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ABSTRACT 
The widespread applicability and use of normal approximations creates a 

need for methods for assessing their accuracy in an operational fashion. The 
1rerational usefulness of two well-known existing approaches is discussed and 

, two new methods are proposed and exemplified. These new methods are based on a 
comparison of the level curves of the exact function (density of likelihood) to 
the level curves of the normal approximation, and on a comparison of selected 
line integrals of the exact function and the normal approximation. 
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1. INTRODUCTION 

Approximations based on the normal distribution are ubiquitous in 

statistics. Practitioners in all foundational schools use them: Bayesians use 

normal approximations for posterior densities (Zellner, 1971, pg. 32); the 

likelihood can often be approximated by a function proportional to a normal 

density; in large samples the distribution of the maximum likelihood estimate 

is approximately normal (Cox and Hinkley, 1974, pg. 294); and level curves of 

the likelihood (i.e. likelihood regions), which are approximate confidence 

regions, can in turn be approximated by ellipsoids (see section 4.2), which is 

equivalent to using a normal approximation to the likelihood. 

With this widespread use comes a need to assess how well these 

approximations work, in some operational way. One such operational approach is 

through Fisher's disjunction (1973, section III-1). The disjunction is as 

follows: if an unexpected result is observed, then either something improbable 

has happened, 2!:. the postulated probability mechanism is not correct. This can 

be restated with a more data analytic flavor as: if some apparent feature of 

the data strongly contradicts your expectation, then either something improbable 

has happened, 2!:. one or more of the assumptions that led you to look at that 

feature of the data with a particular expectation is incorrect. Included in 

these latter assumptions is the assumption that any approximations used were 

accurate enough in the instance in question not to have caused the observed but 

unexpected result. To be useful, then, a method for assessing the accuracy of 

an approximation should answer the question of whether or not the approximate 

entity one has calculated displays a particular feature simply because the 

approximation has failed. 



In section 2, two well known approaches to assessing the accuracy of 

approximations are considered from this point of view, and in the process three 

desirable qualities of such assessment methods are identified. In section 3, 

two new methods displaying these qualitites are developed, and in section 4 they 

are applied to approximate likelihood regions and to an approximate predictive 

density. Section 5 concludes with a comparison of these new methods to the well 

known methods of section 2. 

2. ASSESSING THE ACCURACY OF APPROXIMATIONS 

2.1 Rates of Convergence 

The prevailing mode of thinking about the quality of asymptotic 

approximations is centered on characterizing the rate at which the error in the 

approximation diminishes as the size of one's sample increases. A typical 

sta·~ement in this mode is from Durbin ( 1980), pg. 311: "Our basic approximation 

for the density of T at T = t [a function of the observable y] is 
n n 

( !!__ t/ 2 I I ( t ) 11 / 2 f ( Y , e ) { 1 + o ( n -1 ) } " 
2n f(y,t) ' (2.1) 

where the statement g(y,e) = ;(y,e){l + O(n-a)} means that there exists a 

constant k (almost always unknown and depending on g, y, and e) and a number 

N(k) (apply previous comment) such that 

g(y,0) - 1 :i ~ 
,. n 
g(y,e) 

(2.2) 

for all n > N(k) (see, e.g., Bishop, Fienberg, and Holland, 1975, pg. 458). 
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In this mode of thinking, work centers on finding approximations with 

-a -a errors o (n ), O (n ), or their nonstochastic counterparts, for a as large as p p 

possible, because then these approximations will converge to the exact function 

or statistic most rapidly. Considerable effort, ingenuity, and serendipity have 

gone into methods for increasing a; see, for example, Welch and Peers (1963), 

-1 -1/2 who find an op(n ) method as an improvement on an op(n ) method, or Bartlett 

(1953a, 1953b), who gets the same order improvement for the same problem a 

different way. 

Certainly it is very useful to think about asymptotic approximations this 

way. A method with o (n-2) errors should be scrutinized for general use before 
p 

a method with o (n- 1) errors that is equally difficult to use. But for a given 
p 

model, a given data set, and a given approximation, this prevailing mode of 

thinking does not provide relevant information about the size of the errors one 

risks in using the approximation to make the usual sort of statistical 

statement. That is, while it is true that Durbin's approximation satisfies 

(2.2) for suitable models, as long ask and N(k) are unknown -- and k could 

10 -10 conceivably be 10 or 10 for the number of observations you have -- this is 

cold comfort indeed. 

An analogy can be drawn to the Bayesian criticism of pre-test criteria for 

evaluating estimators or hypothesis tests. The essence of that criticism is 

that although it is true that a procedure that is good according to some 

frequentist criterion will have desirable properties "pre-test," i.e. averaged 

over some hypothetical sequence of repetitions, it may also be true that for any 

or all particular realizations of the assumed random process the procedure may 

give an undesirable or even plainly ridiculous result (see Lindgren, 1976, pp. 
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266-267 for an example). In judging asymptotic approximations, it is likewise 

true that while an approximation having o (n- 1) errors is promising, in any p 

particular instance in which one might wish to use it the errors could be quite 

large for the sample size which will be available. 

As an illustration of the nature of the problem, consider the single 

parameter inverse Gaussian regression model, where the observable y > O has 

density 

( A ) 1 / 2 - 3/ 2 ( . 1 / 2 A ) 
2n y exp ly[xB] + A(-2[x8]) - 2y, (2.3) 

where l > O is a known parameter, x < O is a known observable regressor, and 8 > 

O is an unknown and unobservable regression parameter (see Johnson and Kotz, 

1970, pg. 139; Mccullagh and Nelder, 1983, pg. 22). Note that this is a flat 

exponential family. For this ~odel, the m.l.e. for 8 based on n observations is 

B 
2 

Xo n , for x 0 = 
2 

2( r x.y.) 
. l 1 1 l= 

n 
I c-x. > 112. 

i= 1 
1 

The exact distribution of 8 cannot be obtained explicitly, but for a given true 

value of Bit can be obtained numerically by inverting the known characteristic 

function of Ix
1

y
1 

and transforming the resulting density in the obvious way. 

This distribution depends only on x0 and l, and not on n explicitly. The usual 

normal approximation to the distribution of 8, assuming B0 to be the true value, 

is normal with mean B0 and variance (4/lx 0 )b312 , where bis the observed value 

of s. As for the exact distribution, this approximate distribution does not 
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depend on n explicitly, but it does depend on the value of B which happens to 

have been observed, b. This latter effect can be quite large, as demonstrated 

by Figure 2.1. In Figure 2.1, the solid line is the exact density for B, and 

the broken lines are the usual normal approximations, for b = 1.0, 5.0, and 9.0 

(in order of decreasing peakedness), for A= x0 = 1 and true value 80 a 5.0. 

The exact cumulative distribution function for B evaluated at 1.0, 5.0, and 9.0 

are 0.055, 0.38, and 0.56, respectively -- not extreme values, and yet these 

approximations have variances of 4.0, 44.72, and 108.00 respectively, and give 

1.72 and two negative numbers as approximate lower 0.05 quantiles, for which the 

exact value is 0.94. 

In fact, since the exact and approximate distributions for B depend only on 

x0 , A, and b, the following distressing fact follows: for the given true value 

Bo= 5 and arbitrary given n, a pattern of xi yielding the x 0 of this example 

can be found, so that the problem displayed in Figure 2.1 can occur for 

arbitrarily large n. This is true even if the xi contain repetitions of some 

design--the problem is not a failure to converge, but slow convergence. 

