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We consider the system of equations arising from mantle dynamics intro-

duced by McKenzie (J. Petrology, 1985). In this multi-phase model, the fluid melt

velocity obeys Darcy’s law while the deformable “solid” matrix is governed by a

highly viscous Stokes equation. The system is then coupled through mass conser-

vation and compaction relations. Together these equations form a coupled Darcy-

Stokes system on a continuous single-domain mixture of fluid and matrix where

the porosity φ , representing the relative volume of fluid melt to the bulk volume, is

assumed to be much smaller than one. When coupled with solute transport and ther-

mal evolution in a time-dependent problem, the model transitions dynamically from

a non-porous single phase solid to a two-phase porous medium. Such mixture mod-

els have an advantage for numerical approximation since the free boundary between

the one and two-phase regions need not be determined explicitly. The equations of

mantle dynamics apply to a wide range of applications in deep earth physics such as

mid-ocean ridges, subduction zones, and hot-spot volcanism, as well as to glacier

dynamics and other two-phase flows in porous media.
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In particular, mid-ocean ridges form when viscous corner flow of the solid

mantle focuses fluid toward a central ridge. Melt is believed to migrate upward

until it reaches the lithospheric “tent” where it then moves toward the ridge in a

high porosity band. Simulation of this physical phenomenon requires confidence in

numerical methods to handle highly heterogeneous porosity as well as the single-

phase to two-phase transition.

In this work we present a standard mixed finite element method for the

equations of mantle dynamics and investigate its limitations for vanishing poros-

ity. While stable and optimally convergent for porosity bounded away from zero,

the stability estimates we obtain suggest, and numerical results show, the method

becomes unstable as porosity approaches zero. Moreover, the fluid pressure is no

longer a physical variable when the fluid phase disappears and thus is not a good

variable for numerical methods.

Inspired by the stability estimates of the standard method, we develop a

novel stable mixed method with uniqueness and existence of solutions by studying

a linear degenerate elliptic sub-problem akin to the Darcy part of the full model:

u =−a(φ)∇p and ∇ ·(b(φ)u)+φ p = φ 1/2 f , where a and b satisfy a(0) = b(0) = 0

and are otherwise positive, and the porosity φ ≥ 0 may be zero on a set of positive

measure. Using scaled variables and mild assumptions on the regularity of φ , we de-

velop a practical mass-conservative method based on lowest order Raviart-Thomas

finite elements.

Finally, we adapt the numerical method for the sub-problem to the full sys-

tem of equations. We show optimal convergence for sufficiently smooth solutions
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for a compacting column and mid-ocean ridge-like corner flow examples, and in-

vestigate accuracy and stability for less regular problems.
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Chapter 1

Introduction

The goal of the work presented here and my thesis project as a whole is to

develop a mixed finite element method for the equations of mantle dynamics intro-

duced by McKenzie [38]. In this multi-phase model, the fluid melt velocity obeys

Darcy’s law while the deformable “solid” matrix is governed by a highly viscous

Stokes equation. The system is then coupled through mass conservation and com-

paction relations. Together these equations form a coupled Darcy-Stokes system

on a continuous single-domain mixture of fluid and matrix where the porosity φ ,

representing the relative volume of fluid melt to the bulk volume, is assumed to be

much smaller than one. The coupled equations are given by

µ f

k0
φ
−2(1+Θ)u =−∇q f , 0≤Θ≤ 1

2 (1.0.1)

µm∇ ·u+φ(q f −qm) = 0. (1.0.2)

∇qm−∇ · (2µm(1−φ)Dvm)+∇
(5−2φ

3 µm∇ ·vm
)

= (1−φ)∆ρg, (1.0.3)

µm∇ ·vm−φ(q f −qm) = 0, (1.0.4)

where u = φ(v f − vm) is the Darcy velocity (or scaled relative velocity), vm is the

matrix velocity, and q f and qm represent the fluid and matrix pressure potentials, re-

spectively. Equations (1.0.1)–(1.0.2) look like Darcy’s law for a compressible fluid,
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and (1.0.3)–(1.0.4) resemble Stokes equation for a compressible fluid. When cou-

pled with solute transport and thermal evolution in a time-dependent problem, the

model transitions dynamically from a non-porous single phase solid to a two-phase

porous medium. Such a mixture model has an advantage for numerical approxi-

mation since the free boundary between the one and two-phase regions need not

be determined explicitly. The equations of mantle dynamics apply to a wide range

of problems in deep earth physics [1, 30–32] such as mid-ocean ridges, subduction

zones, and hot-spot volcanism, as well as to glacier dynamics [8, 28, 52] and other

two-phase flows in porous media [13, 14, 20, 35].

Mid-ocean ridge phenomena is the physical problem that guides this project.

Mid-ocean ridges (see Figure 2.1) form when viscous corner flow of the solid man-

tle focuses fluid toward a central ridge. Melt is believed to migrate upward until it

reaches the lithospheric “tent” where it then moves toward the ridge in a high poros-

ity band. Simulation of this physical phenomenon requires confidence in numerical

methods to handle highly heterogeneous porosity as well as the single-phase to

two-phase transition.

Mixed finite element methods (MFEM) are good candidates to model this

system. MFEM have an extensive theory in both limiting cases of Darcy flow and

Stokes flow. Moreover, velocity fields computed using MFEM are continuous on

each element and have continuous normal component across element boundaries.

Thus, MFEM are good candidates to couple with the transport equations since they

allow for unambiguous determination of trajectories.

The project began by following the natural approach to modeling Darcy and

2



Stokes. The Stokes part is well-behaved. For test functions Ψ and w, the Darcy part

(for homogeneous conditions) of the variational form looks like(
µ f

k0
φ
−2(1+Θ)u,Ψ

)
− (q f ,∇ ·Ψ) = 0, (1.0.5)

(∇ ·u,w)+
(

φ

µm
(q f −qm),w

)
= 0. (1.0.6)

When deriving stability estimates we were only able to show

‖φ−(1+Θ)u‖+‖φ−1/2
∇ ·u‖+‖φ 1/2q f ‖ ≤C∆ρ. (1.0.7)

These bounds suggest that the fluid pressure may be unbounded as porosity van-

ishes. Indeed, the fluid pressure is no longer a physical variable when there is no

fluid! Moreover, the condition number of the method is sure to blow up as porosity

vanishes in part of the domain since we divide by φ in (1.0.5). Numerical results

also bear these issues out. We were thoroughly unsatisfied with this approach and

stuck without a formulation we could be confident in. This is especially relevant

for mid-ocean ridges since we are interested in the high porosity band predicted at

the one to two-phase boundary.

Thus began the chase for the exploding pressure. Unfortunately, we were

unable to find a solution to the mantle equations where the pressure becomes un-

bounded as porosity decreases to zero in part of the domain. However, we do show

it can blow up numerically. During this span of time, the project also took several

tangents. I spent a great deal of time investigating the thermodynamics and phase

behavior in the mantle (which is not included in this thesis but is the natural next

step for further work). I also developed, with the generous help of Matt Knepely
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and Jed Brown at Argonne National Labs, a parallel code for implementing mixed

finite element methods in PETSc. This code was later scrapped and replaced with

a general FEM code I wrote from scratch in MATLAB. As we did not have a for-

mulation set in stone, the code needed generality and flexibility to handle the many

future directions of the project and I felt that PETSc was not the right development

direction.

The meandering nature of the project continued until, inspired by the stabil-

ity estimates in (1.0.7), we derived a new method for scaled variables q̃ f = φ 1/2q f

and ṽr = φ 1+Θu with uniqueness and existence of solutions. We develop the theory

for this method by studying a linear degenerate elliptic problem akin to the Darcy

part of the full model:

u =−a(φ)(∇p−g) in Ω, (1.0.8)

∇ ·
(
b(φ)u

)
+φ p = φ

1/2 f in Ω, (1.0.9)

where a and b satisfy a(0) = b(0) = 0 and are otherwise positive, and the porosity

φ ≥ 0 may be zero on a set of positive measure (choosing a, b, g, and f appro-

priately we can recover (1.0.1)–(1.0.2)). Degenerate elliptic equations have been

approximated in many works [7, 16, 25, 36, 37], using weighted Sobolev spaces

and least squares techniques, but in these works the degeneracies are isolated to

the boundary of the domain. With mild assumptions on the regularity of φ , we

produce a new practical, mass-conservative method based on lowest order Raviart-

Thomas finite elements, and adapt the numerical method for (1.0.8)–(1.0.9) to the

full system of equations. This new method is stable even for zero porosity (i.e., the

4



one-phase case) where the scaled fluid pressure q̃ f remains well-defined by (1.0.7).

The method also shows optimal convergence for sufficiently smooth solutions for a

compacting column and mid-ocean ridge-like corner flow examples, and extends to

problems with less regular parameters as well.

The outline for this thesis is as follows. In chapter 2, I give an overview

of the physics of mid-ocean ridges, describing the size of the melting region, the

characteristic velocities in the mantle, and general properties of the porosity. Then,

following the derivation of McKenzie, I arrive at equations (1.0.1)–(1.0.4) from

general conservation laws. In chapter 3, I present some general theory for Hilbert

spaces. I then present a weak formulation for the mantle equations assuming poros-

ity is bounded away from zero. I obtain stability estimates for general boundary

conditions and investigate the behavior as porosity goes to zero. In chapter 4, I

present a discrete mixed method to the weak form presented in chapter 3. I show

this method is indeed well-behaved for positive porosity, but fails as porosity ap-

proaches zero. Chapter 5 is devoted to the degenerate problem (1.0.8)–(1.0.9). In

this chapter, I introduce a new Hilbert space as the search space for the relative

velocity, and prove unique solvability for new scaled variables. I then present a dis-

crete mixed method to (1.0.8)–(1.0.9) and investigate its properties through various

numerical tests. In chapter 6, I prove uniqueness and existence to the full equations

(1.0.1)–(1.0.4) with scaled variables. Finally, in chapter 7, I write down a new dis-

crete mixed method for the full system of equations and show it is well-behaved as

porosity approaches zero (or becomes zero) for the compacting column.
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Chapter 2

Mantle Dynamics

2.1 Melt migration beneath mid-ocean ridges

The processes by which magma is removed from partially molten mantle

beneath mid-ocean ridges are of considerable interest to Earth scientists because

they lead to formation of oceanic plates. Research into the processes governing

melt migration beneath mid-ocean ridges has shed some light on the underlying

process, but a great deal still remains a mystery. Geoscientists have investigated

mid-ocean ridge phenomena using a variety of techniques including geochemical

analysis of samples dredged from mid-ocean ridges, seismic data, laboratory exper-

iments, magnetic measurements, mantle outcrops (ophiolites), and computational

models. Put together, these studies have produced constraints on melt and solid

velocities, as well as various constraints on porosity.

1. Geometry of the melting region

Seismic data show a low velocity region roughly 100 km deep and 400 km

wide (not necessarily symmetric) about the ridge axis, as shown in Fig. 2.1.

The major element composition of mid-ocean ridge basalts (MORB), or crys-

tallized magma, indicate that most melting takes place at depths shallower

than 60 km. Uranium series disequilibria and trace element compositions
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suggest that some melting occurs as deep as 150 km [45].
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Figure 2.1: Schematic cross-section of the East Pacific Rise at 170S. The broad
asymmetric region of low seismic velocities is the primary melt production re-
gion. The small ellipses represent the direction of preferred long axis alignment
of olivine, with flatness increasing with increasing degree of alignment [45].

2. Mantle porosity is interconnected even for very low porosities and melt ex-

traction is “near-fractional”

Melt is believed to form between mantle rock crystal (primarily olivine) bound-

aries [55]. Three dimensional data obtained using x-ray synchrotron micro-

tomography shows connectivity of the mantle for porosity as low as 2% (see

Fig. 2.2). Moreover, melt extraction remains qualitatively similar as porosity

increases to 20% [55]. Radioactivity [238U/230T h] ratios point to efficient

melt extraction for porosities as low as 0.2% [39]. In fact, A geometry argu-

ment presented by Von Bargen [53] shows that the olivine crystal structure,

even for infinitesimal porosity, must be connected.
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MORBs are not in equilibrium with residual peridotite with respect to or-

thopyroxene content. This implies that melting is “near-fractional.” As soon

as melt forms it is extracted. Efficient melt extraction therefore indicates that

porosity is not likely to be much larger than 2% anywhere in the mantle [33]

which is also in agreement with seismic data predictions of 2% average poros-

ity [45].

Figure 2.2: 3D melt distribution of olivine-basalt aggregates. The size of each cube
is 14 µ m3 with melt fractions (top-left) .02, (top-right) .05, (bottom-left) .10, and
(bottom-right) .20. Gray represents interfaces between melt and olivine crystals
and red represents interior melt channels. Olivine crystals reside in the hollow
space [55].

3. Porosity is highly heterogeneous and anisotropic

MORB disequilibria with residual orthopyroxene implies that mantle melts

must travel in high porosity dunite channels. Otherwise, melt in contact with
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the solid matrix would re-equilibrate. Dunite channel zones are also visible

in the Oman ophiolite (mantle outcrop) [33].

4. The solid matrix moves by viscous flow

For geologic time scales and high temperatures of the deep earth, mantle

rock behaves like a highly viscous fluid. Mantle viscosity, estimated to be

around 1019–1021 Pas, has been deduced through study of mineral physics,

post-glacial rebound, and large scale mantle flow [50].

5. Melt and matrix velocity

Decompression melting resulting from post-glacial volcanism in Iceland im-

plies melt velocities of about 50 m/yr [33]. In addition, preservation of iso-

tope disequilibria requires melt flow of 10-100 m/yr [33]. Matrix velocities

are deduced from the movement of oceanic plates and vary from 2 cm/yr in

slow spreading ridges to 10 cm/yr in the fastest spreading ridges (see Fig. 2.1)

of the pacific [45].

6. Melt is focused toward the ridge center

While the exact cause of melt focusing remains a source of debate, it has

been firmly established that neither lithostatic pressure gradients nor fractures

are responsibly for focusing melt toward the ridge axis. Spiegelman [48]

proposed that partial crystallization of melt rising in the conductively cooled

lithosphere on either side of a ridge may create a permeability barrier that

impedes vertical melt flow. Since the base of the lithosphere slopes toward

the ridge axis (see Fig. 2.1), ascending melt would migrate toward the ridge
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in a high porosity band. Meanwhile, Phipps Morgan [41] suggests anisotropy

in permeability due to the orientation of olivine might focus melt toward the

ridge axis.

2.2 Governing equations for the mechanical system

The following section follows the derivation of the mechanical equations

according to Mckenzie [38]. This and other models of flow in the earth’s mantle

[1, 30–32] are based on a mixture of fluid melt and matrix solid, where both fluid

and solid phases are assumed to exist at each point of the domain. Porosity, denoted

by φ , is defined as the volume fraction of melt and is assumed to be much less

than one. The mixture model holds even when one phase disappears (i.e., φ =

0). Such models have an advantage for numerical approximation since the free

boundary between the one and two phase regions need not be determined explicitly,

and, in a time-dependent problem, the equations remain unaltered when a phase

disappears or forms in some region of the domain. Though this work does not

address solutions to the time-dependent model, the transport equations, including

energy and composition, following the derivation by Katz [32], are presented in

appendix B.

If Ψ is a conserved quantity within a fixed domain Ω, the change in Ψ must

equal the rate Ψ is transported across the boundary ∂Ω plus the production rate R

of Ψ inside Ω. A conservation equation can thus be written as

ˆ
Ω

∂Ψ

∂ t
dx =

d
dt

ˆ
Ω

Ψdx =−
ˆ

∂Ω

Ψv ·ν ds+
ˆ

Ω

Rdx, (2.2.1)
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where v is the velocity that transports Ψ, ν is the outward pointing normal vector

to ∂Ω, and we assume the time derivative in the left-hand side can be moved inside

the integral.

2.2.1 Conservation of mass

Assume a continuous overlying mixture of melt and solid matrix. If Ψ =

ρ f φ is the mass of melt per unit volume, an application of the divergence theorem

followed by Lebesgue’s Lemma (i.e., if (2.2.1) holds for any domain Ω then the

integrands must sum to zero) gives

∂ (ρ f φ)
∂ t

+∇ · (ρ f φv f ) = m, (2.2.2)

where the melting rate m is the rate at which mass is transferred from matrix to

fluid and v f is the fluid velocity. Similarly, conservation of mass in the matrix, i.e.,

setting Ψ = ρm(1−φ), leads to

∂
(
ρm(1−φ)

)
∂ t

+∇ ·
(
ρm(1−φ)vm

)
=−m, (2.2.3)

with vm representing the matrix velocity.

2.2.2 Conservation of momentum

To conserve momentum in the matrix take Ψ = (1− φ)ρmvm. In this case

the source term R consists of three contributions. First is the force due to gravity.

Second, denoted by Fint, is the body force per unit volume on the matrix produced

by motion in the fluid. Third, denoted by the tensor σm, is the stress acting on the
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matrix. Equation (2.2.1) is expanded to
ˆ

Ω

∂

∂ t
((1−φ)ρmvm)dx =−

ˆ
∂Ω

(1−φ)ρmvm⊗vm ·ν ds−
ˆ

Ω

(1−φ)ρmgdx

+
ˆ

Ω

Fint dx+
ˆ

∂Ω

(1−φ)σm ·ν ds,

(2.2.4)

where g is the gravitational constant vector pointing downward. Assuming area

and volume fraction are equal, the stress tensor σm is multiplied by 1− φ in the

rightmost term of (2.2.4) since it only acts on the solid surface. For the fluid, take

Ψ = φρ f v f . A similar equation holds with the stress tensor, σ f , multiplied by φ ,

and Fint substituted with −Fint according to Newton’s third law. It is given by
ˆ

Ω

∂

∂ t
(φρ f v f )dx =−

ˆ
∂Ω

φρ f v f ⊗v f ·ν ds−
ˆ

Ω

φρ f gdx

−
ˆ

Ω

Fint dx+
ˆ

∂Ω

φσ
f ·ν ds.

(2.2.5)

In the case of mantle convection, both melt and matrix velocities are small.

Thus, the rate of advection of momentum directly through flow (first term of the

right-hand side of (2.2.4) and (2.2.5)) and the rate of change of momentum (left-

hand side of (2.2.4) and (2.2.5)) are negligible in comparison to momentum dif-

fusion by viscous effects. Therefore, forces maintaining motion must always be

balanced by resistive forces. For both fluid and solid phases, this is equivalent to a

small Reynolds number

Re =
ρ|v|L

µ
� 1, (2.2.6)

where L is a characteristic length, |v| is a characteristic velocity, ρ is either matrix

or fluid density, and µ is the (dynamic) viscosity. Table 2.1 lists representative value
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of parameters for the fluid and matrix phases and shows that Re is indeed expected

to be small.

Meaning Variable Value or Range Units
Grain size a 10−3 m

Matrix length scale L 104-105 m
Char. fluid velocity |v f | 10−6-10−8 m/s

Ridge spreading rate |vm| 10−10-10−9 m/s
Shear viscosity µm 1019 Pa s

Permeability constant k0 10−9-10−6 m2

Fluid viscosity µ f 1 Pa s
Matrix Density ρm 3300 kg/m3

Fluid Density ρ f 2800 kg/m3

Gravity g 9.8 m/s2

Table 2.1: Representative value of parameters for mantle dynamics. Grain size
represents the average size of a matrix grain around which fluid flows. The ridge
spreading rate is the rate at which ocean floor is spreading at mid-ocean ridges.

