}_{\mathrm{T}^{\prime}}(\mathrm{L}) \leqq \mathrm{C}\left(\sum_{\mathrm{k}=1}^{\mathrm{n}} 1_{k}{ }^{2}\right)^{-\frac{1}{2}}
$$

An elementary argument now shows that $\mathrm{Q}_{\mathrm{T}}(\mathrm{L})$ has also the same bound. The lemma follows since $Q_{T}(L)=Q_{S}(L)$. We are now in a position to prove our main result.

Theorem. Let $X_{k}(k=1, ., n)$ be independent random variables symmetrically distributed about zero. If 1_{k} are arbitrary positive numbers and $L \geq \max _{\mathrm{k}} \mathrm{l}_{\mathrm{k}}$, then.
$Q_{S}(L) \leqq A L \delta^{-\frac{1}{2}}, \quad$ where A is a positive absolute constant and
$\delta=\sum_{k=1}^{n} 1_{k}^{2} P\left(\left|x_{k}\right| \geqq 1_{k}\right)$.
The following corollaries are of interest in connection with the approximation by infinitely divisible distributions to the law of S. Upon setting $1_{k}=1$ in (3) we immediately obtain

Corollary 1. $\quad Q_{S}(L) \leqq A \cdot \frac{\tilde{H}_{1}}{1} \cdot\left\{\sum_{k=1}^{n} P\left(\left|x_{k}\right| \geqq 1\right)\right\}^{-\frac{1}{2}} \quad \quad(I \geq 1>0)$.

Corollary 2. If the X_{k} 's are no longer assumed to be symmetric we have the following inequality:

$$
Q_{S}(L) \leqq C^{\prime}\left(\frac { y _ { 7 } } { \frac { 1 } { 2 } } \left[\sum_{k=1}^{n} P^{\prime}\left(\left|x_{k}-\hat{C}_{k}\right| \geqq 21\right)^{-\frac{1}{4}},(L \geqq .1>0)\right.\right.
$$

where C is a positive constant and m_{k} is the median of X_{k}.
In deducing Corollary 2 from Corollary 1 we make use of the easily verifiable facts that if ξ and η are independent, identically distributed random variables with median m, then

$$
P(|\xi-\eta| \geqq 1) \geqq \frac{1}{2} P(|\xi-m| \geqq 1) \quad \text { and } \quad Q_{\xi}{ }^{2}(1) \leqq Q_{\xi-\eta}(21) \text {. }
$$

In the case of symmetric random variables Kolmogorov's inequality follows from Corollary 1. Since $P\left(\left|X_{k}\right| \geqq 1\right) \geqq 1-Q_{X_{k}}$ (21) we obtain at once the inequality

$$
Q_{S}(L) ; A \cdot L \cdot 1^{-1}\left[\sum_{k=1}^{n}\left\{1-Q_{X_{k}}^{\prime}(21)\right\}\right]{ }^{-\frac{1}{2}} .
$$

In the general case the following inequality similarly follows from (4).

$$
Q_{S}(\dot{L}) \leqq A^{L^{\frac{1}{2}}} \cdot 1^{-\frac{1}{2}}\left[\sum_{k=1}^{n}\left\{1-Q_{X_{k}}(21)\right\}\right]^{-\frac{3}{4}}
$$

We now give the proof of the theorem. Let $\xi_{k}(k: 1, \ldots, n)$ be independent random variables such that $P\left(\xi_{k}=1\right)=1-P\left(\xi_{k}=0\right)=p_{k}$ where $P_{k}=P\left(\left|X_{k}\right| \geqq 1_{k}\right)$. Also introduce independent random variables U_{k} and V_{k} such that the distribution of U_{k} is equal to the conditional distribution of X_{k} given $\left|\mathrm{X}_{\mathrm{k}}\right|<1_{k}$, and the distribution of V_{k} is the conditional distribution of X_{k} given $\left|X_{k}\right| \geqq 1_{k}$. If we set

$$
z=\sum_{\vec{k}}\left\{\xi_{k} v_{k}+\left(1-\xi_{k}\right) u_{k}\right\} . \text {, then clearly we have } \mathcal{L}(z)=\alpha(s)
$$