The two undesirable properties of convergence rates illustrated by this 

example--that they will not alert a user to an approximation that can vary 

substantially with the observed value of B, and that they might not alert a user 

to a failure to converge for an arbitrarily large sample--arise because little 

or no information about the data and model at hand could be taken into account 

in deriving the convergence rate. The single most important property that 

accuracy assessment methods need to meet the task set in section 1 is that they 

must use this information. 
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Fig. 2.1 --Exact and approximate densities for the inverse 
Gaussian regression parameter estimator. Solid 
line= exact density, dotted lines= approximate 
densities 
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2.2 A geometric approach 

In recent years, ideas from differential geometry have been applied to some 

types of models and asymptotic approximations in an attempt to use the 

information which the predominant method does not use. Beginning with Beale 

(1960), Efron (1975), and Bates and Watts (1980), differential geometric ideas 

such as curvature have been suggested as bases for "post-test" evaluations of 

the adequacy of asymptotic approximations, and for other purposes as well. 

The approach of Bates and Watts (1980) has been most fully developed for 

practical use. This method is applicable to nonlinear regression models, i.e. 

models in which the observable y is postulated to be normally distributed with 

mean F(x;e) and variance o
2 independently of other such observable y's, where F 

is a known function of arguments x and e, xis a known q-vector of observable 

regressors, e is an unknown, unobservable p-vector of parameters, and a2 > O is 

unknown. For the usual normal linear model, q = p, 

p 
F ( x; e) = l xi a. , 

i =1 
1 

and the exact distribution theory for this model is well known. For functions 

F(x;a) that are nonlinear in e, application of inferential methods is much more 

difficult, and tractable exact frequentist results are available only for 

special cases (e.g. Gallant, 1975). Because the added difficulty coincides with 

the nonlinearity of F(x;0) as a function of a, Bates and Watts' method depends 

on examination of curvature properties of the solution locus n'(e) = 

(F(x
1
;e), ••• ,F(xn;e)). Bates and Watts (1980, 1981) and Hamilton, Bates, and 

Watts (1982) concentrate on local curvature properties around the m.l.e., which 

is also the least squares estimator for this model. 
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In the sequel, we assume that the reader is familiar with Bates and Watts' 

approach (see section 2 of Bates and Watts, 1980, or Ratkowsky, 1983), 

particularly the ideas of intrinsic curvature and parameter effects curvature, 

and the calibrations of the two curvatures. 

This geometric approach, while a step in the right direction, has several 

problems as a method of assessing the accuracy of approximations. First, it 

does not appear to work as advertised. Cook and Witmer (1985) present examples 

in which (i) the parameter effects curvature is larger than the guide value, but 

the approximate likelihood region is very similar to the exact likelihood 

region, and (11) the intrinsic curvature is identically zero, and some values of 

the m.l.e. produce large maximum parameter effects curvatures but eminently 

acceptable approximate regions, while other values for the m.l.e. produce 

apparently acceptable curvatures but approximate likelihood regions bearing 

little resemblance to the exact regions they are supposed to approximate. 

However, simulations done for the examples mentioned for case (ii) (Weiss, 1985) 

show that for this case, the actual coverage rate of the approximate likelihood 

region does depart substantially from the nominal rate when the maximum 

parameter effects curvature is larger than Bates and Watts' guide value, and 

that the actual coverage rate is related to maximum parameter effects curvature 

roughly by a smooth curve--even though Bates and Watts' development has no 

obvious connection to coverage rates. 

This interesting result does point to two other difficulties with this 

geometric approach. The likelihood is determined by the solution locus, so 

derivatives of the solution locus, and thus the curvatures, convey information 

about the likelihood. But the derivatives of the solution locus are complicated 
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functions of the derivatives of the likelihood or log likelihood, and if we are 

interested in the latter, the information conveyed by the former may not be in a 

desirable form. In particular, it is difficult to think about how the 

curvatures should be calibrated; in practice, Bates and Watts' guide values 

seem to be useful mainly as rough guides. 

Finally, the curvature methods are themselves defined by making an 

approximation, namely a quadratic Taylor series approximation to the solution 

locus. While this does not mean that the curvatures are necessarily 

uninformative or misleading, it does mean that to overcome the shortcomings of 

the Taylor series approximation will require a redefinition of the method and 

not simply a refinement. 

2.3 Desirable properties of accuracy assessment methods 

The examples in sections 2.1 and 2.2 illustrate properties that methods for 

assessing the accuracy of approximations should possess to be operationally 

useful: 

Ci) they should ~ake efficient use of the available information about the 

function, region, or statistic being approximated, 

(ii) they should be calibrated in a scale that permits them to be used, for 

example, in the revised Fisher disjunction of section 1, and 

(iii) as much as possible, approximations should be avoided in defining and 

computing the methods. 
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3. TWO METHODS FOR ASSESSING THE ACCURACY OF NORMAL APPROXIMATIONS 

Let f and g be two unimodal probability densities on a connected subset n 

of real p-space RP, that are nonzero on the interior of n. If infinitely 

powerful costless computing were available, an obvious way to compare f and g 

would be to specify some subsets of n and compute the probabilities that f and g 

assign to those sets. Infinitely powerful costless computing is not available, 

and for our problem the density g will be assumed to be difficult to use in 

computations, so the comparison strategies must be different. 

If f and g are "very similar," two things will be true: (1) the level 

curves or contours off and g, C(f,k) ~ {xff(x) a k} and C(g,k) = {xlg(x) • k} 

will be "very similar," and (2) the integral$ (including line integrals) with 

respect to the two densities of functions t(•), 

l t(x) f(x) dx and l 1(x} g(x} dx, 

will be "very similar." The two comparison strategies presented here are based 

on comparing these two features of the densities. 

3.1 Contours 

If f(x) = g(x) for all x, then for a given k, the level curve C(f,k) will 

closely resemble C(g,k). More precisely, 

d1(k} a max f(y) 
ye:C(g,k) 

and d2 (k) = min f(y) 
ye:C(g,k) 

will both be close to k; and if either d 1 or d2 is far from k, f and g differ. 
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To illustrate, let pa and consider the densiti~s f and gin Figure 3.1. 

For these densities, C(f,k) • {x 1 ,x2 }, C(g,k) • {y 1 ,y2 }, and d 1 (k) and d2 (k) are 

as shown. 

How large is "large?" i.e. how are d 1 and d2 to be calibrated? Suppose now 

that pa 1 and that in addition to the properties off assumed at the beginning 

of this section, f(x) is the known symmetric density of a random variable X 

havingµ as its mode. Then for any k, C(f,k) consists of two points equidistant 

fromµ, and the probability assigned by f to the interval between these two 

points can be calculated (for a density such as the normal density, this is very 

easy). Thus, to each k there corresponds a probability computed using f, 

X 

p 0 (k): f ~(u) du~ Prf(f(X) ~ k), 
xl 

where the numbers xu ~ x
1 

are the points in C(f,k) and the subscript on "Pr" 

indicates the density used to compute the probability. The numbers d 1 and d2 

can be calibrated using this idea. Compute the two probabilities 

If these probabilities differ greatly from p0 (k)--where "greatly" depends on the 

user's intent--then the densities f and g may be said to differ, for the user's 

purposes. 