After applying the above assumptions, conservation of momentum for the

fluid and matrix reduce to the differential equations

(1−φ)ρmg+Fint +∇ ·
(
(1−φ)σm)= 0, (2.2.7)

φρ f g−Fint +∇ · (φσ
f ) = 0. (2.2.8)

The interphase volume force Fint can not depend on which frame is used to

measure the velocity, whether it is one attached to the matrix or fluid, and Fint must

also account for forces arising from gradients in porosity [24]. The simplest form

of Fint satisfying Darcy’s Law (see (2.2.12) below) is therefore given by

Fint = C(v f −vm)− p f ∇φ . (2.2.9)
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Meanwhile, assuming negligible deviatoric stress in the fluid,

σ
f =−p f I. (2.2.10)

Substituting (2.2.9) and (2.2.10) into (2.2.8), and applying the product rule gives

v f −vm =−φ

C
∇(p f −ρ f gz), (2.2.11)

where z corresponds to depth. For compatibility with Darcy’s Law (i.e., if vm = 0),

(2.2.11) should reduce to

φv f =−
kφ

µ f
∇(p f −ρ f gz), (2.2.12)

where kφ is the porosity dependent permeability and µ f is the melt viscosity. This

requires

C =
µ f φ 2

kφ

. (2.2.13)

The stress acting on the matrix requires a more complicated expression to account

for shear forces and is given by

σ
m =−pmI+ µm

(
∇vm +∇vT

m−
2
3

∇ ·vmI
)
, (2.2.14)

where µm is the matrix shear viscosity. For a quantity Ψ, define the mixture variable

Ψ = φΨ f +(1−φ)Ψm. (2.2.15)

Then, adding (2.2.8) and (2.2.7), the mixture obeys Stokes equation

σ = φσ f +(1−φ)σm =−pI+ µm(1−φ)
(

∇vm +∇vT
m−

2
3

∇ ·vmI
)
, (2.2.16)

∇ ·σ = ρg. (2.2.17)
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2.2.3 Compaction

We close the mechanical system by relating the solid and fluid pressures

through a compaction relation [46]

pm− p f =−ζm∇ ·vm, (2.2.18)

where ζm is the matrix bulk viscosity. This equation can be interpreted as the com-

pressibility of the matrix. If the matrix pressure is larger than the fluid pressure, the

matrix volume should contract (i.e., ∇ ·vm < 0).

2.2.4 Summary of the mechanical equations

Mantle permeability is calculated according to the standard Kozeny-Carmen

relationship [13, 55], simplified for small porosity and constant grain size to

kφ = k0φ
2(1+Θ), 0≤Θ≤ 1

2 . (2.2.19)

The shear viscosity is taken to be constant while the matrix bulk viscosity,

ζm =
µm

φ
, (2.2.20)

is proportional to the inverse of porosity.

A total of four equations govern the mechanical system. Adding (2.2.2) and

(2.2.3) to eliminate the melting rate m, substituting constitutive relations (2.2.19)

and (2.2.20), and applying the Boussinesq approximation [47] (constant and equal
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densities for non-buoyancy terms) gives

v f −vm =−k0φ 1+2Θ

µ f
∇(p f −ρ f gz), (2.2.21)

∇ ·v = 0, (2.2.22)

∇p−∇ · (2µm(1−φ)Dvm)+∇

(2
3

µm(1−φ)∇ ·vm

)
= ρg, (2.2.23)

φ(pm− p f ) =−µm∇ ·vm, (2.2.24)

where Dvm = 1
2(∇vm+∇vT

m) is the symmetric gradient. Equation (2.2.21) describes

fluid flow around matrix “grains” with permeability strongly dependent on poros-

ity. Equation (2.2.22) is a balance of mass between the fluid and matrix. Equation

(2.2.23) shows that changes in the mixture pressure depend on the shear defor-

mation of the matrix and the mixture buoyancy of the fluid and matrix. Equation

(2.2.24) shows the compressibility of the matrix is strongly dependent on porosity.
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Chapter 3

A Mixed Formulation for Positive Porosity

In this chapter we develop a mixed finite element method for the mantle

equations where we assume porosity is bounded away from zero, i.e., φ ≥ φ∗ > 0.

First, we rewrite the equations in a symmetric form that reveals their Darcy-Stokes

nature. We then introduce the essential Hilbert space theory to define appropriate

spaces to search for solutions and interpret boundary conditions. Finally, we obtain

stability estimates for general boundary conditions and investigate their behavior as

porosity vanishes. These observations inspire a novel method developed in chapter

5. In chapter 4 we implement a discrete version method developed in this chapter

and observe its limitations as porosity approaches zero.

3.1 Symmetric form of the Darcy-Stokes mixture

Introduce the new variables

u = φ(v f −vm),

q f = p f −ρ f gz,

qm = pm−ρ f gz,

where u is a scaled relative velocity or Darcy velocity (representing mass flux),

q f is the fluid pressure potential, and qm is the matrix pressure potential (note that
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qm is defined using the fluid density ρ f ). We will refer to the pressure and pressure

potential interchangeably when the meaning is clear. Compaction (2.2.18) becomes

µm∇ ·vm = φ(q f −qm) ,

and substituting into (2.2.22) transforms conservation of mass into

µm∇ ·u+φ(q f −qm) = 0.

We have the four equations,

µ f

k0
φ
−2(1+Θ)u =−∇q f , (3.1.1)

∇ ·u+ φ

µm
(q f −qm) = 0. (3.1.2)

∇qm−∇ · (2µm(1−φ)Dvm)+∇

(
5−2φ

3 µm∇ ·vm

)
= (1−φ)∆ρg, (3.1.3)

∇ ·vm− φ

µm
(q f −qm) = 0, (3.1.4)

where ∆ρ = ρm−ρ f > 0 is the density difference between the solid and fluid phases.

The variable transformations also changes the matrix stress to

σm =−qmI+ µm(1−φ)
(

2Dvm− 5−2φ

3 µm∇ ·vmI
)
. (3.1.5)

This form of the equations allows us to interpret (3.1.1)–(3.1.2) as compressible

Darcy, and (3.1.3)–(3.1.4) as compressible Stokes, coupled by the pressure differ-

ence, q f −qm.

3.1.1 Hilbert spaces

Before building the weak formulation, we establish the Hilbert spaces wherein

solutions can be found. Let Ω be a bounded Lipschitz domain in Rd with outward
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pointing normal ν . The space L2(Ω) denotes all square integrable functions on Ω.

It is equipped with the inner product

(u,v) = (u,v)L2(Ω) =
ˆ

Ω

uv dx (3.1.6)

and associated norm ‖u‖= ‖u‖L2(Ω) = (u,u)1/2. Denote by H1(Ω) all square inte-

grable functions with square integrable weak derivatives. This space has the corre-

sponding norm

‖u‖1 = ‖u‖H1(Ω) =
(ˆ

Ω

|u|2dx+
ˆ

Ω

|∇u|2dx
)1/2

. (3.1.7)

Let H(div;Ω) denote all square integrable vector-valued functions with square in-

tegrable weak divergence, and equip it with the norm

‖u‖div = ‖u‖H(div;Ω) =
(ˆ

Ω

|u|2dx+
ˆ

Ω

|∇ ·u|2dx
)1/2

. (3.1.8)

Both L2(Ω) and H1(Ω) extend to spaces on vector-valued (or matrix-valued) func-

tions (L2(Ω))d and (H1(Ω))d , respectively, by requiring each component be in its

proper space. Note that (H1(Ω))d ⊂ H(div;Ω)⊂ (L2(Ω))d .

For functions defined on the boundary, let 〈·, ·〉∂Ω denote the L2(∂Ω) inner

product or duality pairing. We can extend functions in H1(Ω) to the boundary ∂Ω

using the trace lemma [2]:

Lemma 3.1.1. There exists a bounded linear operator γ : H1(Ω)→H1/2(∂Ω) such

that, for a constant CΩ depending only on the geometry of Ω,

γ(u) = u|∂Ω for u ∈ H1(Ω)∩C(Ω), (3.1.9)

‖γ(u)‖1/2,∂Ω ≤CΩ‖u‖1, (3.1.10)
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For our purposes, H1/2(∂Ω) ⊂ L2(∂Ω) is simply the image of γ and we

leave out a definition of the norm ‖u‖1/2,∂Ω = ‖u‖H1/2(∂Ω) as we are only interested

in its existence. For functions in H(div;Ω) a similar lemma holds:

Lemma 3.1.2. There exists a bounded linear operator γν : H(div;Ω)→H−1/2(∂Ω)=

(H1/2(∂Ω))∗ such that, for a constant CΩ depending only on the geometry of Ω,

γν(u) = u ·ν |∂Ω for u ∈ H(div;Ω)∩ (C(Ω))d, (3.1.11)

‖γν(u)‖−1/2,∂Ω ≤CΩ‖u‖div. (3.1.12)

To derive the latter lemma, we use integration by parts to get, for w ∈

H1/2(∂Ω),

〈γν(u),w〉= (∇ ·u,w)+(u,∇w),

where we have extended w to H1(Ω).

3.1.2 Boundary conditions in two dimensions

Let τ be the tangent vector to ∂Ω following the right-hand rule. For the

Darcy part, set either Neumann or Robin boundary conditionsu ·ν = φ
1/2gN

f , on Γ
N
f ,

φq f −κ
2
f u ·ν = φ

1/2gR
f , on Γ

R
f ,

ΓN
f ∪ΓR

f = ∂Ω, (3.1.13)

where κ f ≥ 0 is bounded. The scaling by φ will become clear as we develop sta-

bility estimates in the following section. For the Stokes part, set either Neumann or

Robin boundary conditions for each component,vm ·ν = gν ,N
m , on Γ

ν ,N
m ,

σm(qm,vm)ν ·ν−κ
2
νvm ·ν = gν ,R

m , on Γ
ν ,R
m ,

Γ
ν ,N
m ∪Γ

ν ,R
m = ∂Ω, (3.1.14)
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vm · τ = gτ,N
m , on Γ

τ,N
m ,

σm(qm,vm)ν · τ−κ
2
τ vm · τ = gτ,R

m , on Γ
τ,R
m ,

Γ
τ,N
m ∪Γ

τ,R
N = ∂Ω, (3.1.15)

where κν ,κτ ≥ 0 and bounded. Suppose also that we can extend gN
f to uN in Ω such

that

uN ·ν = φ
1/2gN

f on Γ
N
f , (3.1.16)

and similarly let vν ,N
m and vτ,N

m be extensions into Ω of gν ,N
m and gτ,N

m , respectively,

such that

vν ,N
m ·ν = gν ,N

m , vτ,N
m ·ν = 0, on Γ

ν ,N
m , (3.1.17)

vν ,N
m · τ = 0, vτ,N

m · τ = gτ,N
m , on Γ

τ,N
m . (3.1.18)

3.1.3 Weak formulation

Consider the following spaces, each with its natural norm, for the unknown

quantities:

Vr = H(div;Ω)∩{v ·ν = 0 on Γ
N
f },

Vm = (H1(Ω))d ∩{v ·ν = 0 on Γ
ν ,N
m }∩{v · τ = 0 on Γ

τ,N
m },

Wm = Wf = L2(Ω).

(3.1.19)

Note that if ΓR
f = Γ

ν ,R
m = /0 then the pressures are defined only up to their differ-

ence. In this case, we eliminate the constant nullspace by setting Wf = L2
0(Ω) =

L2(Ω)∩
{´

Ω
w = 0

}
(or alternatively setting the fluid pressure at some point in the

domain). For the weak form, we modify the test and trial spaces according to the

Neumann boundary conditions while the Robin boundary conditions are naturally

inserted into the weak formulation. The weak formulation of equations (3.1.1)–

(3.1.4) is
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Find u ∈Vr +uN , vm ∈Vm +vν ,N
m +vτ,N

m , q f ∈Wf , and qm ∈Wm such that(
µ f

k0
φ
−2(1+Θ)u,Ψr

)
− (q f ,∇ ·Ψr)+ 〈κ f φ

−1u ·ν ,Ψr ·ν〉ΓR
f

=−〈gR
f ,φ
−1/2

Ψr ·ν〉ΓR
f

∀Ψr ∈Vr,
(3.1.20)

(∇ ·u,w f )+
(

φ

µm
(q f −qm),w f

)
= 0 ∀w f ∈Wf , (3.1.21)

−(qm,∇ ·Ψm)+
(
2µm(1−φ)Dvm,DΨm

)
−
(

5−2φ

3 µm∇ ·vm,∇ ·Ψm

)
+ 〈κ2

νvm ·ν ,Ψm ·ν〉Γν ,R
m

+ 〈κ2
τ vm · τ,Ψm · τ〉Γτ,R

m

= 〈gν ,R
m ,Ψm ·ν〉Γν ,R

m
+ 〈gτ,R

m ,Ψm · τ〉Γτ,R
m

+
(
(1−φ)∆ρg,Ψm

)
∀Ψm ∈Vm,

(3.1.22)

(∇ ·vm,wm)−
(

φ

µm
(q f −qm),wm

)
= 0 ∀wm ∈Wm. (3.1.23)

3.2 Stability estimates: degenerate porosity limit

If porosity is allowed to vanish, the standard theory for proving uniqueness

and existence of solutions breaks down. Numerically, division by the porosity in

the first term of (3.1.20) will cause instability. We will also see that the fluid pres-

sure is no longer a good variable as porosity vanishes. However, we can still obtain

stability estimates when a solution exists and investigate the a behavior as porosity

approaches zero. Continue to assume porosity is much less than one. In the re-

mainder of this chapter we analyze (3.1.20)–(3.1.23) with homogeneous boundary

conditions then address both Neumann and Dirichlet/Robin conditions individually

to see their contribution to the stability estimates. Homogeneous conditions are
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of course a subset of the non-homogeneous conditions, but we choose to present

them because they are notationally easier to follow and build up well to the non-

homogeneous cases.

Proceeding formally, assume a solution to (3.1.20)–(3.1.23) exists. Recall

the inf-sup condition [10],

‖w‖ ≤C sup
Ψ∈(H1

0 (Ω))d

(w,∇ ·Ψ)
‖Ψ‖1

, ∀w ∈ L2(Ω), (3.2.1)

where (H1
0 (Ω))d = H1(Ω)∩{v = 0 on ∂Ω} ⊂Vm. Substituting (3.1.22) into (3.2.1)

gives

‖qm‖ ≤C sup
Ψ∈Vm

1
‖Ψ‖1

{∣∣(2µm(1−φ)Dvm,DΨ
)∣∣

+
∣∣∣(5−2φ

3 µm∇ ·vm,∇ ·Ψ
)∣∣∣+ ∣∣((1−φ)∆ρg,Ψ

)∣∣}
≤C(‖Dvm‖+‖∇ ·vm‖+∆ρ)

≤C(‖vm‖1 +∆ρ).

(3.2.2)

For the fluid pressure, by the triangle inequality,

‖φ 1/2q f ‖ ≤ ‖φ 1/2qm‖+‖φ 1/2(q f −qm)‖

≤ ‖qm‖+‖φ 1/2(q f −qm)‖.
(3.2.3)

Choosing wm = φ−1∇ ·vm in (3.1.23), w f = φ−1∇ ·u in (3.1.21) gives

(∇·vm,φ−1
∇ ·vm)+(∇ ·u,φ−1

∇ ·u)

=
(

φ

µm
(q f −qm),φ−1

∇ ·vm

)
−
(

φ

µm
(q f −qm),φ−1

∇ ·u
)
,

and therefore, by Young’s inequality

‖φ−1/2
∇ ·u‖+‖φ−1/2

∇ ·vm‖ ≤C‖φ 1/2(q f −qm)‖. (3.2.4)
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3.2.1 Homogeneous conditions

For homogeneous conditions, let ΓN
f , Γ

ν ,N
m , Γ

τ,N
m all equal to ∂Ω and gN

f =

gν ,N
m = gτ,N

m = 0 in (3.1.13)–(3.1.15). Testing with Ψr = u in (3.1.20), Ψm = vm in

(3.1.22), w f = q f in (3.1.21), wm = qm in (3.1.23),(
µ f

k0
φ
−2(1+Θ)u,u

)
+
(

φ

µm
(q f −qm),q f −qm

)
+
(
2µm(1−φ)Dvm,Dvm

)
−
(

5−2φ

3 µm∇ ·vm,∇ ·vm

)
=
(
(1−φ)∆ρg,vm

)
.

Using (3.1.4) to eliminate the negative term on the left-hand side gives(
µ f

k0
φ
−2(1+Θ)u,u

)
+
((

1− 5−2φ

3 φ
)

φ

µm
(q f −qm),q f −qm

)
+
(
2µm(1−φ)Dvm,Dvm

)
=
(
(1−φ)∆ρg,vm

)
.

Then,

‖φ−(1+Θ)u‖+‖φ 1/2(q f −qm)‖+‖Dvm‖ ≤ ε‖vm‖+Cε∆ρ,

for any ε > 0 and some constant Cε independent of porosity. Finally an application

on Korn’s inequality,

‖vm‖1 ≤C‖Dvm‖, (3.2.5)

results in

‖φ−(1+Θ)u‖+‖φ 1/2(q f −qm)‖+‖vm‖1 ≤C∆ρ. (3.2.6)

Combining (3.2.2)–(3.2.4) and (3.2.6) we have the following theorem:
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Theorem 3.2.1. There exists a constant C > 0 such that, if they exist, the velocity

and pressure solutions to the mixed variational form (3.1.20)–(3.1.23) with homo-

geneous boundary conditions satisfy the stability estimates

‖φ−(1+Θ)u‖+‖φ−1/2
∇ ·u‖+‖φ 1/2q f ‖+‖vm‖1 +‖φ−1/2

∇ ·vm‖+‖qm‖ ≤C∆ρ.

(3.2.7)

While the velocities are stable as φ → 0, the stability estimates do not guar-

antee a good bound for the fluid pressure.

3.2.2 Neumann conditions

Let ΓN
f = Γ

ν ,N
m = Γ

τ,N
m = ∂Ω and uN , vν ,N

m , and vτ,N
m be defined by (3.1.16)–

(3.1.18). Testing with Ψr = u−uN in (3.1.20), Ψm = vm−vν ,N
m −vτ,N

m in (3.1.22),

w f = q f in (3.1.21), wm = qm in (3.1.23),(
µ f

k0
φ
−2(1+Θ)u,u

)
+
(

φ

µm
(q f −qm),q f −qm

)
+
(
2µm(1−φ)Dvm,Dvm

)
−
(

5−2φ

3 µm∇ ·vm,∇ ·Ψm

)
=
(

µ f

k0
φ
−2(1+Θ)u,uN

)
− (q f ,∇ ·uN)−

(
qm,∇ · (vν ,N

m +vτ,N
m )
)

+
(
2µm(1−φ)Dvm,D(vν ,N

m +vτ,N
m )
)
−
(

5−2φ

3 µm∇ ·vm,∇ · (vν ,N
m +vτ,N

m )
)

+
(
(1−φ)∆ρg,vm−vν ,N

m −vτ,N
m
)
.