Denote by E the event $\left\{\xi_{k_{i}}=1, \xi_{k}=0\right.$ if $k \neq k_{i}, i=1, \ldots, v$ and

$$
\left.U_{k}=u_{k} \text { for } k=1, \ldots, n\right\} \text {; setting } a=\sum_{k} u_{k} \text { we find that the }
$$ $k \neq$ any k_{i}

conditional probability

Hence

$$
P[x \leq Z \leqq x+L \mid E]=P\left[x-a \leqq \sum_{i=1}^{\nu} V_{k_{i}} \leqq x-a+L\right]
$$

$$
P[x \leqq Z \leqq x+L]=\int P\left[x-a \leqq \sum_{i=1}^{\nu} v_{k_{i}} \leqq x-a+L\right] d F
$$

where F is the joint distribution of $\left\{U_{k}\right\}$ and $\left\{\xi_{k}\right\}$ and the integration is over all possible values $\left\{u_{k}\right\}$ of the U_{k} and of the variables $\left\{\xi_{k}\right\}$. We bound the integrand by $C \cdot L\left[\sum_{i=1}^{\nu} i_{k_{i}}^{\omega_{2}^{2}}\right]^{-\frac{1}{2}}$ over the region $\sum_{k}^{2} 1_{k}^{2}>\frac{\delta}{2}$ (which we' may do on account of the lemma proved above) and by 1 over the complementary region $\sum_{\mathrm{k}}^{2} \xi_{k}^{2} \leqq \delta / 2$. We then obtain

$$
Q_{Z}(L) \leqq C L \cdot\left(\frac{\delta}{2}\right)^{-\frac{1}{2}}+P\left[\sum_{k=1}^{n} 1_{k}^{2} \xi_{k}^{2} \leqq \frac{\delta}{2}\right]
$$

Since, by definition, $\delta=E\left(\sum_{2} 1_{k}^{2} \xi_{k}^{2}\right)$ and since $\operatorname{Var}\left(\sum_{k} 1_{k}^{2} \xi_{k}^{2}\right) \leqq L^{2} \delta$ we have $\left.P[\rangle 1_{k}^{2} \xi_{k}^{2} \leqq \frac{\delta}{2}\right] \leqq P\left[\left|\sum 1_{k}^{2} \xi_{k}^{2}-E\left(\sum_{k}^{2} \xi_{k}^{2}\right)\right| \geqq \frac{\delta}{2}\right]$ $\leqq 4 I^{2} \delta^{-1}$.

Hence

$$
\begin{equation*}
Q_{Z}(L) \leqq \sqrt{2} C L \delta^{-\frac{1}{2}}+4 L^{2} \delta^{-1} \tag{5}
\end{equation*}
$$

The inequality $Q_{Z}(L) \leqq(\sqrt{2} C+4) L \delta^{-\frac{1}{2}} \quad$ now follows from (5) if $L \delta^{-\frac{1}{2}} \leqq 1$ and is trivially satisfied if $L \delta^{-\frac{1}{2}} \geqq 1$. This completes the proof of the theorem.

References

1. Paul Lévy, Théorie de 1'addition des variables aléatoires, Gauthier-Villars, Paris, 1937 .
2. A. N. Kolmogorov, Two uniform limit theorems for sums of independent random variables, Te@riya Veroyatnosteii i ee Primeneniya, 1 (1956), pp. 426-436.
3. A. N. Kolmogorov, Sur les propriétés des fonctions de concentrations, de M. P. Lévy, Annales de l'Institut de Henri Poincare, 16 (1958), pp. 27-34.
4. B. A. Rogozin, On the increase of dispersion of sums of independent random variables., TeOriya Veroyatnosteii i ee Primeneniya, 6 (1961), pp. 105-108.