To extend the method top-dimensional random variables, for p > 1, consider 

lines in p-space of the formµ+ th, for ha unit length direction vector,µ the 

mode off, and ta real number. Again, assume that f is the density of a p• 
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dimensional real random variable X with the properties listed at the beginning 

of the section. To generalize the requirement that f be symmetric, we require 

that f(µ +th)= f(µ - th) fort> O, for every h (this includes the 

multivariate normal and Student t distributions). Then fork< max f(x), the 

two members of C(f,k) in the direction h from µ--call the pair of members 

Ch(f,k)--will correspond to two scalar multipliers s 1 m -s < O and s 2 as> o, 

so that f(µ ±sh)= k. Similarly, the members of C(g,k) in the direction h from 

µ--call them Ch(g,k)--will correspond to scalar multipliers tj so that g(µ ± 

tjh) a k. Note that because g is unimodal, Ch(g,k) can have zero, one, or two 

elements, depending on the location of g's mode relative to f's mode, even if k 

< max g(x). Given a direction hand f's modeµ, f and g may be compared along h 

as in the single dimensional case. Define 

d 1 (k,h) = max f(y) and d 2 (k,h) ~ min f(y); 
ytCh(g,k) ytCh(g,k) 

if d 1 or d2 differs much from k, f and g differ in the direction h. The 

calibration of d 1 and d2 is extended to the multidimensional case by defining 

p0 (k): p0 (k,h) = Prf(f(X) ~ k), 

which are to be used as were Po, P1 , and p2 in the case p=l. 

The method is completed by finding the directions h that minimize p1 (k,h)--

11 
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equivalently, maximize d 1 (k,h) over h to give d 1 (k) = max d 1 (k,h)--and maximize 

p2 (k,h)--equivalently, minimize d2 (k,h) over h to give d2 (k) a min d2 (k,h). If 

these extreme values of p1 and p2 differ greatly from p0 (k), then f and g 

differ, with the interpretation of "greatly" again depending on the user's 

intent. 

To recapitulate, the "contours" method of comparison, as this method will 

be called henceforth, consists of searching along a level curve of g for the 

directions h from f's mode in which f is farthest below and farthest above g. 

The scale used to measure these differences is derived using the density r. In 

section 4, this method is adapted for comparing likelihoods. 

3.2 Integrals 

If f(x) ~ g(x) for all x £ n, then for any function t(x) and any curve 

segment S, the line integral 

J i(x)g(x)dx will be close to 
s 

J 1(x)f(x)dx. 
s 

I will assume that f is the density of X, a p-dimensional random variable 

distributed as N(µ,t) for r nonsingular, and that g has the properties listed at 

the beginning of the section. Then the function land curve segment S to be 

used will give 

I(f) 
-= 2~p12lrl112 Jb p-1 112 

r(pi 2) a r f(µ + rr h)dr, 

for ha unit length direction vector and a and b supplied by the user, and 
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2np/21tl1/2 Jb p-1 1/2 
I(g,h) = r( 12 ) r g(µ + rI. h)dr 

P a 

(the dependence of I(f) and I(g,h) on a and b will be suppressed for notational 

convenience). The motivation and calibration of this choice follow. 

Let the scalars b >a~ O be given, and define the ellipsoids 

Eb= {xl(x - µ)•r- 1(x - µ) ~ b
2} 

= {xfx = µ + rt 112
h, f_fhll a 1, o ~ r ~ b}, 

and E. Then 
a 

I(f) a Prr(X £ Eb) - Prf(X £ Ea) 

a Prf((X • µ)'I- 1(X - µ) ~ b2
) - Prf((X - µ)'I- 1(X - µ) ~ a2 ) 

2 

J
b p-1 -r /2 

= r e dr, for r = (ex - µ)'I- 1(x - µ))
112 

a r(p/2) 2P12- 1 

p 1 -1 

_ 2,r2 I I: I 2 
Jb I I 1

2 
r p-1 { ½ -1 ½ } - - - exp -([µ+rI h]-u)'I ([µ+rI h]-µ)/2 dr 

r(p/2) a p_ 
{2,r)2 

for h an arbitrary direction vector 

p/2 1/2 fb 2n I r I p- , r c "", , 2h > d = r( 12) r µ + r1.. r. 
P . a 

If f(x) = g(x) for x £ n, then 
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2nP12 1rl 112 Jb -1 1/2 I(g,h) m ~,_,~, rp g(µ + rt h)dr = I(f) 
a 

for arbitrary direction vectors h. By the contrapositive, if there is a 

direction h for which I(g,h) and I(f) differ "substantially," then g(x) and f(x) 

may be said to differ. Since I(f) does not depend on h, the suggested usage for 

* I(g,h) is to find h and h* that maximize and minimize, respectively, I(g,h), 

and compare them to I(f). 

* * To interpret I(g,h ), define a function g as follows. For each fixed 

value of r in the half-open interval (a,b], with h varying over the unit length 

* 1/2 1/2 * direction vectors, define g (µ + rr h) = g(µ + rr h ). For r Sa or r > b, 

* * define g arbitrarily. Then for a< r ~ b, g has ellipsoidal contours: for 

* 1/2 1/2 each fixed value of r, g (µ + rr h = t(r) (mg(µ+ rr h) ), so that ash 

1/2 varies with r fixed, the pointsµ+ rr h trace out an ellipsoid. 

Without loss of generality, letµ= O. Now if the variable of integration 

x varies over RP, 

f * 1/2 f * 112 -112 g (x) dx = lrf g (r y) dy, for y = r x, and 
2 ' 2 

XEEb-Ea a <y ySb 

Eb - Ea the intersection of Eb and the complement of Ea. Now transform y to 

polar coordinates, letting y c rh(e), fore C (e 1, ••• ,8p_ 1)•, where rm (y'y)
112 

> 0 and h1(8) = cos 81 (sin 80 sin 81 ••• sin 81-1), sin 80 a cos ep a 1, 0 ~ 8j 

Sn, j = 1,2, ••• ,p-2, and OS ep_ 1 ~ 2n. The Jacobian of the transformation 

from (r,e) toy is J = rp-l(sinp- 20 1 sinP- 302 ••• sin ep_ 2) (Mardia, Kent, and 
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Bibby, 1979, pp. 35-6), so the above integral equals 

ltl 112 J g*(rt112h(8)) J drde 

{Cr,e)la<r~b} 

a ltl 112 I g(rt112
h*) J drd8 

{ (r,e) la<r:Sib} 

* by the definition of g 

I 11,2 I _J_ d8 
= l: p-1 

r 
J rp-tg(rt112h*) dr, 

a<r:$b 

p-1 But JJ/r de (the integrand is independent of r) is the surface area of the 

unit spheroid of dimension p, which is 21rP121r(p/2). Thus 

J / (x) dx 
xe:Eb-Ea 

2,r p/ 21 r I 1 / 2 J\ p- 1 g ( r l: 1 / 2h * ) dr a I ( g 'h * ) • 
= r(p/2) a 

* That is, if g is formed with the same shape in all directions (expanded and 

1/2 * * contracted by l: ) as g has in the direction h, then I(g,h) is the area under 

* g over the region Eb - Ea. By an exactly analogous argument, if g* is formed 

having the same shape in all directions (expanded and contracted by 1:112 ) as g 

has in the direction h*' then I(g,h*) is the area under g* over the region Eb -

Ea. 

