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ABSTRACT 

An asymmetric trimmed mean with trimming only on the right can be a 
consistent estimate of the mean if the trimming fraction goes to zero. We 
show under mild regularity conditions that the mean squared errors of such 
trimmed means are asymptotically larger that the mean squared error of the 
sample mean. 
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1. Introduction and Summary. Let x1 < x2 < ••• < Xn be the ordered 

observations of an independent, identically distributed sample from a 

distribution F,'where Fis absolutely continuous with finite meanµ and 

variance a2 , F(O) = 0 and F- 1 (1) = = • We wish to estimateµ. The 

distribution Fis unknown, so that parametric procedures are unavailable. The 

sample mean Xis the natural estimate ofµ, but the sample mean is not robust. 

A simple robust alternative to Xis an asymmetrically trimmed mean xk, where 

~ 1 
xk = -n~k 

If k/n (with k allowed to depend on n) goes to zero, then Xk is a consistent 

estimate ofµ. We employ asymmetric trimming because we believe that any lack 

of robustness is due to large, not small, values. Symmetric trimmed means 

provide good variance reduction over the sample mean for long tailed 

distributions in the usual robustness setup (see, for example, Bickel 1965), 

so it might be hoped that asymmetric trimmed means would provide good mean 

square error (MSE) improvement over the ~ample mean in asymmetric situations. 

The purpose of this note is to show that this MSE reduction does not occur. 

Under fairly mild restrictions, the bias introduced through trimming is 

greater than the· variance reduction gained, so that the MSE of the trimmed 

mean is greater than a2/n, even for long tailed distributions like the Pareto. 

Our approach will be asymptotic, and our goal is to prove the following: 

Theorem. Let x1 < x2 < ••• < Xn be an ordered sample from F, where Fis 

absolutely continuous with finite variance, F(O) = o, and F-1(i) 



If 1) there exist a> 2 and xO such that Xa(1-F(x)) is decreasing for X > xO, 

and 2) k (=k(n)) = o(n) and log(n) = O(k), 

- 2 a
2 

( Jm X 2 then E(Xk - µ) = n + dF) + smaller orders, 
q(k,n) 

where q(k,n) = inf{X: F(X) ~ n~k} • If Falso satisfies: 

-1 h = F is twice continuously differentiable with 

lim sup (1-t) lh"(t)/h'(t)I < 5/4 
t + 1 

and lim sup (1-t)lh'(t)/h(t)I bounded, then the growth 
t +. , 

restriction log(n) = O(k) can be relaxed to k + m. 

The two sets of assumptions are used to show that the tail order statistics 

behave like their quantiles, in particular, to show that 

xn-k 4 
El q(k,n) - 1 I + 0. 

The first set of conditions makes stronger assumptions about k and weaker 

assumptions about the tail of F than the second set. The first assumptions 

are still met if Xaf(X)-C for 3 <a< 5, while the second set requires a~ 5. 

The price we pay for working with the longer tails under the first set of 

assumptions is that we must trim off ·more tail values for the asymptotic MSE 

expansion to be valid. 

A procedure related to trimming is truncation. Define the trucated mean 

to be 

where re·) is the indicator function. What we in fact show in proof of the 

theorem is that under our assumptions, the MSE of the trimmed mean is equal to 

2 

; 



• 

the MSE of the truncated mean to the given order of approximation. 

To illustrate the theorem, consider the Pareto family 

F(X) = 1 - 1/Xa-1 for X ~ 1. This is a long tailed distribution, and we might 

have expected trimmed means to produce substantial MSE reduction. However, 

the conclusion of the theorem is that the MSE of a trimmed mean for the Pareto 

should be 

2 
(!!:.1-) a-2 

n 

For a= 4, this is 

+ 
a~1 
a~2 

2 a-2 
a-1 + smaller orders. 

2 
a 
n 

k4/3 
(1+3113 + smaller orders) • 

n 

If we take k 1/10 
= n then our two term expansion predicts a doubling of the 

MSE for n up to 243. 

2. Proof of the Theorem. We begin with two lemmas which will establish the 

quantile approximation to the tail order statistics. For the rest of this 

paper, we will denote q(k~n) simply by q. 

Lemma 1. Suppose x1 < x2< ••• < Xn is an ordered sample from F, where Fis 

-1 absolutely continuous, F (1) = m, and there exist a> O and x0 such that 

xa(1-F(x)) is decreasing for X > x0 • If k = o(n) and log(n) = O(k), then 

I 
xn-k 

E q(k,n) for positive P. 

Proof. It suffices to show that Xn~k/q + 1 in probability and that 
p 

IXn_k/ql is uniformly integrable. 
-1 

Let Xi= F (ui), where ui is the i-th 

order statistic from a sample of n uniform (0,1) random variables. 

By using the fact that xa(1~F(x)) is ·decreasing in the tails, it is not 
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difficult to show that 

)( , 

f ~1( ) ~ F thi t f u ~ n~k or F u & x > x0 • rom s, we ge or n~k n 

X 
[1 + lu I"" n-k 1!!_r1/a :5 n-k :;; [1~ lu . ,_ n-k1nr1/a 

n-k n . k q n"k n k 

n=-ik 
The same can be shown for un~k ~ n 

n-k n 1 
lun-k '"'nh< = Op(Tk) ' 

Since 

we conclude that X k/q -+- 1 in probability. n-
To show uniform integrabi~ity of IXn~k/ql, we must show that for given 

e > O, there exists a B such that for b > B, 

'"'1 
Q 

CD p 
l ly!qf dG -k (y) < e , 
bq n ,n 

where G .k is the distribution of X k. By standard order statistics n- ,n n~ 

results and the assumption that yP(,~F{y))k is decreasing for some k
0 

> O, we 

need to bound 

n! 
k'.""k 

Jm F(y)°-k ... 1 ( 1r-F(y)) O dF(y) 
(n-k-1) ! k! bq 

n! 

k! 

where I.(•,•) is the incomplete beta function. Continuing, the integral of 

interest is bounded by 

~P-1 
;S l Q 

n! 

n! 

k! 

k! 