Using (3.1.4) to eliminate the negative term on the left-hand side as before,

‖φ−(1+Θ)u‖+‖φ 1/2(q f −qm)‖+‖Dvm‖

≤ ε
{
‖vm−vν ,N

m −vτ,N
m ‖0 +‖qm‖+‖Dvm‖+‖∇ ·vm‖+‖φ 1/2(q f −qm)‖

}
+Cε

{
‖φ−(1+Θ)uN‖+‖φ−1/2

∇ ·uN‖+‖∇ · (vν ,N
m +vτ,N

m )‖+‖D(vν ,N
m +vτ,N

m )‖+∆ρ
}
,
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and applying Korn’s inequality (3.2.5)

‖φ−(1+Θ)u‖+‖φ 1/2(q f −qm)‖+‖vm‖1

≤C
{
‖φ−(1+Θ)uN‖+‖φ−1/2

∇ ·uN‖+‖vν ,N
m ‖1 +‖vτ,N

m ‖1 +∆ρ
}
,

(3.2.8)

Combining (3.2.2)–(3.2.4) and (3.2.8) we have the following theorem:

Theorem 3.2.2. There exists a constant C > 0 such that, if they exist, the velocity

and pressure solutions to the mixed variational form (3.1.20)–(3.1.23) with Neu-

mann boundary conditions satisfy the stability estimates

‖φ−(1+Θ)u‖+‖φ−1/2
∇ ·u‖+‖φ 1/2q f ‖+‖vm‖1 +‖φ−1/2

∇ ·vm‖+‖qm‖

≤C
{
‖φ−(1+Θ)uN‖+‖φ−1/2

∇ ·uN‖+‖vν ,N
m ‖1 +‖vτ,N

m ‖1 +∆ρ
}
.

(3.2.9)

with uN , vν ,N
m , and vτ,N

m defined by (3.1.16)–(3.1.18).

This shows that gN
f ∈H−1/2(∂Ω), gν ,N

m , gτ,N
m ∈H1/2(∂Ω) for the right-hand

side of (3.2.9) to be bounded.

3.2.3 Dirichlet and Robin conditions

Let ΓR
f = Γ

ν ,R
m = Γ

τ,R
m = ∂Ω. Testing with Ψr = u in (3.1.20), Ψm = vm in

(3.1.22), w f = q f in (3.1.21), wm = qm in (3.1.23),(
µ f

k0
φ
−2(1+Θ)u,u

)
+
(

φ

µm
(q f −qm),q f −qm

)
+
(
2µm(1−φ)Dvm,Dvm

)
−
(

5−2φ

3 µm∇ ·vm,∇ ·Ψm

)
+ 〈gR

f ,φ
−1/2u ·ν〉∂Ω + 〈κ2

f φ
−1u ·ν ,u ·ν〉∂Ω

+ 〈gν ,R
m ,vm ·ν〉∂Ω + 〈gτ,R

m ,vm · τ〉∂Ω + 〈κ2
νvm ·ν ,vm ·ν〉∂Ω + 〈κ2

τ vm · τ,vm · τ〉∂Ω

=
(
(1−φ)∆ρg,vm

)
.
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Using (3.1.4) to eliminate the negative term on the left-hand as before,

‖φ−(1+Θ)u‖+‖φ 1/2(q f −qm)‖+‖Dvm‖

+‖κ f φ
−1/2u ·ν‖∂Ω +‖κνvm ·ν‖∂Ω +‖κτvm · τ‖∂Ω

≤ ε
{
‖vm‖+‖φ−1/2u ·ν‖−1/2,∂Ω +‖vm ·ν‖1/2,∂Ω +‖vm · τ‖1/2,∂Ω

}
+Cε

{
‖gR

f ‖1/2,∂Ω +‖gν ,R
m ‖−1/2,∂Ω +‖gτ,R

m ‖−1/2,∂Ω +∆ρ
}

For homogeneous Robin conditions, gR
f = 0, or uniform Robin conditions, κ f ≥

κ∗ > 0, we can bound the term 〈gR
f ,φ
−1/2u ·ν〉∂Ω. Otherwise, we must try to bound

the edge integral another way. For w ∈ H1/2(∂Ω), integration by parts gives

〈φ−1/2u ·ν ,w〉∂Ω = (φ−1/2
∇ ·u,w)+

(
u,∇(φ−1/2w)

)
= (φ−1/2

∇ ·u,w)−
(

u, 1
2φ
−3/2

∇φw
)

+(u,φ−1/2
∇w)

so only when φ−1/2+Θ∇φ is well behaved,

‖φ−1/2u ·ν‖−1/2,∂Ω ≤C{‖φ−1/2
∇ ·u‖+‖φ−(1−Θ)u‖}.

Moreover, by the trace lemma 3.1.2,

‖vm ·ν‖1/2,∂Ω +‖vm · τ‖1/2,∂Ω ≤ ‖vm‖1,

resulting in

‖φ−(1+Θ)u‖+‖φ 1/2(q f −qm)‖+‖vm‖1 +‖κ f φ
−1/2u ·ν‖∂Ω

≤C
{
‖gR

f ‖1/2,∂Ω +‖gν ,R
m ‖−1/2,∂Ω +‖gτ,R

m ‖−1/2,∂Ω +∆ρ
}
.

(3.2.10)

Combining (3.2.2)–(3.2.4) and (3.2.10) we have the following theorem:
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Theorem 3.2.3. Let ∇φ be bounded, gR
f = 0, or κ f ≥ κ∗ > 0 everywhere. There

exists a constant C > 0 such that, if they exist, the velocity and pressure solutions

to the mixed variational form (3.1.20)–(3.1.23) with Robin boundary conditions

satisfy the stability estimates

‖φ−(1+Θ)u‖+‖φ−1/2
∇ ·u‖+‖φ 1/2q f ‖+‖vm‖1 +‖φ−1/2

∇ ·vm‖+‖qm‖

+‖κ f φ
−1/2u ·ν‖∂Ω ≤C

{
‖gR

f ‖1/2,∂Ω +‖gν ,R
m ‖−1/2,∂Ω +‖gτ,R

m ‖−1/2,∂Ω +∆ρ
}
.

(3.2.11)

3.2.4 Observations

The matrix velocity and pressure as well as the Darcy velocity remain bounded

as the porosity approaches zero. Meanwhile, the fluid pressure may be unbounded.

Indeed, the fluid pressure is no longer a quantity with physical meaning when there

is no fluid. This is a significant issue to numerically modeling mid-ocean ridges

because we expect a well-defined melting region bounded by the lithosphere. More

generally, it is a significant impediment to taking advantage of the general nature of

the mantle equations, as they hold even in the case of a phase disappearing.

One could envision several alternatives to (3.1.20)–(3.1.23) (from now on

called the standard method) to avoid dividing by the porosity. A commonly used

approach introduces an auxiliary velocity variable ṽr [6]. In this case, we add to

(3.1.20)–(3.1.23) the equation
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(
φ

2(1+Θ)ṽr,Ψ̃r
)
− (u,Ψ̃r) = 0 ∀Ψ̃r ∈Vr, (3.2.12)

and modify (3.1.20) to(
µ f

k0
ṽr,Ψr

)
− (q f ,∇ ·Ψr)+ 〈κ f φ

−1u ·ν ,Ψr ·ν〉ΓR
f

=−〈gR
f ,φ
−1/2

Ψr ·ν〉ΓR
f

∀Ψr ∈Vr,
(3.2.13)

We will call this the expanded method. Alternatively, we could keep the sym-

metric nature of the problem by using a different scaling of the relative velocity

ṽr = φ−Θ(v f −vm) and substituting (3.1.20)–(3.1.21) with(
µ f

k0
ṽr,Ψr

)
−
(
q f ,∇ · (φ 1+Θ

Ψr)
)
+ 〈κ f φ

−1ṽr ·ν ,Ψr ·ν〉ΓR
f

=−〈gR
f ,φ
−1/2

Ψr ·ν〉ΓR
f

∀Ψr ∈Vr,
(3.2.14)

(
∇ · (φ 1+Θṽr),w f

)
+
(

φ

µm
(q f −qm),w f

)
= 0 ∀w f ∈Wf . (3.2.15)

While unorthodox to leave porosity with the test functions, this approach, called

the symmetry preserving method, should be gentler numerically since it spreads

out the porosity over two equations, but now (3.2.15) degenerates to 0 = 0 as poros-

ity approaches zero. None of these methods address the issue of the unbounded

pressure.

The stability estimates suggest, loosely speaking, that we could “transfer”

some φ -regularity from the Darcy velocity u to the pressure q f . A new formu-

lation in terms of a scaled fluid pressure φ 1/2q f , scaled relative velocity φ 1+Θu

(= φ−Θ(v f − vm)) as in the symmetry preserving method), and a modified diver-

gence space could then be well-behaved. In chapter 6, we show this is in fact the
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case by providing an existence and uniqueness proof as well as adequate stability

estimates for new scaled variables. For the mantle problem we assume that we never

lose the solid phase, and thus the problem of degeneracy (or loss of a phase) lies

squarely on the Darcy part of the equations. In chapter 5, we ignore the Stokes part

and look carefully at a problem that generalizes the Darcy part. For the numerical

results in chapter 4, we continue to model problems with non-zero porosity using

the formulation in (3.1.20)–(3.1.23) and omit a proof of existence and uniqueness

as it will be a special case of the one presented in chapter 6.
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Chapter 4

A Discrete Mixed Method for Positive Porosity

Assume Ω is a union of rectangles in two dimensions. Let Th be a rectangu-

lar finite element mesh covering Ω with maximal spacing h, let Eh denote the set of

element edges, and let Nh denote the set of mesh nodes. Let Pn denote polynomials

of degree n, and Pn1,n2 polynomials of degree n1 in x and n2 in z.

4.1 Finite element spaces

To formulate the discrete problem we introduce two sets finite element

spaces specially used for mixed methods. First we define the lowest order Raviart-

Thomas (RT0) finite element spaces VRT0×WRT0 [18, 42, 43]. On an element E ∈ Th,

VRT0(E) = P1,0×P0,1, (4.1.1)

WRT0(E) = P0. (4.1.2)

The degrees of freedom for VRT0 are the normal fluxes on the edges, and the degrees

of freedom for WRT0 are the average values over the elements, i.e.,

VRT0 = span
{

ve :
ˆ

f
ve ·ν f ds = δe, f ∀e, f ∈ Eh

}
, (4.1.3)

WRT0 = span{wE : wE |F = δE,F ∀E,F ∈ Th}, (4.1.4)
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where δi, j is the Kronecker delta function for indices i and j. Raviart-Thomas

spaces are commonly used to solve Darcy’s equation and RT0 is first order accurate

in H(div;Ω) for VRT0 and in L2(Ω) for WRT0 . Next, define the finite element space

BR [15] used by Arbogast-Wheeler [5], VBR×WBR. On an element E ∈ Th,

VBR(E) = P1,2×P2,1, (4.1.5)

WBR(E) = P0. (4.1.6)

The degrees of freedom for VBR are the normal fluxes on the edges and nodal values

of each component, and the degrees of freedom for WBR are the average values over

the elements, i.e.,

VBR = span
{

ve :
ˆ

f
ve ·ν f ds = δe, f ∀e, f ∈ Eh,

vp,i : vp,i(q) · e j = δp,qδi, j ∀p,q ∈Nh, i, j = 1,2
}

,

(4.1.7)

WBR = span{wE : wE |F = δE,F ∀E,F ∈ Th}. (4.1.8)

The space BR was first introduced to solve Stokes equation, and has also been

adapted to solve Darcy’s equation with continuous velocities. The space BR is

first order accurate in (H1(Ω))2 for VBR and in L2(Ω) for WBR. Since we will use

these elements in conjunction with RT0, we would not make use of any additional

convergence obtained by using more standard Stokes elements such as Taylor-Hood

[26]. In exchange, BR has fewer degrees of freedom. For a derivation of a discrete

inf-sup condition for BR see appendix A.
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4.2 Discrete weak formulation

We use RT0 For the relative velocity and fluid pressure and BR for the matrix

velocity and mixture pressure. That is,

Vr,h = VRT0 ∩{v ·ν = 0 on Γ
N
f },

Vm,h = VBR∩{v ·ν = 0 on Γ
ν ,N
m }∩{v · τ = 0 on Γ

τ,N
m },

Wm,h = Wf ,h = WRT0 = WBR.

(4.2.1)

With boundary conditions given by (3.1.13)–(3.1.15), the discrete form of the mixed

formulation (3.1.20)–(3.1.23), is given by

Find u ∈Vr,h +uN , vm ∈Vm,h +vν ,N
m +vτ,N

m , q f ∈Wf ,h, and qm ∈Wm,h such that(
µ f

k0
φ
−2(1+Θ)u,Ψr

)
− (q f ,∇ ·Ψr)+ 〈κ f φ

−1u ·ν ,Ψr ·ν〉ΓR
f

=−〈gR
f ,Ψr ·ν〉ΓR

f
∀Ψr ∈Vr,h,

(4.2.2)

(∇ ·u,w f )+
(

φ

µm
(q f −qm),w f

)
= 0 ∀w f ∈Wf ,h, (4.2.3)

−(qm,∇ ·Ψm)+
(
2µm(1−φ)Dvm,DΨm

)
−
(

5−2φ

3 µm(1−φ)∇ ·vm,∇ ·Ψm

)
+ 〈κ2

νvm ·ν ,Ψm ·ν〉Γν ,R
m

+ 〈κ2
τ vm · τ,Ψm · τ〉Γτ,R

m

= 〈gν ,R
m ,Ψm ·ν〉Γν ,R

m
+ 〈gτ,R

m ,Ψm · τ〉Γτ,R
m

+((1−φ)∆ρg,Ψm) ∀Ψm ∈Vm,h,

(4.2.4)

(∇ ·vm,w)−
(

φ

µm
(q f −qm),w

)
= 0 ∀wm ∈Wm,h. (4.2.5)

with uN , vν ,N
m , and vτ,N

m defined by (3.1.16)–(3.1.18). Note that for the expanded

method, a discrete version of (3.2.12) is added to (4.2.2)–(4.2.5) with search space

Vr,h.
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4.3 Numerical results

In this section we introduce two key test problems: compacting column and

viscous corner flow. All closed form solutions to these problems are derived in

appendix C. We first test the rate of convergence of the three mixed methods intro-

duced in the previous chapter against known closed form solutions. Since the three

methods performed similarly, we only present convergence results for the standard

method. Next, we explore the methods’ behavior for discontinuous porosity. Fi-

nally, we analyze the behavior of the condition number for each method as we

decrease the porosity. Numerical results presented in the remainder of this chapter

are from a general 2D finite element code written in MATLAB and C. The code

uses Gauss quadrature to evaluate cell and edge integrals. For code documentation

see appendix D.

4.3.1 Benchmark test: constant porosity compacting column

Consider a mantle column [39] as shown in Fig. 4.1(a) for z ∈ [−L,L] with

constant porosity and no flow through the bottom and top boundaries, i.e.,

vm(−L) = vm(L) = u(−L) = u(L) = 0, (4.3.1)

and fluid pressure scaled so q f (0) = 0. In order to best reveal the qualitative na-

ture of the symmetric equations for the compacting column, we non-dimensionalize

using the compaction length scale [32]

Lc =
(

k0µm

µ f

)1/2

≈ 105−106m, (4.3.2)

34



z = L

z =−L

vm = u = 0

vm = u = 0

(a)

z

z = L

z =−L

u ·ν = 0
vm = 0

u ·ν = 0
vm = 0

u ·ν = 0
vm ·ν = 0
∂vm,z

∂x = 0

u ·ν = 0
vm ·ν = 0
∂vm,z

∂x = 0

(b)

z

x

Figure 4.1: (a) Compacting column on a domain [−L,L] with no flow through the
top and bottom boundaries. (b) Boundary conditions used to imitate the one dimen-
sional compacting column in two dimensions.
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which governs the separation of fluid from matrix. Defining dimensionless vari-

ables

x = x̃Lc,

(q f , qm) = (q̃ f , q̃m)∆ρgLc,

(u, vm) = (ũ, ũ)
k0∆ρg

µ f
,

(4.3.3)

reducing to the vertical dimension, taking constant porosity φ = φ0, and dropping

tildes, (3.1.1)–(3.1.4) become

φ
−2(1+Θ)
0 u =−q′f , (4.3.4)

(qm− 1
3(1−4φ0)v′m)′ = 1−φ0, (4.3.5)

v′m = φ0(q f −qm), (4.3.6)

u′ =−φ0(q f −qm). (4.3.7)

Note that in the one-dimensional problem, there is no longer a distinction between

shear deformation and compaction. The solution is

vm =−u = φ
2(1+Θ)
0 (1−φ0)

(
1−Ce−R(z+L)−CeR(z−L)), (4.3.8)

q f = (1−φ0)
(

z+ C
R

(
e−R(z+L)− eR(z−L))), (4.3.9)

qm = (1−φ0)
(

z− 1−4φ0
1−φ0+4φ 2

0
φ0

C
R

(
e−R(z+L)− eR(z−L))), (4.3.10)

with

R = R(φ0) =
(

1−φ0+4φ 2
0

3 φ
1+2Θ

0

)−1/2
≈
√

3φ
−(1+2Θ)/2
0 ,

and C = (1+ e−2RL)−1 ≈ 1.
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To solve the compacting column numerically using our code, we imitate the

one dimensional problem in a two dimensional domain using boundary conditions

according to Figure 4.1(b). Note that σν ·τ ∝
∂vm,z

∂x
+

∂vm,x

∂ z
=

∂vm,z

∂x
since vm,x = 0

everywhere. Additionally, we remove the constant nullspace from the fluid pressure

potential by setting q f (0) = 0. Convergence results in Table 4.1 show the expected

convergence, with quadratic convergence for the velocities and linear convergence

for the pressures. Convergence rates for the interpolation error in Table 4.2 show

super-convergence for the L2-interpolation-errors of both pressures and for the H1-

interpolation-errors of both velocities. Note that for the 1D compacting column,

H1(Ω) = H(div;Ω).