Further, I(g,h*) ~ Prg(Eb - Ea)~ I(g,h*)~ To show the second inequality, 

letµ= 0 again without loss of generality. Then Pr (Eb-E) g a 

I 1/2 I 1,2 -1,2 = g(x) dX = ltl g(l: y) dy for Y = l: X 

a<llr-1/2xll~b a2:Siy'y:Sib2 

I 1
1/2 J 1/2 = l: J g(rl: h(e)) dr de for y m rh(e) as above 

·a<r<b = 
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= lt1 112 J ~ I J rp-lg(rr
112

h(8)) dr} de 
rP a< Sb 

~ ltl 112 J ~ { Jbrp-lg(rr112h*) dr} d8 by definition 
rp a 

* = I(g,h ). 

The first inequality follows from the analogous argument. 

* Using I(g,h) and I(g,h1 ), then, amounts to using the shape of g along rays 

1/2 * 1/2 * 1/2 1/2 
from f's modeµ in two directions, r h lllr h II and r h*lllr h*II' to 

* construct two surfaces g and g* that have ellipsoidal contours and that satisfy 

f g*(x) dx ~ f g(x) dx ~ 
XEEb-Ea XEEb-Ea 

f g*(x) dx, with the 
XEEb-Ea 

first and last integrals being maximized and minimized respectively subject to 

the construction. 

The purpose of defining I(f) and I(g,h) this way is to provide numbers that 

can be understood as probabilities. For example, it is easy to understand that 

* if I(g,h) - I(f) = 0.001 = I(f) - I(g,h*) for all pairs (a,b), g and rare 

identical for any practical purpose. The main drawback with these definitions 

* is that while I(f) is a probability, I(g,h) ~ I(f) is not, and may exceed 

* unity. Nonetheless, because we are interested in either the difference I(g,h) 

* - I(f) or the ratio I(g,h )/I(f), interpretability should not be impaired. 

To recapitulate, the "integrals" method of comparison, as this method will 
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be called henceforth, consists of searching the directions h for those in which 

the integral 

J
brp-1 1/2 g(µ + rl: h)dr 

a 

is large or small compared tc1 

') 

J rp-l f(µ + rt112h)dr, 
a 

These integrals are multiplied by the constant 2vP121tl 1121r(p/2) to permit the 

latter to be interpreted as a probability. 

3.3 Computing the assessment methods 

The methods of sections 3.1 and 3.2 were defined without making 

approximations, in accordance with the requirements listed in section 2.3, but 

some approximations must be made to compute the two methods (that is, apart from 

the inevitable approximation that numerical optimization entails). As described 

below, our implementation of these methods (Hodges, 1985, Appendix) approximates 

the objective functions for the optimization problems that need to be solved to 

evaluate the measures for the two methods. It might appear that we have created 

a distinction without a difference: Bates and Watts use an approximation in 

defining their curvature measures and are able to compute them exactly; we 

define our measures without approximation but require approximations to compute 

them. However, as noted in section 2.2, there is a difference, in that 

improving on the approximation used for defining the curvatures would require a 

completely new method, while improving on the approximation used for computing 
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the integrals and contours methods only requires better computing technique. 

In the remainder of this section, the approximations used for computing the 

contours and integrals methods are described. 

For the definition of the objective functions to be optimized in computing 

the two methods of section 3, it will be assumed that g is the exact density of 

a random variable X, and fan approximation tog, where f is a N(µ,I) density, 

for I nonsingular. It is convenient to work with a transform of X, Z a I- 112cx 
- µ). The densities derived from g and fusing this transformation will be 

called g and f respectively. The latter has the origin as its mode and z z 

circular level curves. The direction vectors of interest to the user are hI = 

r112h/(h'Ih) 112 , where his the unit length direction vector found by the search 

method applied to fz and gz. 

Transforming to fz and gz effects a considerable simplification in the 

objective function for the contours method. In terms of the original variable 

X, the desired level curve of g is 

1/2 k = g(x) = g(µ + I z); (3.1) 

in terms of z, it is 

1/2 1/2 1/2 I I I k m I I I g ( µ + I z ) = gz ( z) ~ (3.2) 

If x satisfies (3.1), then z a I- 112
(x - µ) satisfies (3.2), and conversely. For 

ha unit length direction vector, let rh > O solve 
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(3.3) 

(This solution may not exist, or it may not be unique. These possibilities are 

* discussed below.) If h maximizes 

(3.4) 

* then h also maximizes the following two expressions: 

(3.5) 

which is just (3.4) rewritten, and 

(3.6) 

* 1/2 that is, h minimizes f(µ + rhr h), and thus mimimizes f(x) over x £ C(g,k)~ 

But this means that d2 (k,hr) is minimized, or equivalently, that p2 (k,hr) is 

maximized, where hr= r112h/(h'rh) 112 , as above. 

* Thus, if h maximizes (3.4), it also maximizes the original maximand 

-p/2 2 * but since f
2

(rhh) = (2~) exp(-rh/2), h also maximizes rh~ So 

transforming to f and g allows us to maximize p2 by finding the direction h in z z 

which the level curve (3.2) of g is farthest from the origin. By an exactly 
z . 

analogous argument, p1 (k,hr) is minimized by the direction h for which the level 

curve (3.2) of g is nearest to the origin. z 

The objective function used in the search, then is Sc{h) ~ rh, for rh > O 
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solving (3.3). In developing the contours method in section 3.1, positive and 

negative values of rh in (3.3) were allowed. Only positive values of rh are 

allowed here but, as just shown, the resulting maximum and minimum are the same. 

These last few paragraphs have two other implications. If f has circular 

contours, then maximizing p2 (k,h) and minimizing p1 (k,h) are equivalent to 

maximizing and minimizing, respectively, the distance from f's mode to g's level 

curve g(x) = k. If f has elliptical contours of the form (x - u)'t- 1(x - u) = 

c, then maximizing p2 (k,h) and minimizing p1 (k,h) are equivalent to maximizing 

and minimizing, repectively, the distance from u to g's level curve, where the 

-1 distance measure is defined by the inner product (w,y) = w•r y. 

The use of the objective function Sc(h) = rh can cause problems depending 

on how it is evaluated. If it is found by using a simple root finder in the 

direction h (as in Hodges, 1985), then if gz's mode is placed in such a way that 

for some h there are two positive values of r satisfying (3.3), the root finder 

will detect that there are zero roots or an even number of roots and stop. This 

difficulty can also occur for densities with banana-shaped contours. The search 

routine can be written so that when this occurs, the occurence is pointed out to 

the user, but never unambiguously, because other features of the exact density 

can cause the simple root finder to think that there is an even number of roots 

in the direction h. 

The objective function for the integrals method does not reap such a large 

gain in simplicity from transforming X to z, though the computations are a bit 

simpler. Thus 



2wP121tl 112 fb p-1 1/2 I(g,h) a r(pi2) r g(µ + rI h)dr 
a 

2wp/2 fb p-1 
= r(p/2) r gz(rh)dr. 

a 

It would be ideal to use as an objective function the exact integral I(g,h), but 

the state of numerical integration is such that this is not practical, so an 

approximation to the ideal is used in the search. I have used the trapezoidal 

approximation 

2wp/2 (1 { p-1 ap-1g (ah)}) I(g,h) = s1(h) = r(p/2) 2(b - a) b gz(bh) + z 

Clearly, it would be possible to use a finer approximation to I(g,h), e.g. two 

trapezoids or a 3-point Simpson's rule, but I have found this single trapezoid 

satisfactory and quite fast in test runs. The trapezoid assumption will do 

poorly when the mode of g lies on h between ah and bh. This possibility can be 
z 

obviated by performing the search for more than one pair (a,b). Once the search 

has converged to a direction, I(g,h) can be evaluated numerically, so that the 

* * values of I(g,h) and I(g,h*) should be quite accurate for the directions h and 

* h*' though h and h* will not in general be exactly the optimal directions. 