I 1_F(bq)(k-k0 + 1, n-k) 

Ik ... 
- b a 
n 

(k-k0 + 1, n~k) for b>1 • 

4 
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Using the standard expansion of the incomplete beta as a sum, one can show 

that for b large enough the last incomplete beta is bounded by 

c2 
(n-k0) t 

c k ... k
0 

+1 > 1 (n""lk,..1 ) ! 

k ... k +1 
( k ~a) 0 ( k ~a)n~k~1 
~ b 1- ~ b 
n n 

Substituting this back in and using Stirling's approximation, our integral of 

interest is now bounded by 

C ~P ... 1 
3 q 

1 

lk 

k 
(~) 0 b-ak ek(1~b-a) 

By choosing b large enough, this can be made as small as desired, so that 

uniform integrability and the lemma are proved. 

A second lemma which may be used to prove convergence of X k/ follows. n- q 

-, 
Lemma~- Let O < p ~ r be real numbers, and let ha F be twice 

continuously differentiable on (0,1) and satisfy 

11m sup c1~t>lh"Ct>1h'<t>I <, + 11r and 
t + 1 

lim sup (1-t) lh' (t)/h(t) I 'bounded 
t + 1 

If k = o(n) and k+ c:o, then 

E I xn•k 
q 

... , IP +o 

Proof. Lemma 2 is a direct application of Lemma A2.3 of Albers, Bickel and 

Van Zwet (1976). 
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Proof of Theorem: _We use the following shorthand notation: 

,.. n ... k ~ 
A=X ---X 

k n k 

n 
' n-k - 1 l X B = -- X - - 1 

n k n i=l 

and 
1 n 

' C = ~ I X ~ µ 
n 1=1 1 

' ~ where Xi= x1rcx
1 

~ q) are truncated Xi's. The MSE of Xk is then the expected 

value of (A+ B + c)
2

• 

2 k
2 

Clearly, E(A) = 0 (-2-) • Next, 
n 

IBI = ! I I X I 
n j£J j 

where J is the index set of the order statistics in the difference of the two 

sums in B. For j £ J, 

lxj ~ qi ~ lxn-k ~ qi, so that 

18 1 ~ ~ (q + lxn-k ~ qi) 

where IJI is the cardinality of J. By Cauchy~Schwartz, either of the lemmas, 

and the central moments of a binomial, we see that 

2 k 2 ECB > = oc~2 q > 
n 

k3/2 
The cross product term E(AB) is o(-2- q) by 

n 

2 -Cauchy~Schwartz. The E(C) term is just the MSE of yk. 

6 
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E(C2) = ! [ IQ X2dF - (IQ xdF) 2 ] + (Im x dF) 2 
n O O q 

2 
a = 2 

= - + (I x dF) + smaller orders. n q 

The A term is equal to n~k (C + µ + B), so that 

k ( ) k m E(Ac> = ac-2-> + o E(Bc> + acn IQ x dF) • 
n 

The BC term may be written 

n ... 
BC= q/n [n~k~ l I(Xi ~ q)] (yk - µ) 

i==1 

1 -
+ n I 1xj ~ QI <Yk ~ µ) 

j£J 

n 
By conditioning on I I(Xi ~ q), the first term in BC can be 

i=1 

shown to have expectation 0( k
2
q) • 

n 

min Let L = n-k+1 if the index set J is empty and L = j£J j otherwise. 

L-2 
With L defined thusly, I_ xi and l lxj p qi 

1=1 jEJ 

are conditionally independent given XL~1 • The second term in E'(BC) is 

! IE{ l Ix - qi [1 
L,-1 L+IJl-1 
I x - µ + ! L xi I(x -k~ q)]}I 

n j£J j n 1=1 i n i=L n 

~ l IE{ l Ix -qi c1 
L-1 

o(l g2k) l xi - µ > l I + 
n j£J j n 1=1 n2 

by Cauchy~Schwartz and the Lemmas. Continuing, condition on L, IJI, and XL~1 

and use conditional independence to get 

1 



~ E[ IJI lxn-k - qj 
. n L-2-n ] ( 1 2 ) IE(XjX < X ) ~ µI + ~ + µ1--· I + 0 - q k L~1 n n 2 n 

1/2 
k 1 

/
2 2' k 1 2 ~ o(-n- q) {E (ECXIX < ~-,> ~ µ) + ~ + O(n)} + 0(2 q k) • 

n 

To finish the proof, ~e must evaluate E(ECXIX < XL~1) - µ) 2 
.• For large z, we 

have 

jE(XjX ~ z) • µj ~ C Jm x dF, 
z 

which by our assumptions on 1-F(x) can be bounded by c
2 

z(1~F(z)). 

Since XL~, ~ q, we have 

E(ECXIX < XL~,)~µ)
2 ~ q

2
E(1-uLw1)

2
, 

where uL~, = F(XL~1) is the L-1st order statistic for then uniforms 

corresponding to the X's. Note that 

1-u < L-1 "" 
n,..k I n-kl '"'--+ u =---n n!'"Ok n , so that 

2 k2 
E(1-uL~,) = 0(2 ) . 

n 
k3/2 2 

Recombining all BC terms, we see that E(BC) = o(-2- q ) • 
n 

Checking the orders of all terms, we see that 

2 
- 2 C, ( m )2 E(X - µ) = - + J x dF + smaller orders, n n q 

and the theorem is proved. 

8 
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