4.3.2 Benchmark test: viscous corner flow with no melting

Following Spiegelman [49], consider the viscous corner flow model in the

quarter plane x,z > 0 shown in Figure 4.2(a), where at the top boundary z = 0

we impose a matrix velocity U0 in the x-direction, and flow symmetry along the

left boundary x = 0. We take porosity to be constant and disallow melting. Then,

(2.2.2) and (2.2.3) reduce to incompressiblity equations for the fluid and matrix,

∇ ·vm = ∇ ·u = 0 . (4.3.11)

Moreover, the compaction relation (3.1.4) implies the fluid and matrix pressure

potentials are identical, i.e.,

q f = qm = q . (4.3.12)
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Darcy velocity u fluid pres. pot. q f
n L2-error rate H1-error rate L2-error rate
10 0.0948 — 0.5829 — 0.502 —
20 0.0309 1.6178 0.3641 0.6792 0.0251 1.0008
40 0.0084 1.8743 0.1958 0.8949 0.0125 1.0000
80 0.0022 1.9657 0.0998 0.9714 0.0063 1.0010

160 0.0005 1.9910 0.0502 0.9927 0.0031 1.0007

matrix velocity vm matrix pres. pot. qm
n L2-error rate H1-error rate L2-error rate
10 0.0948 — 0.5829 — 0.0525 —
20 0.0309 1.6178 0.3641 0.6792 0.0263 0.9990
40 0.0084 1.8743 0.1958 0.8949 0.0131 1.0004
80 0.0022 1.9657 0.0998 0.9714 0.0066 1.0011

160 0.0005 1.9910 0.0502 0.9927 0.0033 1.0007

Table 4.1: Standard method for a compacting column with constant porosity φ0 =
.04. Relative L2-errors and convergence rates for u, q f , vm, and qm. Relative H1-
errors and convergence rates for u and vm. Solved on an n× 1 (≈ 6n DOF) mesh.
L = 1.5, Θ = .1.
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Darcy velocity u fluid pres. pot. q f
n H1-inter.-error rate L2-inter.-error rate
80 3.6459e-3 — 2.53e-4 —

160 9.1833e-4 1.9892 7.5096e-5 1.7523
320 2.3001e-4 1.9973 2.0519e-5 1.8618
640 5.7531e-5 1.9993 5.3670e-6 1.9348

1280 1.4384e-5 1.9998 1.3727e-6 1.9671

matrix velocity vm matrix pres. pot. qm
n H1-inter.-error rate L2-inter.-error rate
80 3.6459e-3 — 2.4806e-4 —

160 9.1833e-4 1.9892 7.3965e-5 1.7458
320 2.3001e-4 1.9973 2.0248e-5 1.8691
640 5.7531e-5 1.9993 5.3007e-6 1.9335

1280 1.4384e-5 1.9998 1.3563e-6 1.9665

Table 4.2: Standard method for a compacting column with constant porosity φ0 =
.04. Relative L2-interpolation-errors and convergence rates for q f and qm. Relative
H1-interpolation-errors and convergence rates for u and vm. Solved on an n× 1
(≈ 6n DOF) mesh. L = 1.5, Θ = .1.
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x

z

φ = φ0

θ

vm ·ν = 0
∂vm,z

∂x = 0

vm = U0x̂

(a)

x

z

φ = φ0

vm = vm,e
u ·ν = ue ·ν

vm ·ν = 0
∂vm,z

∂x = 0
u ·ν = 0

vm = U0x̂
q f = 0

vm = vm,e
u ·ν = ue ·ν

vm = vm,e
u ·ν = ue ·ν

(b)

Figure 4.2: (a) Viscous corner flow on a quarter plane with constant velocity equal
to U0 at the top boundary and symmetry condition at the left boundary. (b) Bound-
ary conditions for the numerical method.

Incompressibility of the matrix also reduces Stokes (3.1.3) to

∇q−µm(1−φ0)∇2vm = (1−φ0)∆ρ ĝ , (4.3.13)

where we use the identity 2∇ ·Dv = ∇2v + ∇(∇ · v). Note that the four equations

(4.3.11), (4.3.13), along with Darcy’s law (3.1.1), have only three unknowns, but

remain consistent since (4.3.13) implies incompresibilty for the relative velocity.

Introduce the length scale

Ls =
(

µmU0

∆ρg

)1/2

≈ 103m , (4.3.14)
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which governs extraction of fluid by shear forces in the matrix. Defining dimen-

sionless variables

(x,z) = (x̄, z̃)Ls,

q = q̃∆ρgLs,

(vm,u) = (ṽm, ũ)U0,

(4.3.15)

substituting, and dropping tildes gives

∇ ·vm = ∇ ·u = 0 , (4.3.16)

∇q− (1−φ)∇2vm = (1−φ)ẑ , (4.3.17)

u =−w0

U0
∇q , (4.3.18)

where

w0 =
k0φ

2(1+Θ)
0 ∆ρg

µ f
, (4.3.19)

is the percolation velocity, which determines the separation of fluid from matrix

(and is strongly dependent on porosity). Equations (4.3.16)–(4.3.18) have a stream

function solution for r > 0,

vm =
2
π

((θ sinθ − cosθ)r̂+θ cosθθ̂θθ) (4.3.20)

q = (1−φ0)
(
− 4

πr
+ r
)

cosθ = (1−φ0)
(
− 4

πr
cosθ + z

)
, (4.3.21)

u =−w0

U0
(1−φ0)

( 4
πr2 (cosθ r̂+ sinθθ̂θθ)+ ẑ

)
. (4.3.22)

Notice that the solution to this simplified system also solves the full equations

(3.1.1)–(3.1.4). Since the mixed method has a unique solution, we can use this

simplified solution to validate the method.
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Darcy velocity u fluid pres. pot. q f
n L2-error rate L2-error rate
8 0.2445 — 0.0997 —

16 0.1254 0.9519 0.0505 0.9823
32 0.0635 0.9925 0.0253 0.9936
64 0.0318 0.9984 0.0127 0.9982

matrix velocity vm matrix pres. pot. qm
n L2-error rate H1-error rate L2-error rate
8 0.0112 — 0.0804 — 0.0990 —

16 0.0031 1.8580 0.0407 0.9836 0.0505 0.9716
32 0.0008 1.9776 0.0200 1.0260 0.0254 0.9940
64 0.0002 1.9937 0.0099 1.0083 0.0127 0.9988

Table 4.3: Viscous corner flow with constant porosity φ0 = .04. Relative L2- errors
and convergence rates for u, q f , vm, and qm. Relative H1-errors and convergence
rates for vm. Errors shown for n×n-meshes (≈ 8n2 DOF)

To avoid the singularity at r = 0, we test the method on a rectangular mesh

with the corner removed, as shown in figure 4.2(b). We set the exact solution as

Neumann boundary conditions,

vm = vm,e,

u ·ν = ue ·ν

at the corner and as far field conditions. Note the condition q f = 0 on the top

boundary is consistent with the exact solution (4.3.21). Table 4.3 shows the ex-

pected convergence rates for the relative error.
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4.3.3 Discontinuous porosity

Consider the compacting column in Figure 4.1(a) with porosity φ given by

φ =

{
φ− if z≤ 0,

φ+ if z > 0.
(4.3.23)

We would like to explore the qualitative nature of the numerical solution to the

methods in the previous chapter even when the parameters are highly irregular.

Figure 4.3 shows computed solutions on a coarse mesh for the three methods. Re-

call that the velocity calculated in the symmetry preserving method is scaled by the

porosity and hence is discontinuous at z = 0. This method fails to capture that jump.

4.3.4 Condition number for decreasing porosity

We observe the behavior of the condition number as porosity approaches

zero in part of the domain. Consider three porosities on [−L,L]

φ1(z) = φ0 +

{
0 if z≤ 0,

z2 if z > 0,
(4.3.24)

φ2(z) = φ0 +

{
0 if z≤ 0,
√

z if z > 0,
(4.3.25)

φ3(z) = φ0 +

{
0 if z≤ 0,

φ+ if z > 0,
(4.3.26)

and let φ0 → 0. At z = 0, φ1 is continuously differentiable, φ2(z) is continuous

but has unbounded derivative, and φ3(z) is discontinuous. For every method the

condition number blows up with porosity, as shown in Figure 4.4. Moreover, the
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(a)

(b)
Figure 4.3
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(c)

Figure 4.3: Computed solution on a 40× 1-mesh for a compacting column with
discontinuous porosity (4.3.23) and Θ = 0. (a) standard method. (b) symmetry
preserving method. (c) expanded method.
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(a)

(b) (c)

Figure 4.4: Condition number as φ0→ 0 for porosities defined in (4.3.24)–(4.3.26)
on a 100×1-mesh. L = .2. (a) φ1. (b) φ2. (c) φ3, φ+ = .04.
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Figure 4.5: Fluid pressure and scaled relative velocity blow up for the symmetry
preserving method with porosity defined by (4.3.25), and φ0 decreasing to zero.
100×1- mesh. L = .2

regularity (or lack of) of φ does not appear to affect the condition number as poros-

ity vanishes. While for the standard method and the expanded method the solutions

appear to converge, for the symmetry preserving method, Figure 4.5 shows the fluid

pressure actually blows up as φ0→ 0 in φ2(z) (though surprisingly does converge

to the true solution for φ3(z)). This result shows that we cannot trust the numerical

solution using the mixed methods of chapter 3 when the porosity is small. This is

especially relevant for mid-ocean ridges, where we are specifically interested in the

behavior at the phase boundaries where high-porosity channels form. Following the

theory developed in the following chapters, we will develop a new method which,

as we shall see in chapter 7 is numerically stable as porosity approaches zero in part

of the domain.
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Chapter 5

A Linear Degenerate Elliptic Equation

The mantle equations (3.1.1)–(3.1.4) give rise to a degenerate system when

the fluid disappears. The Stokes part (3.1.3)–(3.1.4) is well-posed, since there is

always matrix present at each point of space (i.e., φ ≤ φ∗ < 1). Thus we ignore the

matrix part of the problem and define the following degenerate problem.

Let Ω ⊂ Rd be a domain, let the porosity φ : Ω→ [0,φ∗], 0 < φ∗ < ∞, be

a given differentiable function, and let a and b lie in C1([0,φ∗]), both positive on

(0,φ∗], and non-negative at x = 0. For velocity u and pressure p, we consider the

linear degenerate elliptic boundary value problem

u =−a(φ)(∇p−g) in Ω, (5.0.1)

∇ ·
(
b(φ)u

)
+φ p = φ

1/2 f in Ω, (5.0.2)

b(φ)u ·ν = φ
1/2gN on ∂Ω, (5.0.3)

where g and f drive the system and Neumann boundary conditions have been ap-

plied for some gN (we will also treat Robin boundary conditions (5.4.1)). The

choice of scaling in (5.0.2)–(5.0.3) in terms of φ will become clear as we develop

the ideas. The critical factor here is that φ may vanish on a set of positive measure.

This leads to a loss of control on p (see (5.1.4) below), and a number of issues
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arise for numerical approximation. In fact p may be unbounded off the support

of φ , which is difficult to approximate numerically. Moreover, if φ vanishes, say

everywhere for simplicity, it appears that the first equation implies that u = 0, but

the second equation trivializes to 0 = 0 (when b(0) = 0), leading to more numerical

difficulties.

To recover (3.1.1)–(3.1.2), set a(φ) = µ f
k0

φ 2(1+Θ), b(φ) = 1, and p = q f .

Moreover, φ−1/2 f represents the matrix pressure.

5.1 A-priori estimates and a change of dependent variables

We proceed formally by assuming that there is a sufficiently smooth solu-

tion to the degenerate system (5.0.1)–(5.0.3) and that φ is reasonable. It will be

convenient to define

c(φ) =
√

b(φ)/a(φ) and d(φ) =
√

a(φ)b(φ),

After an integration by parts we obtain the weak form

(c(φ)2u,ψ)−
(

p,∇ · (b(φ)ψ)
)

= (b(φ)g,ψ), (5.1.1)(
∇ · (b(φ)u),w

)
+(φ p,w) = (φ 1/2 f ,w), (5.1.2)

where the test function ψ satisfies the homogeneous boundary condition (5.0.3)

with gN = 0 on ∂Ω.

Suppose also that we can extend gN to uN in Ω such that

b(φ)uN ·ν = φ
1/2gN on ∂Ω. (5.1.3)
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Taking ψ = u−uN and w = p, and also taking w = φ−1∇ ·(b(φ)u) in (5.1.1)–(5.1.2)

results in the a-priori energy estimates

‖c(φ)u‖+‖φ 1/2 p‖+‖φ−1/2
∇ · (b(φ)u)‖ (5.1.4)

≤C
{
‖ f‖+‖d(φ)g‖+‖c(φ)uN‖+‖φ−1/2

∇ · (b(φ)uN)‖
}
,

Assuming the data are given so that the right-hand side is bounded, as φ vanishes

we potentially lose control of p (and possibly u). This makes sense, since p is the

fluid pressure and there is no fluid phase. Nevertheless, we wish to have a well-

posed two-phase mixture even as one phase disappears. We do this by making a

change of dependent variables.

Let the scaled velocity and pressure be defined as

v = c(φ)u =
√

b(φ)/a(φ)u, (5.1.5)

q = φ
1/2 p, (5.1.6)

respectively, since we have control of these quantities. The system (5.0.1)–(5.0.3)

becomes

v =−d(φ)
(
∇(φ−1/2q)−g

)
in Ω, (5.1.7)

∇ · (d(φ)v)+φ
1/2q = φ

1/2 f in Ω, (5.1.8)

d(φ)v ·ν = φ
1/2gN on ∂Ω. (5.1.9)

If we divide the second equation by φ 1/2, this system is antisymmetric, since the

formal adjoint of −d(φ)∇(φ−1/2(·)) is φ−1/2∇ · (d(φ)(·)). Now the energy esti-
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mates read more simply as

‖v‖+‖q‖+‖φ−1/2
∇ · (d(φ)v)‖ (5.1.10)

≤C
{
‖ f‖+‖d(φ)g‖+‖vN‖+‖φ−1/2

∇ · (d(φ)vN)‖
}
,

where vN = c(φ)uN.

5.2 The space Hφ ,d(div,Ω)

We wish to define a space analogous to H(div,Ω) where the quantity φ−1/2∇·

(d(φ)v) is well-defined. Let

Hφ ,d(div;Ω) =
{

v ∈ (L2(Ω))d : φ
−1/2

∇ · (d(φ)v) ∈ L2(Ω)
}
, (5.2.1)

and we assume that φ is well enough behaved to support the definition. To define

Hφ ,d(div), we interpret

φ
−1/2

∇ · (d(φ)v) = φ
−1/2

∇d(φ) ·v+φ
−1/2d(φ)∇ ·v, (5.2.2)

and so we simply require that φ−1/2∇d(φ) is in (L∞(Ω))d and φ−1/2d(φ) times the

weak divergence of v lies in L2(Ω). The natural conditions seem to be that

φ
−1/2d(φ) ∈ L∞(Ω) and φ

−1/2
∇d(φ) ∈ (L∞(Ω))d, (5.2.3)

where L∞(Ω) is the space of functions with bounded essential supremum (thinking

of bounded functions is sufficient). Moreover, to ensure that the formal adjoint

operator −d(φ)∇(φ−1/2(·)) is well defined, we also ask that

φ
−3/2d(φ)∇φ ∈ (L∞(Ω))d. (5.2.4)

51



We remark that our conditions (5.2.3) and (5.2.4) are equivalent to the require-

ment that φ−1/2d(φ) ∈W 1,∞(Ω) = {u ∈ L∞(Ω) : ∇u ∈ L∞(Ω)} and φ−1/2∇d(φ) ∈

(L∞(Ω))d .

Lemma 5.2.1. If (5.2.3) and (5.2.4) holds, then Hφ ,d(div;Ω) is a Hilbert space

with the inner-product

(u,v)Hφ ,d(div) = (u,v)+
(
φ
−1/2

∇ · (d(φ)u),φ−1/2
∇ · (d(φ)v)

)
. (5.2.5)

Moreover, H(div;Ω)⊂ Hφ ,d(div;Ω).

Proof. Clearly Hφ ,d(div;Ω) is linear and (·, ·)φ is an inner product so we only have

to show completeness. Let {un}∞
n=1 ∈ Hφ ,d(div;Ω) be a Cauchy sequence, that is

||um−un||2Hφ ,d(div;Ω) = ||um−un||2 + ||φ−1/2
∇ · (d(φ)(um−un))||2→ 0

as m,n→ ∞. This implies existence of u ∈ (L2(Ω))d such that un→ u in (L2(Ω))d

and ξ ∈ L2(Ω) such that ξn = φ−1/2∇ · (d(φ)un)→ ξ in L2(Ω), as n→ ∞. For a

test function ψ ∈C∞
0 (Ω),

(
φ
−1/2

∇ · (d(φ)un),ψ
)

= −
(
un,d(φ)∇(φ−1/2

ψ)
)

= 1
2

(
un,φ

−3/2d(φ)∇φ ψ
)
−
(
un,φ

−1/2d(φ)∇ψ
)

−→ 1
2

(
u,φ−3/2d(φ)∇φ ψ

)
−
(
u,φ−1/2d(φ)∇ψ

)
=
(
φ
−1/2

∇ · (d(φ)u),ψ
)

This shows that ξn = φ−1/2∇ · (d(φ)un)→ φ−1/2∇ · (d(φ)u) weakly in L2(Ω) so

ξ = φ−1/2∇ · (d(φ)u) and completeness is proved.
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For any v ∈ H(div,Ω), both v ∈ (L2(Ω))d and ∇ ·v ∈ L2(Ω), and so (5.2.2)

implies that φ−1/2∇ · (d(φ)v) ∈ L2(Ω), and the final assertion of the lemma holds

as well.

In order to apply the Neumann boundary condition we must define a way

to interpret functions in Hφ ,d(div,Ω) on the boundary. Define the normal trace

operator γφ ,d : Hφ ,d(div;Ω)→ H−1/2(∂Ω) using the integration by parts formula

〈γφ ,d(v),w〉=
(
φ
−1/2

∇ · (d(φ)v),w
)
+
(
v,d(φ)∇(φ−1/2w)

)
=
(
φ
−1/2

∇ · (d(φ)v),w
)
+
(
v,φ−1/2d(φ)∇w)

)
−
(
v, 1

2φ
−3/2d(φ)∇φw)

)
,

(5.2.6)

wherein w ∈ H1/2(∂Ω) has been extended to w ∈ H1(Ω). Note that (5.2.3) and

(5.2.4) imply that the operator is well-defined by the right-hand side of (5.2.6), and

that we can interpret γφ ,d(v) = φ−1/2d(φ)v ·ν .

Lemma 5.2.2. If (5.2.3) and (5.2.4) hold, then the normal trace operator γφ ,d :

Hφ ,d(div;Ω)→ H−1/2(∂Ω) is well defined by (5.2.6) and there is a constant C > 0

such that

‖γφ ,d(v)‖−1/2,∂Ω = ‖φ−1/2d(φ)v ·ν‖−1/2,∂Ω ≤C‖v‖Hφ ,d(div;Ω) (5.2.7)

for any v ∈ Hφ ,d(div;Ω).

Finally, to apply the homogeneous boundary condition define

Hφ ,d,0(div;Ω) =
{

v ∈ Hφ ,d(div;Ω) : γφ ,d(v) = φ
−1/2d(φ)v ·ν = 0 on ∂Ω

}
,

(5.2.8)
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and we let the image of the normal trace operator be denoted by

H−1/2
φ ,d (∂Ω) = γφ ,d

(
Hφ ,d(div;Ω)

)
⊂ H−1/2(∂Ω). (5.2.9)

5.3 A scaled weak formulation and unique existence of the solu-
tion

Replacing (5.1.3) is the requirement of a function vN ∈ Hφ ,d(div;Ω) such

that

γφ ,d(vN) = φ
−1/2d(φ)vN ·ν = gN, (5.3.1)

which can be found provided that gN ∈ H−1/2
φ ,d (∂Ω). In place of the weak system

(5.1.1)–(5.1.2), we test (5.1.7) and φ−1/2 times (5.1.8) to obtain our scaled weak

formulation: Find v ∈ Hφ ,d,0(div;Ω)+vN and q ∈ L2(Ω) such that

(v,ψ)−
(
q,φ−1/2

∇ · (d(φ)ψ)
)

= (d(φ)g,ψ) ∀ψ ∈ Hφ ,d,0(div;Ω), (5.3.2)(
φ
−1/2

∇ · (d(φ)v),w
)
+(q,w) = ( f ,w) ∀w ∈ L2(Ω). (5.3.3)

We require that f ∈ L2(Ω) and d(φ)g ∈ (L2(Ω))d .