In the version of these methods in Hodges (1985), the search method used is 

a gradient projection algorithm (Luenberger, 1984, sections 11.4 and 11.5), with 

all derivatives taken numerically. This implementation uses two stopping 
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conditions. If hj is the current trial value of the direction h, VS(hj) is the 

gradient of the relevant objective function at the trial value hj, and c is a 

small number supplied by the user, the two stopping conditions are: (1) hj'hj+l 

> 1 - c, i.e. the trial value does not change much, and (11) fhj'VS(hj)I > 1 -

c, which means that the first order necessary condition for a Lagrange 

multiplier solution to this optimization problem is approximately satisfied. 

Finally, the program in Hodges (1985) allows the user to supply starting values 

or to call an IMSL subroutine that generates starting values. 

At this point, a word is in order about the assumption that g is unimodal. 

In many cases, g will have either multiple modes or an unknown number of modes. 

The difficulty this presents for the integrals method is essentially the same as 

the difficulty presented by an off-center single mode of g. The remedy 

suggested for that problem will be helpful here as well. It is reasonable to 

expect that if the simple trapezoid approximation misses a mode of g, some other 

direction will provide evidence or g's divergence from f. 

For the contours method, the difficulty introduced by multiple modes is 

also similar to that created by an off-center mode and can be handled similarly. 
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4. EXAMPLES, AND AN EXTENSION TO APPROXIMATIONS TO LIKELIHOODS 

4.1 Possible uses for the two methods 

Because the two methods in section 3 are simply methods for comparing two 

functions, they are applicable in a wide range of statistical situations. The 

integrals method is useful for examining the normal approximation to the 

posterior density. If one would like to use a central region of probability 1 _

a, the constants a and b can be set to O and lx 2 
, respectively, where Pr(x2 ~ p,a p 

x2 ) = 1 - a, and bounds on the actual probability of the central region can be p,a 

calculated as in section 3.2. 

Hodges (1985, section 3.4) contains an example in which the contours method 

is used to examine the appropriateness of forming an approximate confidence 

region by using the usual normal approximation to the distribution of the m.l.e. 

The integrals method can also be used (Hodges, 1985, section 3.5a) to study the 

dependence on sample size and dimension of the accuracy of an approximation used 

by Johnson and Geisser (1982, 1983) for co~ruting the predictive influence 

function (PIF's) of subsets of points in linear regression models. 

In section 4.2, the contours method will be extended to allow comparison of 

likelihood regions and applied to the Fieller-Creasy problem (as presented in 

Cook and Witmer, 1985), and in section 4.3, the integrals method is applied to 

examining two approximations of Geisser (1970) and Lee and Geisser (1972) to the 

predictive density for growth curve problems. 

4.2 Likelihood regions 

Under regularity conditions, if e0 is the true value of a, 
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W(eo) = - 2 log(L(eo;y)) 
L(8;y) 

(4.1) 

is approximately distributed as x~ (cf. Cox and Hinkley, 1974, pg. 322), so that 

W(e) is an approximate pivotal and it can be used to form approximate confidence 

regions. An approximate 100(1-a)% confidence region would be the region in 

parameter space satisfying 

1-a ~ Pr ( W ( e ) ~ c ) ( 4 • 2) 

2 for c the appropriate quantile of x • But 
P. 

{8jW(8) ~ c} = {ejlog L(e;y) ~ c•} (4.3) 

i.e., the level curves of the likelihood have an approximate confidence 

interpretation. 

Finding the region {el log L(e;y) ~ c'} can be computationally impractical, 

and log L(8;y) is commonly approximated by the second order Taylor series around 

8, 

log L(e;y) ~ log L(e;y) - (8 - 8) 1 18(0 - 8)/2, 

where 

I C e 
2 I -(( - ~o:aaj log L(8;y) 8 = 8 ))pxp 

is the observed Fisher information. When this is inserted into the left hand 

side of the inequality in (4.3), it can be expressed as 

1 - a~ Pr((e - 8) 1 18(0 - e) ~ c''), (4.4) 

and 
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{ej(e - e)•1 8ce - e) ~ c} 
l·Ie I 1~2e -c/2 

= {ejrCe) ~ ----} 
(21T)p/2 • 

... -1 
where f(O) is the density of 0, a N(e,1 8 ) random variable. Note that the 

nominal confidence coefficient 1 - a is exactly 

I Ie I 1/2e-c/2 
~ c) = Prf(f(0) ~ 12 ). 

Similarly, 

{ej-2 log[L(~;y)] 
L(S;y) 

for g( 0) = 

( 21T )p 

(4.5) 

I I e 11 / 2L C e ; Y ) 

/2 A e 

(2,r)p L(8;y) 

With this manipulation, we are almost in the situation of section 3: we 

are interested in the level curves of g(e) and we would like to approximate them 

with the level curves of f(e), a normal density. This is not exactly the 

situation of section 3, because g will be a probability density only by 

coincidence. Nonetheless, the contours method can be applied directly to g(e) 

and f(e) with a change in the interpretation of the results, as will now be 

shown. 

Define the function 

IIel 1/2e-c/2 
k(c) =-----,with inverse function 

( 2,r )p/2 
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Let 80 be a point on the contour g(e) = k(c) of g. The contour off which 

passes through 80 is f(e) c f(8 0 ), and from above this contour is the normal 

approximate confidence region with nominal confidence coefficient 

A 

Prf(f(0) ~ f(e 0 )) = Prf{(0 - 8) 1 1
8

(0 - a)~ c(f(8 0 ))} 

= Pr{x2 ~ c(f(eo>>}. p 

Thus, if we apply the contours method to f(S) and g(O) as if they were both 

probability densities, the minimum value of p1 (k,h) obtained will be the nominal 

confidence coefficient of the largest normal approximate region entirely 

contained in the exact region (4.5), and the maximum value of p2 (k,h) obtained 

will be the nominal confidence coefficient of the smallest normal approximate 

region which contains the exact region (4.5). If the expected Fisher 

information 

le C 

a ((IE a;~:e. log L(8;y)jle ~ 9llpxp 
1 J 

were used in place of 18 in (4.4) and the subsequent argument, the same 

interpretation will hold for approximate regions formed using r:. 
To understand what drives the contours method in this application, let 

* A A * A 

f (e) = (e - e)•1 8(e - a) and g (0) = -2[log L(O;y) - log L(e;y)J, so that the 

* * approximate and exact likelihood regions are {ejf (a)~ c} and {elg (8) ~ c} 

respectively. The boundaries of the two regions are 
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* c = f (8) = (8 - 8) 1 !
8

(8 - 8) 

* A 

c = g (8) d (8 - e)•r 8(o - 8) + {third degree terms}. 

If the approximate region differs from the exact region, to the first order of 

approximation the difference is caused by the third degree terms in the 

* expansion of g. This is essentially the measure used by Jennings (1982) to 

characterize the adequacy of the normal approximation to the likelihood region 

for logistic regression models. 

e If the approximate likelihood region is formed using r8 instead of 18, the 

* * difference between f (8) and g (e) contains, to the first order of 
A e A 

approximation, a term (e - 8)'(1 8 - r8)(e - e) as well as the third degree 

terms. 

