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Bounds on the Lévy concentration function [1] have been obtained by
Kolmogorov ([2], [3]) and apélied by him in [2]. A strengthened version of
Kolmogorov's result has recently been given by B. A. Rogozin [4] who bases
his proof on an inequality stated below. It is of interest in the study of
central limit theorems (see [1]) to obtain bounds on the concentration
function of the sum of independent symmetrically distributed random vari-
ables. We shall show how Rogozin's inequality can also be used to derive
such a bound.

The concentration function of a random variable X is defined as

(1) Qx(a)=;w222”Prob {%éXé x+%}

:Rogozin's inequality.is the .following:

Let Xk.(k;l,...,n) be independent random variables such that

= = = =3 2
P (Xk- xk) =P (Xk:- xk) 5 where xk..1£>0.
n
bl
If S=. Xk and L 2 max 1k , then
k=1
1
N -2
(2) Qq(L) s C.L (> 1,2) when C is a positive absolute constant.
—d

k‘x
From the above inequality it is easy to deduce that (2) holds for
independent symmetric random variables Xk whose probability mass is con-

centrated entirely outside the interval (-Ik,lk).

Lemma. Let Xk (k=1,...,n) be independent random variables, symmetrically

distributed about zero and such that{XiJélk with probability one. Then

for 1z max 1., QS(L) has the same bound as in (2).

(1)
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To prove the ‘lemma, observe that if we define T = € 2

1l wherg

=
I

1

the random variables {ek}, [Zk} are mutually independent such that Zk

is distributed as Jxk1 and €= +1 or -1 with equal probability, then
4(YT), the probability law or distribution of T equalsd(ks). Let

—‘ 1 . —
z, (k=1,...,n) be fixed numbers with zk;1£>9 and let T = ) €%

k=1
We may then apply Rogozin's result to T' and obtain

a3
Qp(mscL () 12 -
k=1

An elementary argument now shows that QT(L) has also the same bound.

The lemma follows since QT(L)=QS£L)' We are now in a position to prove
.'/

our main result.

Theorem. Let Xk (k=1,.,n) be independent random variables symmetric-

ally distributed about zero. If 1k are arbitrary positive numbers and

1= mﬁx 1k, then.
1

-2
(3) QS(L) = AL D5, where A is a positive absolute constant and

n
5 = 2 12 p(|x |21,).
k=1

The following corollaries are of interest in connection with the
approximation by infinitely divisible distributions to the law of S.

Upon setting 1. =1 in (3) we immediately obtain

k
. n N
. A A =2 ,
Corollary 1. QS(L) Eg A.g_.{> P(IXk|él)} (1z0).
. s
k=1

Corollary 2. If the X, 's are no longer assumed to be symmetric

k

we have the following inequality:

(2)
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(4) Qq(L) s c(%gfz (] X, -@ ;l,% 21) ' 1” % (L 21> 0)
k=1 '

where C is a positive constant and m is the median of xk.
In deducing Corollary 2 from Corollary 1 we make use of the easily
verifiable facts that if ¢ and 7 are independent, identically distributed

random variables with median m, then

P(|e-n|z1) =2 4 P(|¢-m|21) and ng(l):—iQ _(2L)-

g

In the case of symmetric random variables Kolmogorov's inequality follows
from Corollary 1. Since P(kalzl) 2 1-Qq (21) we obtain at once the
' k

inequality
| -1-11 to. -l
: - ‘ . 2
QS,C.E»)i £ AL.1 1[>‘ ,{ 1-q '(,:21)} |
S e Tk

In the general case the following inequality similarly follows from (4).
. R S 5 :2 ) -%
QS(LX S ALE.179 [ ;{ 1-Qx,(21i},] .
< kel Kk

We now give the proof of the theorem. Let g, (k:1,.,n) be

independent random variables such that P(gk;1) = L—P(gk=o) = p, where

P, = P(|Xk|zlk). Also introduce independent random variables Uk and

V, such that the distribution of U  is equal to the conditional dis-

k k

tribution of X, given Pik|<1k’ and the distribution of V, is the

conditional distribution of X, given lxklélk. If we set

k
—
Z = V. + (1- U '}- then clearly we ha (2) = 8).
Y e+ (110 5} o chen clearty we tave £(2) = &1s)
k
Denote by E the event {»§k1=1 s gk;o if k%ki, i=1,.., v and

1
U =u for k=1,..,.} ; setting a= j; u we find that the
k k | !, k
k+ any ki

(3)
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conditional probability

Vv
v
Pl xszsL|E ] = Pl x-as ) ) s x-asl .
’ — ki
.Hence i=1
Vv
A
P[ xsZsx+L ] = jp[ x-a§> V., sx-a+L ] dF
L,k

1

e
il

where F 1is the joint distribution of {Uk} and {gk} and the integration

is over all possible values {ukJL of the U and of the variables {ngL°

k

2 b
1k. ]

g 5
over the region y12"‘ 2> 2
. glon ) L8 73

1<

We bound the integrand by C°L [
1

e
1

(which we' may do on account of the lemma proved above) and by 1 over the

v

complementary reégion >1§ gi' 'S 8/2. . We’ then obtain
o=

s

1.

njor

A L.(&
(L) = CL.(3)

and since Var (y' 12 e2) s 12 5

n
+ P[E? 12 g2
/. 'k
k=1
Since, by definition 8 = E(y 2 g2
» by ’ __‘lk §k

5} : ts)
we have P[Zli_gi s E] s P[ |Zl§ gi - E(Zli g§)| 2 -2—]

s 257t
Hence
1 -
(5) QZ(L) s JYy2cL®2 + LW25p 1.
‘ . |
The inequality QZ(L) s ( d2C +4) L 572 now follows from (5)

1 L
if L®2 s 1 and is trivially satisfied if L 82 2 1. This

completes the proof of the theorem.

(1)
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