The a-priori energy estimates (5.1.10) for (5.3.2)–(5.3.3), imply that if there

is a solution to the problem, then it is unique. To prove existence of a solution, we

let δ ≥ 0 and define the stabilized bilinear form aδ :
(
Hφ ,d,0(div,Ω)× L2(Ω)

)
×(

Hφ ,d,0(div,Ω)×L2(Ω)
)
→ R by

aδ

(
(v0,q),(ψ,w)

)
(5.3.4)

= (v0,ψ)−
(
q,φ−1/2

∇ · (d(φ)ψ)
)
+
(
φ
−1/2

∇ · (d(φ)v0),w
)
+(q,w)

+δ
{(

φ
−1/2

∇ · (d(φ)v0),φ−1/2
∇ · (d(φ)ψ)

)
+
(
q,φ−1/2

∇ · (d(φ)ψ)
)}
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and the linear form bδ : Hφ ,d,0(div,Ω)×L2(Ω)→ R by

bδ (ψ,w) = (d(φ)g,ψ)− (vN,ψ)+
(

f −φ
−1/2

∇ · (d(φ)vN),w
)

(5.3.5)

+δ
{(

f −φ
−1/2

∇ · (d(φ)vN),φ−1/2
∇ · (d(φ)ψ)

)}
.

These two forms are clearly continuous, i.e., bounded.

We now have the problem: Find (v0,q) ∈ Hφ ,d,0(div;Ω)×L2(Ω) such that

aδ

(
(v0,q),(ψ,w)

)
= bδ (ψ,w) ∀(ψ,w) ∈ Hφ ,d,0(div;Ω)×L2(Ω). (5.3.6)

With v = v0 + vN and δ = 0, this problem is (5.3.2)–(5.3.3). In fact, since ψ ∈

Hφ ,d(div,Ω), φ−1/2∇ · (d(φ)ψ) ∈ L2(Ω), and

aδ

(
(v0,q),(ψ,w)

)
−bδ (ψ,w)

= a0
(
(v0,q),(ψ,w+δφ

−1/2
∇ · (d(φ)ψ))

)
−b0

(
ψ,w+δφ

−1/2
∇ · (d(φ)ψ)

)
.

Since w+δφ−1/2∇ · (d(φ)ψ) is arbitrary in L2, problems (5.3.6) are equivalent for

any δ ≥ 0.

For any δ ∈ (0,2), the bilinear form aδ is coercive. To see this, compute

that

aδ

(
(v0,q),(v0,q)

)
= ‖v0‖2 +‖q‖2 +δ‖φ−1/2

∇ · (d(φ)v0)‖2 +δ
(
q,φ−1/2

∇ · (d(φ)v0)
)

≥ ‖v0‖2 +
(
1− 1

2δ
)
‖q‖2 + 1

2δ‖φ−1/2
∇ · (d(φ)v0)‖2

≥ 1
2δ‖v0‖Hφ ,d(div) +

(
1− 1

2δ
)
‖q‖2.

Therefore, we can apply the Lax-Milgram Theorem to conclude that (5.3.6) has a

unique solution for δ ∈ (0,2). By the equivalence of the weak problems, we then
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have a solution for any δ ≥ 0, and in particular for problem (5.3.6) with δ = 0, i.e.,

(5.3.2)–(5.3.3) (which we already know is unique).

Theorem 5.3.1. Let (5.2.3) and (5.2.4) hold, f ∈ L2(Ω), d(φ)g ∈ (L2(Ω))d , and

gN ∈ H−1/2
φ ,d (∂Ω). If vN is defined by (5.3.1), then there is a unique solution to the

problem (5.3.2)–(5.3.3), and the energy estimates (5.1.10) and (5.1.4) hold.

5.4 Some extensions of the results

We can handle Dirichlet and Robin boundary conditions, and in some cases,

we can show that p ∈ L2(Ω).

5.4.1 Dirichlet and Robin boundary conditions

Instead of Neumann boundary conditions (5.0.3), we could impose Dirichlet

or Robin boundary conditions of the form

φ p−κ
2b(φ)u ·ν = φ

1/2gR on ∂Ω, (5.4.1)

where κ ≥ 0 is a bounded function and gR is given. The scaled version is

q−κ
2
φ
−1/2d(φ)v ·ν = gR on ∂Ω, (5.4.2)

and the scaled weak form is: Find v ∈ Hφ ,d(div;Ω) and q ∈ L2(Ω) such that

(v,ψ)−
(
q,φ−1/2

∇ · (d(φ)ψ)
)
+ 〈κ2φ−1d(φ)2v ·ν ,ψ ·ν〉 (5.4.3)

= (d(φ)g,ψ)−〈gR,φ−1/2d(φ)ψ ·ν〉 ∀ψ ∈ Hφ ,d(div;Ω),(
φ
−1/2

∇ · (d(φ)v),w
)
+(q,w) = ( f ,w) ∀w ∈ L2(Ω). (5.4.4)
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We require that gR ∈ H1/2(∂Ω) (actually, we could require merely that gR is in the

dual space (H−1/2
φ ,d (∂Ω))∗) and, as before, f ∈ L2(Ω) and d(φ)g∈ (L2(Ω))d . Using

the Trace Lemma 5.2.2, the a-priori energy estimates are

‖v‖+‖q‖+‖φ−1/2
∇ · (d(φ)v)‖+‖κφ

−1/2d(φ)v ·ν‖∂Ω (5.4.5)

≤C
{
‖ f‖+‖d(φ)g‖+‖gR‖1/2,∂Ω

}
.

To prove an analogue to Theorem 5.3.1 we need to modify aδ by extending it to(
Hφ ,d(div)×L2)× (Hφ ,d(div)×L2) and adding a term, obtaining

ãδ

(
(v,q),(ψ,w)

)
= aδ

(
(v,q),(ψ,w)

)
+ 〈κ2

φ
−1d(φ)2v ·ν ,ψ ·ν〉.

We also define b̃δ : Hφ ,d(div)×L2→ R such that

b̃δ (ψ,w) = (d(φ)g,ψ)+( f ,w)−〈gR,φ−1/2d(φ)ψ ·ν〉+δ
(

f ,φ−1/2
∇ · (d(φ)ψ)

)
.

Both ãδ and b̃δ are continuous, proving coercivity remains unchanged since 〈κ2φ−1d(φ)2v·

ν ,ψ ·ν〉= ‖κφ 1/2d(φ)v ·ν‖∂Ω is non-negative, and a-priori estimates (5.4.5) prove

uniqueness.

Theorem 5.4.1. Let (5.2.3) and (5.2.4) hold, f ∈ L2(Ω), d(φ)g ∈ (L2(Ω))d , and

gR ∈H1/2(∂Ω). Then there is a unique solution to the problem (5.4.3)–(5.4.4), and

the energy estimates (5.4.5) hold.

5.4.2 A condition for the pressure to be in L2

In some cases the solution is more regular than implied by (5.1.4). Proceed-

ing formally from (5.0.1)–(5.0.2), we have the single equation

−∇ ·
(
(d(φ))2

∇p
)
+φ p = φ

1/2 f −∇ ·
(
(d(φ))2g

)
. (5.4.6)
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We multiply by φ−1 p and integrate by parts using homogeneous Neumann bound-

ary condition (5.0.3) to see that(
(d(φ))2

∇p,∇(φ−1 p)
)
+‖p‖2 = (φ−1/2 f , p)+

(
(d(φ))2g,∇(φ−1 p)

)
.

After formally expanding the derivative terms, we obtain(
φ
−1(d(φ))2

∇p,∇p
)
+‖p‖2

= (φ−1/2 f , p)+
(
φ
−1(d(φ))2g,∇p

)
−
(
φ
−2(d(φ))2

∇φ ·g, p
)

+
(
φ
−2(d(φ))2

∇φ ·∇p, p
)

≤ ‖φ−3/2d(φ)∇φ‖L∞(Ω)‖φ−1/2d(φ)∇p‖‖p‖

+ ε
{
‖p‖2 +‖φ−1/2d(φ)∇p‖2}

+Cε

{
‖φ−1/2 f‖2 +‖φ−1/2d(φ)g‖2 +‖φ−2(d(φ))2

∇φ ·g‖2}
for any ε > 0, and so

‖φ−1/2d(φ)∇p‖+‖p‖ ≤C
{
‖φ−1/2 f‖+‖φ−1/2d(φ)g‖+‖φ−2(d(φ))2

∇φ ·g‖
}
,

(5.4.7)

provided that ‖φ−3/2d(φ)∇φ‖L∞(Ω) < 2. For greater generality, we have chosen to

work with the scaled pressure. However, it is interesting to note that p may in fact

be stable in many cases, and then it is only the loss of an equation that is problematic

for numerical approximation.

5.5 Mixed finite element methods

We now discuss discrete versions of our scaled systems (5.3.2)–(5.3.3) for

Neumann and (5.4.3)–(5.4.4) for Dirichlet and Robin boundary conditions. We will
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impose a finite element mesh as described in chapter 4 and approximate (v,q) in

the lowest order Raviart-Thomas (RT0) finite element space.

We will make use of the usual projection operators associated with RT0. Let

PWh = ·̂ : L2(Ω)→Wh denote the L2(Ω) projection operator, which projects a func-

tion into the space of piecewise constant functions. Moreover, let π : H(div;Ω)∩

L2+ε(Ω)→ Vh (any ε > 0) denote the standard Raviart-Thomas or Fortin operator

that preserves element average divergence and edge normal fluxes [18, 42, 43].

To simplify the treatment of boundary conditions, when using Neumann

conditions, let βN = 1 and βR = 1− βN = 0, and when using Robin conditions,

βN = 0 and βR = 1. Also let Ṽh = βNVh,0 +βRVh.

5.5.1 A formal method based on RT0

The formal mixed finite element method for Neumann (5.3.2)–(5.3.3) or

Robin (5.4.3)–(5.4.4) boundary conditions is: Find vh ∈ Ṽh + βNvN and qh ∈Wh

such that

(vh,ψ)−
(
qh,φ

−1/2
∇ · (d(φ)ψ)

)
+βR〈κ2

φ
−1(d(φ))2vh ·ν ,ψ ·ν〉 (5.5.1)

= (d(φ)g,ψ)−βR〈gR,φ−1/2d(φ)ψ ·ν〉 ∀ψ ∈ Ṽh,(
φ
−1/2

∇ · (d(φ)vh),w
)
+(qh,w) = ( f ,w) ∀w ∈Wh.

(5.5.2)

When using Neumann boundary conditions, we might choose to find vh ∈ Vh,0 +

πvN instead. To show unique solvability and stability for the Robin case requires a

discrete version of the Trace Lemma 5.2.2.
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Lemma 5.5.1. If (5.2.3) and (5.2.4) hold and the finite element mesh Th is quasi-

uniform, then there is a constant C > 0 such that

‖φ−1/2
∇ · (d(φ)vh)‖ ≤C

{
‖vh‖+‖PWh[φ

−1/2
∇ · (d(φ)vh)]‖

}
(5.5.3)

for any vh ∈ Vh. Moreover, for some possibly different constant C > 0,

‖γφ ,d(vh)‖−1/2,∂Ω = ‖φ−1/2d(φ)vh ·ν‖−1/2,∂Ω (5.5.4)

≤C
{
‖vh‖+‖PWh [φ

−1/2
∇ · (d(φ)vh)]‖

}
for any vh ∈ Vh.

Proof. The triangle inequality gives that

‖φ−1/2
∇ · (d(φ)vh)‖

≤ ‖PWh[φ
−1/2

∇ · (d(φ)vh)]‖+‖φ−1/2
∇ · (d(φ)vh)−PWh[φ

−1/2
∇ · (d(φ)vh)]‖.

We compute that

‖φ−1/2
∇ · (d(φ)vh)−PWh[φ

−1/2
∇ · (d(φ)vh)]‖

= ‖φ−1/2
∇d(φ) ·vh−PWh [φ

−1/2
∇d(φ) ·vh]

+φ
−1/2d(φ)∇ ·vh−PWh[φ

−1/2d(φ)∇ ·vh]‖

≤ 2‖φ−1/2
∇d(φ) ·vh‖+‖φ−1/2d(φ)∇ ·vh−PWh[φ

−1/2d(φ)∇ ·vh]‖

≤C‖vh‖+
∥∥(φ−1/2d(φ)−PWh [φ

−1/2d(φ)]
)
∇ ·vh

∥∥,
since φ−1/2∇d(φ) ∈ (L∞(Ω))d by assumption (5.2.3), and the projection operator,
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‖PWh‖= 1. Further, for the last term,∥∥(φ−1/2d(φ)−PWh[φ
−1/2d(φ)]

)
∇ ·vh

∥∥
≤ ‖φ−1/2d(φ)−PWh [φ

−1/2d(φ)]‖L∞(Ω)‖∇ ·vh‖

≤Ch‖φ−1/2d(φ)‖W 1,∞(Ω)‖∇ ·vh‖

≤C‖φ−1/2d(φ)‖W 1,∞(Ω)‖vh‖,

using [23] for the approximation of the L2-projection in L∞ and an inverse esti-

mate, since the finite element mesh Th is assumed to be quasi-uniform. Because

φ−1/2d(φ) ∈W 1,∞(Ω) by assumptions (5.2.3) and (5.2.4), the first result (5.5.3) is

established. The discrete trace bound (5.5.4) then follows directly from the Trace

Lemma 5.2.2.

Substituting into (5.5.1)–(5.5.2) the discrete solution ψ = vh−βNvN ∈ Ṽh

and w = qh +PWh[φ
−1/2∇ · (d(φ)vh)] ∈Wh shows the stability result

‖vh‖+‖qh‖+‖PWh[φ
−1/2

∇ · (d(φ)vh)]‖+βR‖κφ
−1/2d(φ)vh ·ν‖∂Ω (5.5.5)

≤C
{
‖ f‖+‖d(φ)g‖

+βR‖gR‖1/2,∂Ω +βN
(
‖vN‖+‖PWh[φ

−1/2
∇ · (d(φ)vN)]‖

)}
.

Uniqueness of the solution is therefore established, and existence follows because

the discrete system over a basis is a square linear system.

5.5.2 A practical method based on RT0

The formal method gives rise to a linear system of saddle point form (see

(7.1.15) below), which can be difficult to solve. Moreover, it is perhaps not com-

61



pletely clear how to evaluate the divergence terms involving division by φ when φ

vanishes. We modify the formal method to make it easier to implement and solve,

and also to obtain local mass conservation. Denote the local average of φ over

element E ∈ Th by

φE =
1
|E|

ˆ
E

φ dx = φ̂ |E . (5.5.6)

We present the practical method for Neumann (βN = 1) and Robin (βR = 1) bound-

ary conditions: Find vh ∈ Ṽh +βNvN and qh ∈Wh such that

(vh,ψ)−
(
qh, φ̂

−1/2
∇ · (d(φ)ψ)

)
+βR〈κ2

φ
−1(d(φ))2vh ·ν ,ψ ·ν〉 (5.5.7)

= (d(φ)g,ψ)−βR〈gR,φ−1/2d(φ)ψ ·ν〉 ∀ψ ∈ Ṽh,(
φ̂
−1/2

∇ · (d(φ)vh),w
)
+(qh,w) = (φ̂−1/2

φ
1/2 f ,w) ∀w ∈Wh,

(5.5.8)

with the caveat that we set the divergence terms to zero on an element E that would

otherwise include φ̂−1/2 when φ̂ |E = φE = 0, and in that case, φ̂−1/2φ 1/2 f = f .

We then easily recover the discrete pressure ph ∈Wh by setting for all E ∈ Th

ph|E =

{
0 if φE = 0,

φ
−1/2
E qh|E if φE 6= 0,

(5.5.9)

and the discrete velocity uh ∈ Ṽh +βNvN is defined by setting for all e ∈ Eh

uh ·ν |e =


0 if be ≡

ˆ
e
b(φ)ds = 0,

b−1
e

ˆ
e
d(φ)dsvh ·ν |e if be 6= 0,

(5.5.10)

so that π(b(φ)uh) = π(d(φ)vh). Note that
´

e b(φ)ds = 0⇒ φ |e = 0⇒
´

e d(φ)ds =

0.
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We now discuss in detail implementation of the method, restricted to Robin

boundary conditions for simplicity of exposition. Using the degrees of freedom

for RT0, Vh and Wh in (4.1.3) and (4.1.4), the linear system corresponding to the

method (5.5.7)–(5.5.8) is thus(
A −B

BT C

)(
v
q

)
=
(

a
b

)
, (5.5.11)

wherein v and q represent the degrees of freedom for v and q, respectively. We

compute

Ae, f = (ve,v f )+ 〈κ2
φ
−1d(φ)2ve ·ν ,v f ·ν〉 (5.5.12)

=
(1

3
|Ee|+

ˆ
e∩∂Ω

κ
2
φ
−1d(φ)2 ds

)
δe, f +

1
6
|Ee, f |νe ·ν f ,

CE,F = (wE ,wF) = |E|δE,F , (5.5.13)

where Ee is the support of ve (i.e., the one or two elements adjacent to e), and Ee, f

is the intersection of the supports of ve and v f . Moreover,

ae = (d(φ)g,ve)−〈gR,φ−1/2d(φ)ve ·ν〉 (5.5.14)

=
ˆ

Ee

d(φ)g ·ve dx−ve ·ν
ˆ

e∩∂Ω

gRφ
−1/2d(φ)ds,

bE = (φ̂−1/2
φ

1/2 f ,wE) =


ˆ

E
f dx if φE = 0,

φ
−1/2
E

ˆ
E

φ
1/2 f dx if φE 6= 0.

(5.5.15)

The matrix B remains, but it is now clear how it is defined because we have

avoided division by φ when φ = 0. In terms of our projection operators,

Be,E =
(
φ̂
−1/2

∇ · (d(φ)ve),wE
)

= 〈φ−1/2
E d(φ)ve ·ν ,wE〉∂E ;
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that is,

Be,E =

0 if e 6⊂ ∂E or φE = 0,

φ
−1/2
E ve ·νE

ˆ
e
d(φ)dx if e⊂ ∂E and φE 6= 0.

(5.5.16)

5.5.3 Cell-centered finite difference

To simplify implementation, we could approximate the first integral in (5.5.7)

by a trapezoidal quadrature rule (·, ·)Q so that for RT0 basis functions

(ve,v f )Q =
1
2
|Ee|δe, f . (5.5.17)

This approximation leads to a cell-centered finite difference method [6, 44]. The

Schur complement of (7.1.15) for q is

v = A−1(Bq+a), (5.5.18)

(BT A−1B+C)q = b−BT A−1a. (5.5.19)

The matrix of the second equation can be formed as a 5-point finite difference sten-

cil because A and C are diagonal and positive definite [6, 44]. Thus we solve the

second equation (5.5.19) relatively efficiently as a cell-centered finite difference

method for q, and then form v using q and the first equation (5.5.18). Moreover,

(ψ,ψ)1/2
Q is a norm on Vh equivalent to ‖ψ‖ with bounds independent of h [54].

5.5.4 Discrete representation of φ

We remark that, in practice, our problem is a subproblem of a larger system

that determines φ (see appendix B), so φ will be represented in a discrete space Φh.
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We might chose the space used by the Arbogast and Chen [3] to approximate the

solution to a nondegenerate second order elliptic problem using a nonconforming

method. The nonconforming method is equivalent to a mixed method based on RT0.

The solution variable is approximated with degrees of freedom defined by element

average values φE ∀E ∈ Th in (5.5.6) and face (or edge) average values

φe =
1
|e|

ˆ
e
φ ds ∀e ∈ Eh. (5.5.20)

The space is

Φh =
{

φ : φ |E ∈ P2,0 +P0,2 ∀E ∈ Th and φe is unique ∀e ∈ Eh
}
.