The interpretation of the integrals comparison cannot be adapted so neatly. 

Still, because f(e) is being used to approximate g(e), and f(e) is a density, 

the integrals comparison can be applied and I(g,h) interpreted as if g(e) were 

also a density. Although with likelihood methods we are not interested in 

probabilities of sets, the integrals method still provides information about the 

shape of g relative to f. 

This re-interpretation of the contours method for use with likelihood 

regions extends to subsets of the parameter vector. The development is 

identical, except that L(S;y)/L(e;y) is replaced by 

To give an example of this usage of the contours method, consider the 

nonlinear regression problem as defined in section 2.2, and assume a2 is known. 
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Then the exact likelihood region (4.3) is 

{el S(8): S(O) s c} (4.6) 
a 

where S(8) = 
n 2 2 r (y. - F(xi;e)) and c satisfies Pr(x Sc)= 

i=l l p 

1 - a. This exact region is commonly approximated by replacing (s(e) - S(~)) 
A 

with (a - 0)'V.'V.(6 - 8), where V. is the nxp matrix with (1,j) element 
A 

aF(x1;e)/aej evaluated ate. This tangent plane approximation is used in 

defining the calibration of the curvature measures in section 2.2. Since a2 is 
A 2 2 

assumed known, (e - 8)'V.'V.(8 - 8)/a is approximately x , by the tangent plane 
p 

approximation, and the region 

{ejce - ~)•v.•v.ce - e) < 2 c} .. a (4.7) 

approximates (4.6). 

We can now apply the methods of section 3 to assessing the adequacy of this 

approximation, with f(8) the density of a N(~,o
2 (v.•v.)- 1

) random variable, and 

(e) !v.•v.j 112 
{ -(s(e) - s(e))} c11 8) 

g = 2 p/ 2 exp ') • "f • 

(2no ) 2a 

As an example, consider the Fieller-Creasy problem. The treatment here follows 

Cook and Witmer (1985). Suppose that y. is an observable normal random variable 
l 

with known variance a2 and mean 81 x. + 81 82 (1 - x.), where xi n 1 for population 
l l 

1 and x. = O for population 2. Then population 1 has unknown mean 81 , 
l 

population 2 has unknown mean 81 82 , and the ratio of population 2's mean to 

population l's mean is 82 • Assume that y1, ••• ,yn are observations on population 
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and Yn+ 1, ••• ,y2n are observations on population 2. 

The likelihood function is proportional to 

where the equations 

n 
01 = r y1/n and 

i=1 

give the m.l.e.'s for 81 and 02 • These m.l.e.•s are sufficient statistics for 
~ 

this problem. Assume that (8 1 ,0 2 ) = (3,0) was observed and that o2/n = 

6/5.99147. Then for a= 0.05 and c 5.99147, the exact likelihood region is 

-- as Cook and Witmer (1985) show, this likelihood region happens to have exact 

coverage of 1 - a -- and the approximate region is 

{el f(e) ~ 5-:;147 exp( -(5.f~147)2) }. (4.10) 

These contours are presented in Figure 4.1. The ellipse is the normal 

approximation and the wedge is the exact region. The results of the two 

comparison methods are in Table 4.1, where a and b were chosen so that Prf(Eb) = 

0.99, Prf(Ea) = 0.95, and I(f) = 0.04, and k was chosen to give p0 (k) ~ 0.95. 

By construction, the intrinsic curvature of the solution locus n(e) = 

((e 1 xi +8 1 02 (1 - xi) ))nxl is identically zero. From Cook and Witmer•s formula, 

-1/2 the parameter effects curvature is 0.33, and the guide value is (5.991) . = 
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0.41 (because a2 is assumed known, we compare to x~ instead of the F 

distribution on p and v degrees of freedom). Bates and Watts' criterion 

indicates that the approximation shown in Figure 4.1 should be reasonable, yet 

apparently it is not. 

The two comparison methods of section 3 clearly indicate the inadequacy of 

the elliptical region as an approximation to the wedge-shaped exact region. In 

directions 3 and 7, the exact region extends 

Table 4. 1 
Number direction h I(f) - I(g,h) I(g,h)/I(f) p1 (k,h) and 

p2 (k,h) 

1 (-1.000, 0.000) 0.000 1.000 0.9501 
2 (-0.870, 0.494) -0.236 6.889 
3 (-0.826, 0.564) >0.99995 
4 ( 0.916, o.4oo> 0.0380 0.0501 0.8476 
5 c ,~ooo, 0.000) 0.000 1~000 0~9501 
6 ( 0.916,-0.400) 0.0380 0.0501 0~8476 
7 (-0.826,-0.564) >0.99995 
8 (-0.870,-0.494) -0.236 6.889 

* The symbol"---" means that the direction was not a local maximum or minimum 
of the objective function at the top of the column. 

out past the edge of the ellipsoid with nominal confidence coefficient 0.99995. 

In directions 4 and 6, the exact region reaches to the edge of the ellipsoid of 

nominal confidence coefficient 0.8476. The integrals method corroborates this. 

However, in view of Weiss' (1985) simulations for this problem, the apparent 

superiority of the contours and integrals method for this problem must be 

considered qualified. 

This adapted version of the contours method presented in this section can 

be extended to subsets of the parameter vector, although computation of the 

method is very difficult except for single parameter subsets (Hodges, 1985, 

section 3. 3c). 
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~-3 Predictive densities 

This section contains a more fully developed example of how the accuracy 

assessment methods can be used to examine a particular approximation. 

Geisser (1970) and Lee and Geisser (1972) developed a Bayesian analysis of 

growth curve models with particular interest in predictions from those models, 

and Lee and Geisser (1975) applied this analysis to the Potthoff-Roy data (given 

in Lee and Geisser, 1975). In these models the pxN matrix of observables Y is 

assumed to have expected value XtA, where Xis a known pxm matrix of rank m < p, 

A is a known rxN matrix of rank r < N, and tis an unknown mxr matrix. The 

columns of Y are assumed to be independent p-dimensional multivariate normal 

random variables with common unknown covariance matrix r. For the Potthoff-Roy 

data set, Lee and Geisser assumed that r had the simple form r = XrX' + Z8Z' for 

z a known px(p-m) matrix of rank (p-m) satisfying Z'X = O and rand e arbitrary 

mxm and (p-m)x(p-m) positive semi-definite matrices. This is called "Rao•s 

simple structure," and a likelihood ratio test does not contraindicate its use 

for this data. 

One prediction of interest is of K future p-dimensional vectors forming the 

pxK matrix V, which has expectation XtF for some appropriate known rxK matrix F. 

-1 -1 
If the convenient prior density for (t,r ,a ) 

n ( r - 1 • e - 1 ' t ) a: I r I ( m + l ) / l I e I ( p-m + 1 ) / 2 

is used, the exact predictive density for V can be derived, but it is awkward to 

evaluate. However, its expectation and covariance matrix can be obtained, and 

Lee and Geisser (1972) propose approximating the exact predictive density of V 
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by a matrix normal density with expectation and covariance equal to those of the 

exact density. 