In this case, we could define the method using only the degrees of freedom of

φ ∈Φh. To do so, we would simply replace φ by φe in (5.5.12), the second integral

of (5.5.14), and (5.5.16), and replace φ by φE in the first integral of (5.5.14) and

(5.5.15).

5.5.5 Local mass conservation of the practical method

The equation (5.5.8) implies that mass is conserved locally by the practical

method. Taking test function φ
1/2
E wE ∈Wh,

ˆ
E

∇ · (d(φ)vh)dx+
ˆ

E
φ

1/2
E qh dx =

ˆ
E

φ
1/2 f dx, (5.5.21)

which is the same as

ˆ
E

∇ ·π(d(φ)vh)dx+
ˆ

E
φ φ
−1/2
E qh dx =

ˆ
E

φ
1/2 f dx.
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Since (5.5.10) defines uh ∈Vh such that π(d(φ)vh) = π(b(φ)uh) and (5.5.9) defines

ph ∈Wh, we have

ˆ
E

∇ · (b(φ)uh)dx+
ˆ

E
φ ph dx =

ˆ
E

φ
1/2 f dx, (5.5.22)

which is the mass conservation equation (5.0.2) integrated over E.

5.5.6 Solvability and stability of the practical method

Substituting ψ = vh−βNvN ∈ Ṽh and w = qh+PWh[φ̂
−1/2∇ ·(d(φ)vh)]∈Wh

into (5.5.7)–(5.5.8) gives

‖vh‖2 +‖qh‖2 +‖PWh[φ̂
−1/2

∇ · (d(φ)vh)]‖2 +βR‖κφ
−1/2d(φ)vh ·ν‖2

∂Ω

≤C
{
‖φ̂−1/2

φ
1/2 f‖2 +‖d(φ)g‖2 +βR|〈gR,φ−1/2d(φ)vh ·ν〉|2

+βN
(
‖vN‖2 +‖PWh[φ̂

−1/2
∇ · (d(φ)vN)]‖2)}.

Uniqueness and, therefore, existence of the solution is established.

Unfortunately, we do not have a discrete trace lemma involving φ̂ . In many

cases, we obtain the stability bound

‖vh‖+‖qh‖+‖PWh[φ̂
−1/2

∇ · (d(φ)vh)]‖+βR‖κφ
−1/2d(φ)vh ·ν‖∂Ω (5.5.23)

≤C
{
‖φ̂−1/2

φ
1/2 f‖+‖d(φ)g‖+βR‖gR‖0,∂Ω

+βN
(
‖vN‖+‖PWh[φ̂

−1/2
∇ · (d(φ)vN)]‖

)}
.

This holds when we use Neumann boundary conditions (βN = 1, βR = 0), or when

we have either homogeneous Robin conditions, i.e., gR = 0, or uniform Robin con-

ditions, i.e., κ ≥ κ∗ > 0 for some constant κ∗.
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In the case of nonhomogeneous, nonuniform Robin boundary conditions,

we modify the treatment of gR in (5.5.7) when βR = 1. We base the method on a

discrete version of the definition of the normal trace (5.2.6),

〈gR,φ−1/2d(φ)vh ·ν〉=
(
ĝR, φ̂−1/2

∇ · (d(φ)vh)
)
+
(
d(φ)∇(φ−1/2gR),vh

)
,

The modified practical method becomes

(vh,ψ)−
(
qh, φ̂

−1/2
∇ · (d(φ)ψ)

)
+ 〈κ2

φ
−1(d(φ))2vh ·ν ,ψ ·ν〉 (5.5.24)

= (d(φ)g,ψ)−
(
ĝR, φ̂−1/2

∇ · (d(φ)vh)
)
−
(
d(φ)∇(φ−1/2gR),vh

)
∀ψ ∈ Vh,(

φ̂
−1/2

∇ · (d(φ)vh),w
)
+(qh,w) = (φ̂−1/2

φ
1/2 f ,w) ∀w ∈Wh, (5.5.25)

wherein we need any H1(Ω)-extension of gR to the interior. In this case, we obtain

the stability estimate (5.5.23) with the term βR‖gR‖0,∂Ω replaced by βR‖gR‖1/2,∂Ω.

5.6 An analysis of the error of the formal method

A full analysis of the error of the practical method is an open question, and

is complicated by the fact that φ may vanish at points of an element E, but φE may

not vanish. Such an analysis is beyond the scope of this thesis. However, we can

give an idea of the errors to be expected by analyzing the formal method that treats

the integrals and φ exactly, i.e., (5.5.1)–(5.5.2). For simplicity of exposition, we

continue the discussion for the Robin system (βN = 0).

Since Vh ⊂ H(div) ⊂ Hφ ,d(div), we can take the difference of the weak

formulation (5.4.3)–(5.4.4) with discrete test functions and (5.5.1)–(5.5.2). This
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leads to the system

(v−vh,ψ)−
(
q−qh,φ

−1/2
∇ · (d(φ)ψ)

)
(5.6.1)

+ 〈κ2
φ
−1(d(φ))2(v−vh) ·ν ,ψ ·ν〉 = 0 ∀ψ ∈ Vh,(

φ
−1/2

∇ · (d(φ)(v−vh)),w
)
+(q−qh,w) = 0 ∀w ∈Wh. (5.6.2)

We modify this system by introducing our two projection operators to see that

(πv−vh,ψ)−
(
q̂−qh,PWh[φ

−1/2
∇ · (d(φ)ψ)]

)
+ 〈κ2

φ
−1(d(φ))2(πv−vh) ·ν ,ψ ·ν〉

=−(v−πv,ψ)+
(
q− q̂,φ−1/2

∇ · (d(φ)ψ)
)
−〈κ2

φ
−1(d(φ))2(v−πv) ·ν ,ψ ·ν〉,(

PWh[φ
−1/2

∇ · (d(φ)(πv−vh))],w
)
+(q̂−qh,w)

=−
(
PWh[φ

−1/2
∇ · (d(φ)(v−πv))],w

)
.

Assuming that v is sufficiently regular to compute πv, the test functions ψ = πv−

vh ∈ Vh and w = q̂−qh +PWh[φ
−1/2∇ · (d(φ)(πv−vh))] ∈Wh, lead us to

‖πv−vh‖2 +‖q̂−qh‖2

+‖PWh[φ
−1/2

∇ · (d(φ)(πv−vh))]‖2 +‖κφ
−1/2d(φ)(πv−vh) ·ν‖2

∂Ω

≤C
{
‖v−πv‖2 +‖q− q̂‖2

+‖PWh[φ
−1/2

∇ · (d(φ)(v−πv))]‖2 +‖κφ
−1/2d(φ)(v−πv) ·ν‖2

∂Ω

+
∣∣(q− q̂,φ−1/2

∇ · (d(φ)(πv−vh))
)∣∣}.

The last term on the right-hand side arises because we could not substitute the test

function φ−1/2∇ · (d(φ)(πv−vh)) 6∈Wh for w.
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We continue by estimating

∣∣(q− q̂,φ−1/2
∇ · (d(φ)(πv−vh))

)∣∣
=
∣∣(q− q̂,(I−PWh)

[
φ
−1/2

∇d(φ) · (πv−vh)+φ
−1/2d(φ)∇ · (πv−vh)

])∣∣
≤C‖q− q̂‖

{
‖πv−vh‖+‖(I−PWh)[φ

−1/2d(φ)∇ · (πv−vh)]‖
}
,

and, since ∇ · (πv−vh) ∈Wh,

‖(I−PWh)[φ
−1/2d(φ)∇ · (πv−vh)]‖

= ‖[(I−PWh)φ
−1/2d(φ)]∇ · (πv−vh)‖

≤ ‖(I−PWh)φ
−1/2d(φ)‖L∞(Ω)‖∇ · (πv−vh)‖

≤Ch‖φ−1/2d(φ)‖W 1,∞(Ω)‖∇ · (πv−vh)‖

≤C‖πv−vh‖,

using [23] again for the approximation of the L2-projection in L∞ and an inverse

estimate, assuming that the finite element mesh Th is quasi-uniform.

Similar estimates can be shown to hold for the system using Neumann

boundary conditions. In this case, the test function ψ = πv−vh +vN−πvN ∈Vh,0

is required.

Theorem 5.6.1. Let (5.2.3) and (5.2.4) hold, f ∈ L2(Ω), d(φ)g ∈ (L2(Ω))d , and

assume that the finite element mesh Th is quasi-uniform. Let (v,q) be either the

solution to (5.3.2)–(5.3.3) with vN ∈ Hφ ,d(div;Ω) (and set βN = 1, βR = 0) or

the solution to (5.4.3)–(5.4.4) with gR ∈ H1/2(∂Ω) (and set βN = 0, βR = 1). Let

(vh,qh) be the solution to the formal method (5.5.1)–(5.5.2). Assume that v,βNvN ∈
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H(div;Ω)∩L2+ε(Ω) for some ε > 0. Then

‖v−vh‖+‖q−qh‖+‖PWh[φ
−1/2

∇ · (d(φ)(v−vh))]‖ (5.6.3)

+βR‖κφ
−1/2d(φ)(v−vh) ·ν‖∂Ω

≤C
{
‖v−πv‖+‖q− q̂‖+‖PWh[φ

−1/2
∇ · (d(φ)(v−πv))]‖

+βR‖κφ
−1/2d(φ)(v−πv) ·ν‖∂Ω +βN‖vN−πvN‖Hφ ,d(div;Ω)

}
≤C

{
‖v−πv‖H(div;Ω) +‖q− q̂‖

+βR‖κ(v−πv) ·ν‖∂Ω +βN‖vN−πvN‖H(div;Ω)
}
.

If the solution is sufficiently regular, the approximation is O(h). We might

expect that the practical method (5.5.7)–(5.5.8) that we proposed also achieves O(h)

convergence. Moreover, we might expect to see superconvergence of order O(h2)

for sufficiently regular solutions [54]. We see evidence of these assertions in the

numerical results presented below.

5.7 Some closed form solutions in one dimension

Before presenting numerical results, we consider a group of closed form

solutions in one dimension. Let Ω = (−1,1), a(φ) = b(φ) = φ (so d(φ) = φ ,

c(φ) = 1), g = 0, and f̃ = φ−1/2 f , and reduce the mixed system (5.0.1)–(5.0.3) to

−(φ 2 p′)′+φ p = φ f̃ , −1 < x < 1, (5.7.1)

φ
3/2(−1) p′(−1) = φ

3/2(1) p′(1) = 0. (5.7.2)

This is a Sturm-Liouville problem. By our energy estimates (5.1.4), we require that

u = v =−φ p′ ∈ L2(−1,1) when φ 1/2 f̃ ∈ L2(−1,1).
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For α > 0, let us simplify to the porosity

φ(x) =

{
0, x < 0,

xα , x > 0.
(5.7.3)

The conditions (5.2.3) and (5.2.4) hold if and only if α ≥ 2. Now (5.7.1)–(5.7.2)

becomes

−xα p′′−2α xα−1 p′+ p = f̃ , 0 < x < 1, and p′(1) = 0.

When α = 2, we have the Euler equation

−x2 p′′−4x p′+ p = f̃ , 0 < x < 1. (5.7.4)

In this case the Euler exponents satisfy r(r−1)+4r−1 = 0, and so

r1 =
−3+

√
13

2
≈ 0.3 > 0 and r2 =

−3−
√

13
2

≈−3.3 < 0, (5.7.5)

and the solution to the homogeneous equation is phom(x) = c1xr1 + c2xr2 . The

boundary condition and the requirement that u = −φ p′ ∈ L2(0,1) shows that the

solution is unique. Variation of parameters gives the nonhomogeneous solution as

p(x) =
−1

r1− r2

{
xr1

(ˆ
f̃ (y)

yr1+1 dy+ c1

)
− xr2

(ˆ
f̃ (y)

yr2+1 dy+ c2

)}
.

If we restrict to

f̃ (x) = xβ , 0 < x < 1,

then, provided β 6= r1,r2 and 0 < x < 1, we have the closed form solutions

p(x) =
−xβ

(β − r1)(β − r2)
+C1 xr1 +C2 xr2.
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To get f = φ 1/2 f̃ = x1+β ∈ L2(0,1), restrict to β >−3/2. Then u =−φ p′ ∈ L2(0,1)

implies that C2 = 0, and the boundary condition determines C1. The solution is

q(x) = x p(x) and p(x) =


0, −1 < x≤ 0,

βxr1− r1xβ

r1(β − r1)(β − r2)
, 0 < x < 1,

(5.7.6)

v(x) = u(x) =


0, −1 < x≤ 0,

−β (xr1+1− xβ+1)
(β − r1)(β − r2)

, 0 < x < 1.
(5.7.7)

5.8 Numerical results

In this section we test the convergence of our proposed numerical method

(5.5.7)–(5.5.8) using the cell-centered finite difference scheme outlined in section

5.5.3. We impose Dirichlet boundary conditions without using the stabilizing vari-

ant (5.5.24). We fix the domain Ω = (−1,1)2 and use a uniform rectangular mesh

of n = 1/h elements in each coordinate direction.

We implement the tests in terms of manufactured solutions in which closed

form expressions for φ and p are given, and from these f and Dirichlet boundary

conditions (i.e., κ = 0) are computed. In all tests, we take g = 0 and a(φ) = b(φ) =

φ (so d(φ) = φ , c(φ) = 1, and u = v).

We use discrete L2-norms to measure the relative errors. For p and q, we use

the midpoint quadrature rule applied to the L2-norm, which gives an approximation

to ‖q̂− qh‖ and ‖p̂− ph‖. For v, we use the trapezoidal rule applied to the (L2)2-

norm, which is effectively like the norm ‖πv−vh‖. In both cases, these are norms

for which superconvergence might be expected.
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5.8.1 A simple Euler’s equation in one dimension

For a given φ , it is difficult to determine the exact regularity of the solution.

We begin with a test case corresponding to our closed form solution (5.7.6)–(5.7.7)

of the Euler equation (5.7.4). In this case, it is easy to see that in terms of the

potential singularity near x = 0, q ∼ u ∼ |x|1.3 + |x|1+β and p ∼ |x|0.3 + |x|β , and

so, approximately,

q,u ∈ Hmin(1.8,3/2+β ) and p ∈ Hmin(0.8,1/2+β ).

We consider four values of β (which is the parameter in the source function

f̃ = xβ (or f = x1+β ), 0 < x < 1), β = 1/2, −1/2, −1, and −3/2. The numerical

results are presented in Table 5.1. Based on the regularity of the solution, if the

solution exhibited superconvergence, we would expect the order of convergence for

q and u to be O(h1.8) for β = 1/2, O(h1) for β =−1/2, O(h1/2) for β =−1, and no

convergence for β = −3/2. These rates are seen, approximately, in the numerical

results. Moreover, the order of convergence for p should be O(h0.8) for β = 1/2

and no convergence for the other values of β , which we also see approximately.

We remark that the convergence rate is slightly better if instead of using

(5.5.15), we simply set bE = ( f ,wE). This, of course, would lead to a loss of strict

local mass conservation.
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scaled pressure q pressure p velocity u
β n error rate err rate err rate

0.5 32 0.002043 — 0.006756 — 0.007438 —
64 0.000642 1.669 0.004341 0.638 0.002387 1.640

128 0.000199 1.691 0.002724 0.672 0.000754 1.663
256 0.000061 1.709 0.001681 0.697 0.000235 1.681
512 0.000018 1.723 0.001024 0.716 0.000073 1.695

−0.5 32 0.001913 — 0.040343 — 0.013276 —
64 0.000802 1.254 0.039971 0.013 0.006749 0.976

128 0.000358 1.166 0.039289 0.025 0.003426 0.978
256 0.000167 1.101 0.038474 0.030 0.001731 0.985
512 0.000080 1.060 0.037617 0.033 0.000872 0.990

−1.0 32 0.006379 — 0.155115 — 0.015402 —
64 0.004849 0.396 0.164987 -0.089 0.010550 0.546

128 0.003526 0.460 0.170768 -0.050 0.007338 0.524
256 0.002521 0.484 0.173955 -0.027 0.005142 0.513
512 0.001790 0.494 0.175645 -0.014 0.003618 0.507

−1.5 32 0.060245 — 0.273779 — 0.004816 —
64 0.059596 0.016 0.278083 -0.023 0.003470 0.473

128 0.058620 0.024 0.279416 -0.007 0.002856 0.281
256 0.057593 0.026 0.279819 -0.002 0.002507 0.188
512 0.056590 0.025 0.279939 -0.001 0.002281 0.137

Table 5.1: Euler’s equation. Shown are the relative discrete L2-norm errors of q,
p, and u for various number of elements n× n and for four values of β . The con-
vergence rate corresponds to a superconvergent approximation, restricted by the
regularity of the true solution.

74



5.8.2 A smooth solution test in two-dimensions

For the next series of tests, we assume that p = cos(6xy2) is smooth and that

φ is given by

φ =

{
0 x≤−3/4 or y≤−3/4,

(x+3/4)α(y+3/4)2α otherwise.
(5.8.1)

We note that φ−1/2∇φ ∈
(
L∞((−1,1)2)

)2 if and only if α ≥ 2. Nevertheless, we

consider the four values α = 2, 1, 1/4, and 1/8. Results are given in Table 5.2.

We see good convergence for α = 2 and 1, and some degradation for the smaller

values of α . It appears that condition (5.2.3) (the second part of which is precisely

the condition (5.2.4) when d(φ) = φ ) may be overly restrictive for convergence. In

fact, it may be enough that φ−1/2∇φ ∈
(
L2((−1,1)2)

)2, which is true here if and

only if α > 1.

We depict the solution p and q in Figure 5.1. Although p was chosen to

be smooth, we have displayed p = 0 in the one-phase region, since it is ill-defined

there. Therefore, p is not smooth on the boundary between the one and two phase

regions Γ = {x =−3/4,y ≥−3/4}∪{x ≥−3/4,y =−3/4}. We also display the

scaled pressure q, which is well-behaved for α ≥ 1 and degenerates near Γ as α

decreases (i.e., as φ 1/2∇φ loses its regularity).

The reader should note that Γ lies on a grid line. If we take an odd number

of elements, we will avoid this. Results are shown in Table 5.3. When α = 2, we

see similar errors and rates of convergence as for the case of Γ being resolved by

the grid in Table 5.2. However, the errors are worse for the more challenging case

of α = 1/4, although the convergence rates seem to settle to about the same values.
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scaled pressure q pressure p velocity u
α n error rate err rate err rate
2 32 0.012878 — 0.020996 — 0.029391 —

64 0.003260 1.982 0.007574 1.471 0.009392 1.646
128 0.000825 1.983 0.002655 1.512 0.002791 1.751
256 0.000209 1.979 0.000924 1.523 0.000795 1.811
512 0.000054 1.966 0.000322 1.521 0.000221 1.849

1 32 0.007507 — 0.008594 — 0.023786 —
64 0.001929 1.961 0.002941 1.547 0.007442 1.676

128 0.000493 1.966 0.001001 1.555 0.002182 1.770
256 0.000127 1.955 0.000343 1.545 0.000616 1.824
512 0.000034 1.924 0.000119 1.533 0.000170 1.858

0.25 32 0.007443 — 0.009351 — 0.019810 —
64 0.004953 0.588 0.006521 0.520 0.008355 1.246

128 0.003549 0.481 0.004687 0.476 0.004913 0.766
256 0.002528 0.490 0.003348 0.485 0.003429 0.519
512 0.001788 0.500 0.002380 0.493 0.002469 0.474

0.125 32 0.066864 — 0.082809 — 0.048566 —
64 0.053265 0.328 0.065477 0.339 0.038811 0.323

128 0.042347 0.331 0.051784 0.338 0.032259 0.267
256 0.033806 0.325 0.041165 0.331 0.026911 0.262
512 0.027147 0.317 0.032935 0.322 0.022434 0.263

Table 5.2: Smooth p two-dimensional test. Shown are the relative discrete L2-norm
errors of q, p, and u for various number of elements n×n and for three values of α

defining φ . The convergence rate is better than expected for low values of α .
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Figure 5.1: Smooth p two-dimensional test. Shown are the pressure p and scaled
pressure q for various four values of α defining φ . The pressure is smooth, except
on the boundary of the support of φ (i.e., x = −3/4 or y = −3/4. The scaled
pressure becomes less regular near the boundary as α decreases.
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Figure 5.2: Nonsmooth p two-dimensional test. Shown are the pressure p and
scaled pressure q for four values of α defining φ . The pressure is smooth, except
on the boundary of the support of φ (i.e., x = −3/4 or y = −3/4. The scaled
pressure becomes less regular near the boundary as α decreases.
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scaled pressure q pressure p velocity u
α n error rate err rate err rate
2 33 0.012137 — 0.021447 — 0.028001 —

65 0.003171 1.980 0.007832 1.486 0.009146 1.651
129 0.000817 1.979 0.002769 1.517 0.002753 1.752
257 0.000210 1.971 0.000969 1.523 0.000790 1.811
513 0.000055 1.938 0.000339 1.520 0.000220 1.850

0.25 33 0.031315 — 0.047229 — 0.039155 —
65 0.020907 0.596 0.029933 0.673 0.024967 0.664

129 0.014105 0.574 0.019492 0.626 0.017147 0.548
257 0.009588 0.560 0.012969 0.591 0.012062 0.510
513 0.006566 0.548 0.008778 0.565 0.008545 0.499

Table 5.3: Smooth p two-dimensional test. Shown are the relative discrete L2-norm
errors of q, p, and u for various odd numbers of elements n× n and for α = 2
and 0.25 defining φ . The convergence is similar to the case of grids that resolve the
boundary between the one and two phase regions when α = 2, but not for α = 1/4.
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5.8.3 A nonsmooth solution test in two-dimensions

For the final series of tests, we assume that φ is again given by (5.8.1), but

we impose the nonsmooth pressure solution

p = y(y−3x)(x+3/4)β , β =−1/4 or −3/4. (5.8.2)

This pressure and the scaled pressure q = φ 1/2 p are depicted in Figure 5.2, where

one can see clearly the degeneracy in p near x =−3/4 and that q is better behaved.

In the case β =−1/4, q and u lie in H1.25 and are relatively smooth, whereas when

β =−3/4, q and u lie only in H0.75. We use grids that do not resolve the interface

between the one and two-phase regions. The discrete errors and convergence rates

are shown in Table 5.4. The scaled pressure converges as expected, and the velocity

seems to be converging a bit better than expected. The pressure barely converges at

all.

5.9 Summary and implications to the mantle equations

We began this chapter by considerting a linear degenerate elliptic boundary

value problem, which can degenerate as the porosity φ vanishes. Energy estimates

suggested that the pressure p is uncontrolled; moreover, an equation is lost when

φ vanishes, making it difficult to handle the equations numerically. We changed

variables to a scaled set that remain bounded in the energy estimates. To formu-

late a well-posed mixed weak problem in the scaled variables, we defined precisely

the Hilbert space Hφ ,d(div) within which the scaled velocity resides. The key hy-

potheses were that φ−1/2d(φ) ∈W 1,∞(Ω) and φ−1/2∇d(φ) ∈ (L∞(Ω))d . More-
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scaled pressure q pressure p velocity u
β n error rate err rate err rate
−1/4 33 0.005050 — 0.045199 — 0.002885 —

65 0.002193 1.231 0.034160 0.413 0.000786 1.918
129 0.000944 1.230 0.027326 0.326 0.000211 1.919
257 0.000402 1.239 0.022448 0.285 0.000056 1.925
513 0.000171 1.237 0.018661 0.267 0.000015 1.906

−3/4 33 0.004155 — 0.193534 — 0.004991 —
65 0.002554 0.718 0.184637 0.069 0.002113 1.268

129 0.001608 0.675 0.179129 0.044 0.000935 1.190
257 0.000991 0.702 0.175644 0.029 0.000432 1.120
513 0.000601 0.724 0.173380 0.019 0.000210 1.044

Table 5.4: Nonsmooth p two-dimensional test. Shown are the relative discrete
L2-norm errors of q, p, and u for various odd numbers of elements n× n and for
β =−1/4 and −3/4 defining p in (5.8.2).

over, a normal trace operator was defined to handle boundary conditions. Existence

and uniqueness of a solution to the weak formulation was obtained from the Lax-

Milgram Theorem.

We defined a theoretically simple, formal mixed finite element method based

on lowest order Raviart-Thomas spaces. The method is stable, and an error analysis

showed optimal rates of convergence for sufficiently smooth solutions. We modified

the method to make it more practical in implementation, producing a cell-centered

finite difference method that is stable and locally mass-conservative.

In a simple case in one dimension, the equations reduce to an Euler equation

for which a closed form solution was computed. Numerical tests of this problem

showed that the practical method achieved optimal rates of convergence with re-

spect to the regularity of the solution; in fact, superconvergence of the velocity and

80



scaled pressure were observed. Convergence of the true pressure was relatively

poor.

A numerical test for a two-dimensional problem using d(φ) = φ also exhib-

ited superconvergence. To see optimal convergence rates in this test, it was neces-

sary that φ 1/2∇φ ∈ L2, which is weaker than being in L∞. Moreover, meshes that

did not match the boundary of the one to two-phase region showed no degradation

of results from cases with meshes that match this boundary.

We will see in chapter 6 that the same theory developed for the degenerate

problem (5.0.1)–(5.0.2) can be applied to the full equations (3.1.1)–(3.1.4) to show

uniqueness and solvability. In chapter 7, We will also extend the practical method

to the full equations.
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Chapter 6

Proof to the Full Equations

In order to prove the uniqueness and existence of a solution for the Darcy-

Stokes system, we will mimic the concepts introduced in the previous chapter where

a simpler degenerate problem is analyzed. First, we rewrite the symmetric equations

(3.1.1)–(3.1.2) in terms of a scaled relative pressure q̃r ∝ φ 1/2(q f −qm). Second, we

define the space Hφ (div) where the term φ−1/2∇ · (φ 1+Θv) makes sense. Third, we

write a stabilized weak form of the equations as a saddle point problem. Finally, we

prove the necessary conditions for the problem to have a unique solution, namely,

coercivity and an inf-sup condition.

6.1 Scaled pressure equations

We would like to arrive at a saddle point system that is coercive and obeys

an inf-sup condition. In order to achieve this goal, we manipulate the equations to

extract positive terms and match symmetric terms in the corresponding weak form.

Define the scaled relative pressure potential and scaled relative velocity by

q̃r = φ
1/2(q f −qm) = φ

1/2(p f − pm),

ṽr = φ
−(1+Θ)u = φ

−Θ(v f −vm).
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Then Darcy’s law (3.1.1) becomes

ṽr =− k0

µ f
φ

1+Θ
∇(φ−1/2q̃r +qm) . (6.1.1)

Adding (3.1.4) and (3.1.2) gives

∇ ·vm +∇ · (φ 1+Θṽr) = 0 . (6.1.2)

Substituting (3.1.4) into (3.1.3) in terms of q̃r gives

∇qm−∇ · (2µm(1−φ)Dvm)−∇

(
5−2φ

3 φ
1/2q̃r

)
= (1−φ)∆ρg. (6.1.3)

Adding (3.1.4) times 5−2φ

3 φ 1/2 and (3.1.2) times φ−1/2 gives

5−2φ

3 φ
1/2

∇ ·vm +φ
−1/2

∇ · (φ 1+Θṽr)+
(

1− 5−2φ

3 φ

)
1

µm
q̃r = 0 . (6.1.4)

6.2 Relative velocity space Hφ (div;Ω)

We wish to define a function space similar to H(div;Ω) where the quantity

φ−1/2∇ · (φ 1+Θṽr) is well defined. This is precisely the space defined in section

5.2, i.e.,

Hφ (div;Ω) = Hφ ,φ 1+Θ(div;Ω) = {v ∈ L2(Ω)d;φ
−1/2

∇ · (φ 1+Θv) ∈ L2(Ω)}.

(6.2.1)

The conditions on φ (5.2.3), and (5.2.4) reduce to

φ
1/2+Θ ∈W 1,∞(Ω), (6.2.2)

and lemmas 5.2.1 and 5.2.2 hold with d(φ) = φ 1+Θ.

83



6.3 Stabilized weak formulation

We proceed assuming homogeneous boundary conditions. Note that for

Neumann and Robin conditions the theory of chapter 5 generalizes as well. Define

the spaces

Vr = Hφ ,0(div;Ω) = Hφ (div;Ω)∩{γφ (v) = φ
1/2+Θv ·ν = 0 on ∂Ω},

Vm = (H1
0 (Ω))d,

Wr = Wm = L2(Ω),

X = Vr×Vm×Wr,

(6.3.1)

and equip X with its natural product space norm. For ṽr ∈ Hφ (div;Ω), we need

to control the quantity φ−1/2∇ · (φ 1+Θṽr), so we add a stabilization term using

(6.1.4) by testing with wr = φ−1/2∇ · (φ 1+ΘΨr). The weak form of (6.1.1)–(6.1.4)

becomes, for δ = 0: Find u = (ṽr,vm, q̃r) ∈ X , qm ∈Wm such that

aδ (u,Ψ)−b(qm,Ψ) = f (Ψ) ∀Ψ ∈ X , (6.3.2)

b(wm,u) = 0 ∀wm ∈Wm, (6.3.3)
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where

a(u,Ψ) =
(

µ f

k0
ṽr,Ψr

)
+
(
2µm(1−φ)Dvm,DΨm

)
+
((

1− 5−2φ

3 φ

)
1

µm
q̃r,wr

)
−
(
q̃r,φ

−1/2
∇ · (φ 1+Θ

Ψr)
)
+
(
φ
−1/2

∇ · (φ 1+Θṽr),wr
)

−
(

5−2φ

3 φ
1/2q̃r,∇ ·Ψm

)
+
(

5−2φ

3 φ
1/2

∇ ·vm,wr

)
,

aδ (u,Ψ) = a(u,Ψ)

+δ

{(
φ
−1/2

∇ · (φ 1+Θṽr),φ−1/2
∇ · (φ 1+Θ

Ψr)
)

+
(

5−2φ

3 φ
1/2

∇ ·vm,φ−1/2
∇ · (φ 1+Θ

Ψr)
)

+
((

1− 5−2φ

3 φ

)
1

µm
q̃r,φ

−1/2
∇ · (φ 1+Θ

Ψr)
)}

,

b(w,Ψ) =
(
w,∇ · (φ 1+Θ

Ψr)
)
+(w,∇ ·Ψm),

f (Ψ) =
(
(1−φ)∆ρg,Ψm

)
.

Note that

a(u,Ψ) = a0(u,Ψ) = aδ (u,Ψ− (0,0,φ−1/2
∇ · (φ 1+Θ

Ψr))) . (6.3.4)

Since Ψr ∈ Hφ (div;Ω), φ−1/2∇ · (φ 1+ΘΨr) ∈ L2(Ω) so that (6.3.2)–(6.3.3) with

δ = 0 is equivalent to (6.3.2)–(6.3.3) with δ 6= 0 since we test with arbitrary wr ∈

L2(Ω).

6.4 Conditions for the saddle point theory

Clearly aδ (·, ·) is continuous and bi-linear for every δ , b(·, ·) is continuous

and bi-linear, and f (·) is continuous and linear. We only have left to prove coerciv-
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ity of aδ (·, ·) and an inf-sup condition for b(·, ·).

Lemma 6.4.1. Assume φ ≤ φ∗ � 1. Then aδ (·, ·) is coercive on kerb for every

0 < δ < µmφ∗. That is, there exists α > 0 such that

aδ (u,u)≥ α||u||2X (6.4.1)

for all u ∈ kerb = {u ∈ X ; b(w,u) = 0 ∀w ∈W}.

Proof. For u ∈ kerb, ∇ ·vm =−∇ · (φ 1+Θṽr) weakly in L2(Ω). Then

aδ (u,u) =
(

µ f

k0
ṽr, ṽr

)
+
(
2µm(1−φ)Dvm,Dvm

)
+
((

1− 5−2φ

3 φ

)
1

µm
q̃r, q̃r

)
+δ ||φ−1/2

∇ · (φ 1+Θṽr)||2

+δ

(
5−2φ

3 φ
1/2

∇ ·vm +
(

1− 5−2φ

3 φ

)
1

µm
q̃r,φ

−1/2
∇ · (φ 1+Θṽr)

)
.

(6.4.2)

The last term in (6.4.2) is bounded by

δ

∣∣∣∣(2
3

φ
1/2

∇ ·vm +
(

1− 5−2φ

3 φ

)
1

µm
q̃r,φ

−1/2
∇ · (φ 1+Θṽr)

)∣∣∣∣
= δ

∣∣∣∣−(5−2φ

3 ∇ · (φ 1+Θṽr),∇ · (φ 1+Θṽr)
)

+
((

1− 5−2φ

3 φ

)
1

µm
q̃r,φ

−1/2
∇ · (φ 1+Θṽr)

)∣∣∣∣
≤ 5

3δφ
∗||φ−1/2

∇ · (φ 1+Θṽr)||2 +δ

∣∣∣∣∣∣∣∣(1− 5−2φ

3 φ

)
1

µm
q̃r

∣∣∣∣∣∣∣∣||φ−1/2
∇ · (φ 1+Θṽr)||

≤ 23
12δφ

∗||φ−1/2
∇ · (φ 1+Θṽr)||20 + δ

µmφ∗

(
1− 5−2φ

3 φ

)((
1− 5−2φ

3 φ

)
1

µm
q̃r, q̃r

)
,

≤ 2δφ
∗||φ−1/2

∇ · (φ 1+Θṽr)||20 + δ

µmφ∗

((
1− 5−2φ

3 φ

)
1

µm
q̃r, q̃r

)
,

using the inequality δab≤ δ

φ∗a
2 + δφ∗

4 b2. Thus,
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aδ (u,u)≥
(

µ f

k0
ṽr, ṽr

)
+
(
2µm(1−φ)Dvm,Dvm

)
+
(

1− δ

µmφ∗

)((
1− 5−2φ

3 φ

)
1

µm
q̃r, q̃r

)
+δ (1− 2

φ

∗)||φ−1/2
∇ · (φ 1+Θṽr)||2

≥C(||ṽr||2 + ||Dvm||2 + ||q̃r||2 + ||φ−1/2
∇ · (φ 1+Θṽr)||2 ,

provided that 0 < δ < µmφ∗. Finally, Korn’s lemma (3.2.5) completes the proof.

Lemma 6.4.2. There exists γ > 0 such that

sup
Ψ∈X

b(w,Ψ)
||Ψ||X

≥ γ||w|| ∀w ∈W (6.4.3)

Proof.

sup
Ψ∈X

b(w,Ψ)
||Ψ||X

= sup
Ψ∈X

(
w,∇ · (φ 1+ΘΨr)

)
+(w,∇ ·Ψm)(

||Ψr||2Hφ (div) + ||Ψm||21 + ||wr||2
)1/2

≥ sup
Ψm∈(H1(Ω))d

(w,∇ ·Ψm)
||Ψm||1

≥ γS||w||.

where γS is the inf-sup constant for Stokes.

Theorem 6.4.3. There exists a unique solution to (6.3.2)–(6.3.3) ∀δ ∈R. Moreover,

||ṽr||Hφ (div) + ||vm||1 + ||q̃r||+ ||qm|| ≤C∆ρ. (6.4.4)

Proof. Apply the inf-sup theory for saddle point problems to (6.3.2)–(6.3.3) with

0 < δ < µmφ∗ then use the equivalence (6.3.4) to get existence for all δ ∈ R.

To prove uniqueness, assume (u,qm) solves (6.3.2)–(6.3.3) with f (Ψ) = 0. Then
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by (6.3.3) b(w,u) = 0 ∀w ∈ W ⇒ aδ (u,u) = 0 by (6.3.2) and by (6.4.1), u =

(ṽr,vm, q̃r) = (0,0,0). So aδ (u,Ψ) = 0 ∀Ψ∈X . This implies b(qm,Ψ) = 0 ∀Ψ∈X .

Finally, the inf-sup condition gives

||qm|| ≤
1
γ

sup
Ψ∈X

b(qm,Ψ)
||Ψ||X

= 0 .

Finally, the stability estimates in Theorem 3.2.1 give the stability estimate in (6.4.4).
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Chapter 7

A Scaled Mixed Formulation

In this chapter we extend the practical mass-conservative mixed method for

the linear degenerate elliptic problem (5.0.1)–(5.0.2) to the full equations (3.1.1)–

(3.1.4). We obtain optimal convergence rates for sufficiently smooth solutions.

Though the condition φ 1/2+Θ ∈W 1,∞(Ω) guarantees stability of the method, we

will show several examples where we break this assumption and still retain stability

and good convergence. We will also compare the behavior of the condition number

for the new scaled method with the methods of chapter 4.

7.1 Extension of the practical method to the full system

To apply the degenerate problem (5.0.1)–(5.0.2), set a(φ) = φ 2(1+Θ) and

b(φ) = 1
(
c(φ) = φ−(1+Θ), and d(φ) = φ (1+Θ)). Beginning with (3.1.1)–(3.1.4),

make the substitutions

q̃ f = φ
1/2q f , (7.1.1)

ṽr = φ
−(1+Θ)u, (7.1.2)
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and multiply (3.1.2) by φ 1/2 to get the new equations

ṽr =− k0

µ f
φ

1+Θ
∇(φ−1/2q̃ f ), (7.1.3)

φ
−1/2

∇ · (φ 1+Θṽr)+ 1
µm

(q̃ f −φ
1/2qm) = 0. (7.1.4)

∇qm−∇ · (2µm(1−φ)Dvm)+∇

(
5−2φ

3 µm∇ ·vm

)
= (1−φ)∆ρg, (7.1.5)

∇ ·vm− 1
µm

(q̃ f −φ
1/2qm) = 0, (7.1.6)

The boundary conditions for the the Darcy part (3.1.13) change toφ
1/2+Θṽr ·ν = gN

f , on Γ
N
f ,

q̃ f −κ
2
f φ

1/2+Θṽr ·ν = gR
f , on Γ

R
f ,

ΓN
f ∪ΓR

f = ∂Ω, (7.1.7)

and analogously to (3.1.16), suppose we can extend gN
f to ṽN

r in Ω such that

φ
1/2+ΘṽN

r ·ν = gN
f on Γ

N
f , (7.1.8)

Let the discrete search spaces be defined as in (4.2.1) on a rectangular mesh Th de-

fined in chapter 4. Then the discrete form of the mixed method becomes:
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Find ṽr ∈Vr,h + ṽN
r , vm ∈Vm,h +vν ,N

m +vτ,N
m , q̃ f ∈Wf ,h, and qm ∈Wm,h such that(

µ f

k0
ṽr,Ψr

)
−
(
q̃ f , φ̂

−1/2
∇ · (φ 1+Θ

Ψr)
)
+ 〈κ f φ

1+2Θṽr ·ν ,Ψr ·ν〉ΓR
f

=−〈φ 1/2+ΘgR
f ,Ψr ·ν〉ΓR

f
∀Ψr ∈Vr,h,

(7.1.9)

(φ̂−1/2
∇ · (φ 1+Θṽr),w f )+

(
1

µm
q̃ f ,w f

)
−
(

φ̂−1/2φ

µm
qm,w f

)
= 0

∀w f ∈Wf ,h,

(7.1.10)

−(qm,∇ ·Ψm)+
(
2µm(1−φ)Dvm,DΨm

)
−
(

5−2φ

3 µm∇ ·vm,∇ ·Ψm

)
+ 〈κ2

νvm ·ν ,Ψm ·ν〉Γν ,R
m

+ 〈κ2
τ vm · τ,Ψm · τ〉Γτ,R

m

= 〈gν ,R
m ,Ψm ·ν〉Γν ,R

m
+ 〈gτ,R

m ,Ψm · τ〉Γτ,R
m

+
(
(1−φ)∆ρg,Ψm

)
∀Ψm ∈Vm,h,

(7.1.11)

(∇ ·vm,wm)−
(

φ̂−1/2φ

µm
q̃ f ,wm

)
+
(

φ

µm
qm,wm

)
= 0 ∀wm ∈Wm,h. (7.1.12)

Following the practical method of section 5.5.2, φ̂ represents the projection of φ

into Wh (constant on each element). In the last term in (7.1.10) and the middle term

in (7.1.12), φ 1/2 is replaced with φ̂−1/2φ for the method to be mass-conservative.