Lee and Geisser also propose another approximation. If rand e are assumed 

to be known, the predictive distribution of Vis a normal distribution with a 

known mean and a covariance matrix that is a function of rand e. The 

approximation is used by substituting estimates for the unknown rand e, and Lee 

and Geisser suggest using unbiased estimates, m.l.e.•s, or posterior 

expectations. Here we will examine only the approximation obtained using the 

unbiased estimates. 

The accuracy of these approximations can be checked using the methods of 

section 3; this will be exemplified with the Potthoff-Roy data. 

These data consist of four dental measurements on each of eleven girls and 

sixteen boys. The postulated growth curve is linear, so that p = 4, m = r = 2, 

and N = 27, the design matrices X and A are 

X = [ -3] -1 
1 
3 

A=~ 
1 0 
0 1 ~] 

(where the first block of A has 11 columns and the second block has 16 columns), 

and Tis 2x2. If we wish to predict the four measurements for the next girl, K 

= 1 and F = (1 ,0)'. Then from Geisser (1970), the exact predictive density of V 

is 

g(V) 
= C1 jDYY'D' !27/2 fBSB' !25/2 

jDYY'D + DVV'D' j14 jBSB' + c 2 (DV - T)(BV - T)' j13 

(4.11) 
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2 where c 1 = 143/80w , c 2 = 11/12, T' = (22.648, 0.47955), 

1 3 t1 -1] 
for z a ] -~ , 

DYY'D' 
f1.1119 -o.32a1tj 
[_o. 32512 3•1994J with determinant 22.838, and 

194.491 
BSB' = ~. 7008 

1. 700~ 

2;958_:1 with determinant 276.67 (interested 

readers are referred to Geisser, 1970, for details). 

From Lee and Geisser (1972), expression (6.4), the exact predictive 

covariance of Vis 

L = g ( -1 XBSB'X') + -
1 (ZDYY'D'Z') 

V 11 22 24 

[ 5.9594 4.0349 
6.2242 

4.2052 
3.6379 
6.4175 

3.5307 
4.4879 
4 .8190 
6.9167 

and the exact predictive mean isµ= XTF = (21.209, 22.168, 23.127, 24.086)'. 

We will refer to this approximation, a 4-variate normal density with mean u and 

covariance r, as (6.4). 
V 

Also, from Lee and Geisser (1972), expression (8.7), the second 

approximation (which uses the unbiased estimates of rand a) has covariance 

matrix 
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12 ( 1 L = - X -BSB')X' + u 11 25 

= 

5.2484 3.5440 
5.5090 

z(~YY'D')Z' 27 

t ~~;! t ~~~~u 
5.6600 4.2350 

6.0903 

and meanµ. This approximation will be referred to as (8.7). Note that 

dividing L elementwise by 1: gives these quotients: u V 

[1~ 1 • 1 4 1 • 1 4 
1.1~ 1 • 13 1 • 1 4 1.14 

1 ~ 13 1 • 14 ' 
1 • 1 4 

which means that we can expect substantial similarity between the directions of 

greatest difference found in comparing them to (4.11). 

The results of comparing (6.4) and (8.7) to (4.11) are in Tables 4.2 and 

4.3 respectively. For each of these two comparisons, seven integrals and seven 

contours were examined. Four of the integrals gave the probabilities of central 

regions, i.e. ellipsoids having probabilities (under the respective normal 

approximations) of 0.05, 0.5, o.8, and 0.95. These integrals are numbered 1 

through 4, respectively; the integral numbers correspond to the columns in 

Table 4.2a and in the upper part of Table 4.3. The other three integrals were 

between ellipsoids containing probability o.48 and 0.52, 0.78 and o.82, and 0.93 

and 0.97 under the normal approximation; these integrals are numbered 5 through 

7, respectively. These last three integrals allow us to examine the 

approximations at the edges of the central regions containing probabilities 0.5, 

0.8, and 0.95. The seven contours were the ellipsoids containing 0.025, 0.25, 
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o.4, o.475, 0.5, o.8, and 0.95 of the probability under the normal approximation 

and are numbered 1 to 7 respectively; these contour numbers correspond to the 

columns in Table 4.2b and in the lower part of Table 4.3. The directions giving 

local maxima and minima are almost identical for (6.4) and (8.7), and they did 

not vary much over the seven integrals and seven contours. Thus, the directions 

were numbered and used for both (6.4) and (8.7). In both Tables, the direction 

numbers correspond to the rows, and the directions themselves are listed at the 

bottom of Table 4.2b. 

The four central regions, integrals 1-4, will be examined first. Integral 

#1 shows that (6.4) is flatter at the mode than the exact density (because 

I(g,h)/I(f) > 1), while (8.7) is more peaked than the exact density. For 

neither approximation do the ratios I(g,h)/I(f) depend much on the direction, so 

we have a good assessment of the size of the approximation error. For (6.4), 

the actual probability content of the approximate central region is about 14% 

higher than the nominal probability of 0.05, while for (8.7) the actual 

probability content of the approximate central region is about 8% lower than the 

nominal probabilty of 0.05. This trend persists for integral #2, with 

approximation (6.4) giving a nominal probability for the central region that is 

about 3% to 6% low and approximation (8.7) giving a nominal probability for the 

central region that is about 7 1/2% to 10% high. For integral #3, there are 

some directions in which approximation (6.4) is too high, and some in which it 

is too low. These cancel each other out to some extent, although undoubtedly 

not perfectly. Approximation (8.7) is still too high in all directions, by 

about 3 1/2% to 8 1/2%. Finally, for integral #4, approximation (6.4)'s high 

and low points cancel each other out better than for integral #3. For 
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Table 4.2a 

integrals 

dir. 1 2 3 4 5 6 7 
1 • 0501 1 • 0322 1.0444 0.9988 1.0317 1 • 2948 

2 1.1365 

3 -- 1.0501 1. 0330 1.0454 0.9988 1 • 0329 1. 2965 

4 1.1369 

5 -- 1 .0298 0.9826 0.9625 0.9443 o.8658 0.8599 

6 -- 1. 0304 0.9833 0.9632 0.9450 0.8666 o.8609 

7 1.1405 1 • 0604 1.0438 1 • 0551t 1.0127 1.0438 1.2917 
* 8 1 • 1 364 1. 0298 0.9826 0.9625· 0.9443 o.8658 o.8599 

9 -- 1 • 0301 0.9828 0.9625 0.9445 o.8659 0.8601 
* 10 1.1364 

11 -- 1.0305 0.9832 o.9630 0.9450 o.8665 0.8608 
* 12 1 • 1 367 
* 13 1. PI05 1.0604 1.0438 1 • 0555 1.0128 1.0440 1.2919 
* Pl 1 • 1366 1 • 0302 0.9830 0.9629 0.9447 0.8664 0.8606 
* 15 1.1405 
* 16 1.1405 

integrals contours 

number Pr(E) Pr(E) Prf(f~k) a 
0.0001 0.05 0.025 

2 0.0001 0.5 0.25 

3 0.0001 0.8 0.4 

4 0.0001 0.95 0.475 

5 o.48 0.52 0.5 

6 0.78 0.82 0.8 

7 0.93 0.97 0.95 

*=direction slightly different from that shown 
= the direction was not a local maximum or minimum for this 

integral or contour 
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Table 4.2b 

contours 

dir. 1 2 3 4 5 6 7 
o. 2631 0.4034 o.4754 0.4997 0.8050 0.9612 

2 0.0488 

3 -- 0.2634 o. iw31 0.4756 0.5000 0.8052 0.9613 
4 0.0489 

5 -- 0.2572 0.3916 o.4603 o.4835 0.7783 0.9li32 

6 -- 0.2573 0.3918 o.4605 o.4837 0.7785 0.9432 

7 0.0501 0.2668 o.4011 0.4796 0.5039 0.8068 0.9610 
* 8 0.0487 0.2572 0.3916 0.4603 0.4835 0.7783 0.9432 

9 -- -- 0.3917 o.4603 o.4836 0.7784 0.9432 
* 10 0.0487 0.2571 

11 -- -- 0.3918 0.4605 0.4837 0.7785 0.9432 
* 12 0.0488 0.2573 
* 13 0.0501 0.2669 0.4077 0.4796 0.5039 0.8068 0.9610 
* 14 0.0488 0.2573 0.3917 o.4605 0.4836 0.7784 0.9432 
* r 15 0.0501 0.2668 
* 16 0. 0501 0.2668 

directions 

(-0.357,-0.445,-0.534,-0.623) 9 (-0.150, 0.230,-0.704,-0.655) 

2 c-o.301,-0.523,-0.534,-o.592) 10 (-0.133, 0.185,-0.696,·0.681) 

3 c o.357, o.445, o.534, o.623) 11 c 0.150,-0.230, 0.104, o.655) 

4 ( 0.301, 0.523, 0.534, 0.592) 12 c 0.131,-0.191, o.696, o.679) 

5 (-0.194,-0.648,-0.521,-0.521) 13 c-o.451, 0.313, 0.616,-0.528) 

6 c 0.193, o.648, 0.521, 0.521) 14 ( 0.551, 0.641, 0.531,-0.060) 

7 ( 0.130,-0.564, 0.755,-0.308) 15 c-0.341, 0.816,-0.460, 0.018) 

8 (-0.292,-0.613,-0.245,-0.692) 16 ( 0.393,-0.769, 0.503,-0.039) 

for Table 4. 3: 

17 ( 0.066,-0.229,-0.523,-0.818) 18 c-0.048, 0.240, 0.526, 0.814) 
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Table 11.3 

integrals 

dir. 1 2 3 4 5 6 7 

0.9179 0.9280 0.9645 1.0167 0.9622 1.1320 1.6404 

3 0.9183 0.9286 0.9653 1.0176 0.9631 1.1333 1. 6424 

5 0.9171 0.9098 0.9192 0. 9371 0.9142 0.9726 1.1566 

6 0.9174 0.9102 0.9198 0.9377 0.9148 0.9735 1.1578 

7 0.9186 0.9281 0.9622 1.0106 0.9601 1 • 1182 1.5862 

8 0.9171 0.9098 0.9193 0.9372 0.9143 0.9728 1.1568 

9 0.9172 0.9099 0.9193 0.9372 0.9144 0.9729 1.1569 

11 0.9173 0.9102 0.9198 0.9377 0.9149 0.9736 1.1578 

13 0.9186 0.9281 0. 9621 1.0105 0.9600 1.1181 1.5860 

14 O. 9173 0.9101 0.9196 0.9375 0.9147 0.9733 1 • 1575 

17 1.0168 1.6406 

18 1.0175 1. 6422 

contours 

dir. 2 3 4 5 6 7 

0.0112 0.2194 0.3774 0.4592 0.4868 0.8212 0.9710 

3 0.0113 0.2197 0.3777 o.4595 0.4871 0.8213 0.9711 

5 0.0112 0.21112 0.3660 0.4444 0.4708 0.7955 0.9563 

6 0.0112 0.2144 0.3662 0.4446 0.4710 0.7957 0.9563 

7 0.0113 0.2197 o. 3772 0.4586 0.4861 o.8189 0.9696 

8 0.0112 0.2143 0.3660 O.lPl44 0.4708 0.7955 0.9563 

9 0.0112 0.2143 0. 3661 0.4444 0.4708 0.7956 0.9563 

11 0.0112 0.2144 0.3662 0.4446 0. 4710 0.7957 0.9563 

13 0.0113 0.2196 0.3771 0.4586 0.4861 0.8189 0.9696 

14 0.0112 0.2144 0.3662 o.4445 o.4709 0.7956 0.9563 

17 o.4592 0.9710 

18 0.4595 0.9711 
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approximation (8.7), some ratios are greater than unity, but for each direction 

(6.4) has a higher ratio I(g,h)/I(f), so (8.7) will still overestimate the exact 

integral by a few percent. 

In sum, (6.4) is better for the three larger regions, (8.7) is better for 

the smallest region, but in no case are the differences very large. 

Integrals 1, 5, 6, and 7 help explain the trends in integrals 1-4. For 

(6.4) there are two groups of directions: in one group, the approximate 

integral exceeds the exact integral by an increasing amount (directions 5, 6, 8, 

9, 11, 14), and in the other group, the exact integral exceeds the approximate 

integral by an increasing amount (directions 1, 3, 7, 13). These directions are 

the same ones in which the ratios for integral U4 are less than or greater than 

unity, respectively. Approxim~tion (8.7) shows a similar pattern, except that 

for the first group of directions the exact integral also exceeds the 

approximate integral, though not by as much as for the second group of 

directions. 

Integrals 5 through 7 indicate that both approximations have some 

deficiencies in their tails. In particular, if we wanted to make a statement 

about the probability outside some central region, integrals 5-7 indicate that 

(8.7) would underestimate that probability, because for integral 7 it 

underestimates in all directions, while (6.4) would be closer to the exact value 

because it would overestimate in some directions and underestimate in others. 

However, it is not clear from these seven integrals what would happen far out in 

the tails. 

All of this is corroborated by the contours comparisons. 

Both of these approximations do fairly well. Neither is a resounding 
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winner over the other, but (6.4) is probably a little bit better. 

5. CONCLUSION 

How do the methods of section 3 measure up against the desirable qualities 

listed in section 2.3? For the examples shown in section 4, the methods do use 

directly relevant information about the entities of ·interest, i.e. the 

likelihood function in section 4.2 and the predictive density in section 4.3. 

For some of the applications listed in section 4.1, for example the application 

to predictive influence functions, the methods of section 3 do not apply 

directly to the entities of interest {the PIF's), but do supply useful 

information about the approximation. As for the efficiency with which the 

available information for the model and data at hand is used, the integrals 

method in its current implementation runs very quickly. The contours method is 

much slower, because the current version numerically differentiates a function 

that is evaluated by solving an equation numerically. In the next version of 

the program that implements the methods, this problem will be circumvented by 

using a formula for drh/dh, derived by implicit differentiation, that only 

requires differentiating the exact function g, and then the contours method 

should run as quickly as the integrals method. 

Both methods, as defined in section 3, are calibrated as probabilities, 

which are numbers about which statisticians at least can be presumed to have 

cultivated some intuition. The contours method extended to likelihood regions 

(section 4.2) is calibrated in terms of nominal confidence coefficients, about 

which the same judgement should apply. 

Finally, the methods of section 3 do not rely on approximations at all for 
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their definitions, although approximations are necessary for their computation. 

While the methods presented here seem to satisfy the requirements of 

section 2.3 better than convergence rates or the geometric approximation of 

section 2.2, their ultimate utility will depend on two things: the ease with 

which they can be computed relative to the ease of computing the exact 

quantities or functions of interest, and their theoretical and intuitional 

fertility. It remains to be seen whether the two new methods will satisfy these 

last requirements. 
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