That is, using (5.5.9) and (5.5.10), the discrete solution (adding subscript h’s for

emphasis) satisfies
ˆ

E
µm∇ ·uh dx+

ˆ
E

φ(q f ,h−qm,h)dx = 0, (7.1.13)
ˆ

E
µm∇ ·vm,h dx−

ˆ
E

φ(q f ,h−qm,h)dx = 0. (7.1.14)

From the definitions in section 4.1, the degrees of freedom for RT0 corre-

spond to average edge fluxes with associated edge basis function ve. The degrees

of freedom for BR correspond to edge fluxes with associated basis functions ve, and
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nodal values with associated basis functions vp. Note that the edge basis functions

ve are constant on each edge for RT0 but not for BR. The linear system correspond-

ing to the method (7.1.9)–(7.1.12) is thus
A −Bφ 0 0

BT
φ

C 0 −C√φ

0 0 D −B
0 −C√φ −BT Cφ




ṽr
q̃ f
vm
q

=


aφ

0
a
0

 , (7.1.15)

where, for RT0 basis functions,

Ae, f =
(

µ f

k0
ve,v f

)
+ 〈κ2

φ
1+2Θve ·ν ,v f ·ν〉

=
(

µ f

3k0
|Ee|+

ˆ
e∩∂Ω

κ
2
φ

1+2Θ ds
)

δe, f +
µ f

6k0
|Ee, f |νe ·ν f ,

(7.1.16)

Bφ ,e,E =
(
φ̂
−1/2

∇ · (φ 1+Θve),wE
)

=

0 if e 6⊂ ∂E or φE = 0,

φ
−1/2
E ve ·νE

ˆ
e
φ

1+Θ ds if e⊂ ∂E and φE 6= 0,

(7.1.17)

aφ ,e =−〈gR,φ 1/2+Θve ·ν〉=−ve ·ν
ˆ

e∩ΓR
f

gRφ
1/2+Θ ds. (7.1.18)

For BR basis functions

D =
(
2µm(1−φ)Dv,Dv

)
−
(

5−2φ

3 µm∇ ·v,∇ ·v
)

+ 〈κ2
νv ·ν ,v ·ν〉

Γ
ν ,R
m

+ 〈κ2
τ v · τ,v · τ〉

Γ
τ,R
m

,
(7.1.19)

Be,E = (∇ ·ve,wE) =

{
0 if e 6⊂ ∂E,

±|e| if e⊂ ∂E,

Bp,E = (∇ ·vp,wE) = 0,

(7.1.20)

a = 〈gν ,R
m ,v ·ν〉

Γ
ν ,R
m

+ 〈gτ,R
m ,v · τ〉

Γ
τ,R
m

+
(
(1−φ)∆ρg,v

)
. (7.1.21)
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The sign of (∇ ·ve,wE) depends on the orientation of edge e with respect to element

E. For piecewise constant basis functions

CE,F = (
wE

µm
,wF) =

|E|
µm

δE,F , (7.1.22)

Cφ ,E,F = (
φwE

µm
,wF) =

|E|φE

µm
δE,F , (7.1.23)

C√φ ,E,F = (
φ̂−1/2φwE

µm
,wF) =


0 if φE = 0,

|E|φ 1/2
E

µm
δE,F , if φE 6= 0.

(7.1.24)

7.2 Benchmark test: compacting column with constant porosity

We apply our scaled method (hence called the scaled method) to a com-

pacting column with constant porosity. Table 7.1 shows optimal convergence rates

for the relative errors and Table 7.2 shows superconvergence for the interpolation

errors.

7.3 Benchmark test: compacting column with zero porosity lid

We apply the scaled method with the following discontinuous porosity

φ =

{
0 if z≤ 0,

φ+ if z > 0.
(7.3.1)

Table 7.3 and Table 7.4 show optimal convergence rates and super-convergence

with the exception of the H1-error for the relative velocity. The convergence rate

for the H1-interpolation error dropped from 2 to 1.5, and the relative H1-error does

not converge at all.
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scaled relative velocity ṽr scaled fluid pres. pot. q̃ f
n L2-error rate H1-error rate L2-error rate
10 1.0753e-2 — 3.2533e-1 — 4.9270e-2 —
20 2.8946e-3 1.8933 1.7295e-1 0.9115 2.4601e-2 1.0020
40 7.3837e-4 1.9709 8.7929e-2 0.9760 1.2288e-2 1.0015
80 1.8555e-4 1.9926 4.4152e-2 0.9939 6.1404e-3 1.0008

160 4.6447e-5 1.9981 2.2100e-2 0.9985 3.0695e-3 1.0003

matrix velocity vm matrix pres. pot. qm
n L2-error rate H1-error rate L2-error rate
10 2.1506e-3 — 3.2533e-1 — 1.1987e-1 —
20 5.7891e-4 1.8933 1.7295e-1 0.9115 5.9796e-1 1.0034
40 1.4767e-4 1.9709 8.7929e-2 0.9760 2.9860e-2 1.0018
80 3.7110e-5 1.9926 4.4152e-2 0.9939 1.4921e-2 1.0009

160 9.2895e-6 1.9981 2.2100e-2 0.9985 7.4590e-3 1.0003

Table 7.1: Scaled method for a compacting column with constant porosity φ0 = .04.
Relative L2-errors and convergence rates for ṽr, q̃ f , vm, and qm. Relative H1-errors
and convergence rates for ṽr and vm. Solved on an n×1 (≈ 6n DOF) mesh. L = 3,
Θ = .1.
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scaled relative velocity ṽr scaled fluid pres. pot. q̃ f
n H1-int-error rate L2-int-error rate
10 4.7401e-2 — 7.0795e-3 —
20 1.3203e-2 1.8441 2.9954e-3 1.2409
40 3.3985e-3 1.9579 1.0184e-3 1.5565
80 8.5596e-4 1.9893 3.0072e-4 1.7598

160 2.1439e-4 1.9973 8.1987e-5 1.8750

matrix velocity vm matrix pres. pot. qm
n H1-int-error rate L2-int-error rate
10 4.7401e-2 — 5.9736e-3 —
20 1.3203e-2 1.8441 2.7091e-3 1.1408
40 3.3985e-3 1.9579 9.4309e-4 1.5223
80 8.5596e-4 1.9893 2.8095e-4 1.7471

160 2.1439e-4 1.9973 7.6878e-5 1.8697

Table 7.2: Scaled method for a compacting column with constant porosity φ0 = .04.
Relative L2-interpolation-errors and convergence rates for q̃ f and qm. Relative H1-
interpolation-errors and convergence rates for ṽr and vm. Solved on an n×1 (≈ 6n
DOF) mesh. L = 3, Θ = .1.
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scaled relative velocity ṽr scaled fluid pres. pot. q̃ f
n L2-error rate H1-error rate L2-error rate
10 1.2160e-2 — 1.7609 — 3.9981e-2 —
20 3.0303e-3 2.0045 1.8179 -0.0459 1.9999e-2 0.9994
40 7.1215e-4 2.0892 1.8340 -0.0127 1.0005e-2 0.9992
80 1.6710e-4 2.0914 1.8379 -0.0031 5.0035e-3 0.9998

160 3.9920e-5 2.0656 1.8388 -0.0007 2.5019e-3 0.9999

matrix velocity vm matrix pres. pot. qm
n L2-error rate H1-error rate L2-error rate
10 3.7239e-3 — 3.6733e-1 — 1.1910e-1 —
20 1.0833e-3 1.7813 1.9536e-1 0.9110 5.9436e-2 1.0028
40 2.9145e-4 1.8942 9.9301e-2 0.9762 2.9704e-2 1.0007
80 7.5476e-5 1.9492 4.9856e-2 0.9940 1.4850e-2 1.0002

160 1.9194e-5 1.9754 2.4954e-2 0.9985 7.4248e-3 1.0000

Table 7.3: Scaled method for a compacting column with discontinuous porosity
(7.3.1). Relative L2-errors and convergence rates for ṽr, q̃ f , vm, and qm. Relative
H1-errors and convergence rates for ṽr and vm. Solved on an n× 1 (≈ 6n DOF)
mesh. L = 3, Θ = .1.
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scaled relative velocity ṽr scaled fluid pres. pot. q̃ f
n H1-int-error rate L2-int-error rate
10 8.8550e-2 — 3.9785e-3 —
20 3.5615e-2 1.3140 1.3287e-3 1.5822
40 1.3528e-2 1.3966 3.7337e-4 1.8314
80 4.9692e-3 1.4448 9.8967e-5 1.9156

160 1.7916e-3 1.4718 2.5504e-5 1.9562

matrix velocity vm matrix pres. pot. qm
n H1-int-error rate L2-int-error rate
10 3.7085e-2 — 2.4915e-4 —
20 1.2064e-2 1.6202 6.2017e-5 2.0063
40 3.3844e-3 1.8337 1.2503e-5 2.3104
80 8.9851e-4 1.9133 2.7779e-6 2.1702

160 2.3182e-4 1.9545 6.7587e-7 2.0392

Table 7.4: Scaled method for a compacting column with discontinuous porosity
(7.3.1). Relative L2-interpolation-errors and convergence rates for q̃ f and q. Rel-
ative H1-interpolation-errors and convergence rates for ṽr and vm. Solved on an
n×1 (≈ 6n DOF) mesh. L = 3, Θ = .1.

7.4 Discontinuous porosity

The symmetry preserving method failed to obtain a qualitatively reasonable

solution for discontinuous porosity. Indeed, we were using continuous basis func-

tions to fit a discontinuous solution. As shown in figure 7.1, the scaled method,

solving for the same discontinuous velocity, is able to capture the jump in the rela-

tive velocity. The fluid pressure in the figure is generated from the scaled pressure

using (5.5.9).
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Figure 7.1: Computed solution using the scaled method for a compacting column
with discontinuous porosity (4.3.23) and Θ = 0.
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7.5 Condition number for decreasing porosity

Following section 4.3.4 we test the scaled method for the three porosities in

(4.3.24)–(4.3.26) and let φ0→ 0. In terms of the condition (6.2.2), for z≥ 0

φ1(z)∇φ1(z) = (φ0 + z2)z2 ∈ L∞([0,L]), (7.5.1)

φ2(z)∇φ2(z) =
(φ0 +

√
z)1/2

√
z

/∈ L∞([0,L]) (7.5.2)

φ3(z)∇φ3(z) =

{
∞ if z = 0,

0 if z > 0,
/∈ L∞([0,L]) (7.5.3)

Figure 7.2 shows the condition number remains stable as φ → 0 and is unaffected

by the regularity of φ .

99



(a)

(b) (c)

Figure 7.2: Condition number as φ0→ 0, for porosities defined in (4.3.24)–(4.3.26)
with L = .2. (a) φ1. (b) φ2. (c) φ3, φ+ = .04.
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Chapter 8

Conclusion

In this work I presented the equations of mantle dynamics with a focus

on mid-ocean ridges. We began this project with a standard mixed finite element

formulation but were unsatisfied because it can not confidently handle the one to

two-phase transition and is ill-defined for the degenerate case of a single phase. We

developed a new method for scaled variables that is stable and uniquely solvable for

porosity φ ∈W 1,∞. In practice, the method extends to much less regular porosities

for compacting column tests. Moreover, the scaled method is guaranteed to be

stable for any porosity.

The natural next step is to couple the scaled method with transport in a time-

dependent problem and to observe the location of the one to two-phase boundary

for mid-ocean ridges. It will be instructive to explore the regularity of the porosity

as it evolves in a time-dependent problem.
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Appendix A

BR Spaces

The discussion below closely follows Arbogast and Wheeler [5], restricted

to the lowest order spaces. We provide a characterization of the velocity space for

BR and a derivation of a discrete inf-sup condition.

A.1 Characterization of the velocity space

On a rectangle R ∈ R2 define,

Vh(R) = Q1,2(R)×Q2,1(R), (A.1.1)

Wh(R) = Q0,0(R) = P0(R), (A.1.2)

where Qi, j denotes the set of polynomials of degree at most i in x and at most j in y.

Let Th be a quasi-regular partitioning of a bounded domain Ω into closed rectangles

and set

Vh = {v ∈ (C0(Ω))2 : v|R ∈Vh(R) ∀R ∈ Th}, (A.1.3)

Wh = {w ∈ L2(Ω) : w|R ∈Wh(R) ∀R ∈ Th}. (A.1.4)

Lemma A.1.1. For a rectangle R, uh ∈Vh(R) is uniquely defined by the degrees of

freedom:
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1. For every corner point P ∈ ∂R and Cartesian direction j = 1,2,

DOFP, j(uh) = uh(P) · e j. (A.1.5)

2. For every edge e ∈ ∂R

DOFe(uh) =
ˆ

e
uh ·νe ds, (A.1.6)

where νe is the unit outward normal to e.

Proof. WLOG Let R = R̂ = [−1,1]2. The degrees of freedom uniquely determine

a function uh ∈Vh if and only if dim Vh equals the number of independent degrees

of freedom. First consider uh restricted to an edge e of R. We have uh · τe ∈ P1(e),

uh ·νe ∈ P2(e) so the total number of dimensions on e is 5. Meanwhile, the number

of degrees of freedom that act on an edge e are those associated with the two corner

points on the edge e and the one associated with e itself, again totaling 5. Suppose

the degrees of freedom restricted to e vanish. Then,

uh · τe(ξ ) = 0,

uh ·νe(ξ ) = C(1−ξ
2),

since the corner degrees of freedom vanish. To determine the constant C we use the

edge degree of freedom
ˆ

e
C(1− s2)ds = 0⇒C = 0.

Thus uh restricted to ∂R vanishes.

The total number of degrees of freedom for the entire rectangle R is 8 for the corner
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points and 4 for the edges, making 12. Meanwhile the dimension of the space

Vh = 2×2×3 = 12. Since uh vanishes on ∂R,

uh = (1− x2)(1− y2)v(x,y)⇒ v(x,y) = 0,

since uh ∈Vh. Thus uh vanishes on the entire rectangle R.

A nodal basis for the first x-component of Vh on the reference element R̂ =

[−1,1]2 is given by

v(−1,−1),1 =
1
8
(1− x)(1− y)(1+3y)e1,

v(1,−1),1 =
1
8
(x+1)(1− y)(1+3y)e1,

v(−1,1),1 =
1
8
(1− x)(y+1)(1−3y)e1,

v(−1,−1),1 =
1
8
(x+1)(y+1)(1−3y)e1,

veL = (3/4)(1− x)(1− y2)e1,

veR = (3/4)(x+1)(1− y2)e1.

A nodal basis for the y-component of Vh can be constructed by flipping x and y

above. See Figure A.1 and Figure A.2 for a visual representation.

A.2 The Clément interpolant

Let PWh : L2(Ω)→Wh denote the L2(Ω)-projection onto Wh defined by

PWh(w) = {wh ∈Wh : (w−wh,1)R = 0 ∀R ∈ Th}. (A.2.1)

When u ∈ (H1(Ω))2 the trace theorem implies u ·ν |e ∈ H1/2(Ω) ensuring the edge

degrees of freedom are well-defined. The point degrees of freedom, however need
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Figure A.2: Visual representation of BR basis functions for the x-component in Vh.
The y-component for these functions is identically zero.

106



not be well-defined. To resolve this issue introduce the Clément [21] interpolant

I : H1(Ω) → Qh, where Qh is the space of continuous functions with Qh|R =

Q1,1(R) ∀R∈ Th. For φ ∈ L2(Ω) the Clément interpolant is defined at the the nodal

points as the value of the local L2-projection at those points. That is, for each nodal

point P of Th (i.e., the corner points of the rectangles) let

∆P =
⋃

R∈Th,P∈R
R (A.2.2)

be the union of rectangles containing P. Then define φP ∈ Q1,1(∆P) by

(φ −φP,ψ)∆P = 0 ∀ψ ∈ Q1,1(∆P) (A.2.3)

and set Iφ(P) = φP(P). This uniquely defines Iφ ∈ Qh since functions in Q1,1(R)

are uniquely determined by their corner values. Moreover, we have the result from

interpolation theory [17]

‖φ − Iφ‖ j ≤C‖φ‖rhr− j, j ≤ r ≤ 2, j = 0,1. (A.2.4)

A.3 The π operator

Definition A.3.1. For u ∈ (H1(Ω))2 let πu be the interpolant of the degrees of

freedom in the previous lemma, modified by the Clement interpolant I. For each

R ∈ Th:

1. For every corner point P ∈ ∂R and Cartesian direction j = 1,2,

πu(P) · e j = Iu(P) · e j. (A.3.1)
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2. For every edge e ∈ ∂R,
ˆ

e
πu ·νe ds =

ˆ
e
u ·νe ds (A.3.2)

The operator π is clearly linear and well-defined, and πu can be written

explicitly as

πu = Iu+ ∑
e∈Th

(
1
|e|

ˆ
e
(u− Iu) ·νe ds

)
ve, (A.3.3)

which is indeed in Vh. Note also that after a change of variables,
ˆ

e
ve ·νe ds = |e|

ˆ
ê
v̂ê ·νê dŝ, (A.3.4)

and the degrees of freedom of πu match those of u.

Lemma A.3.1. Let u ∈ (H1(Ω))2. Then

1. The operator π is linear and bounded in (H1(Ω))2 and independent of h.

2. There exists a constant C independent of h such that for u ∈ (Hr(Ω))2

|πu−u| j ≤C|u|rhr− j, 1≤ r ≤ 2, j = 0,1. (A.3.5)

3.

PW ∇ ·u = PW ∇ ·πu, (A.3.6)

where | · |r denotes the (Hr(Ω))2 seminorm.

Proof. To show 1., using (A.3.3)

|πu|2 ≤ |Iu|2 + ∑
e∈Th

∣∣∣∣ 1
|e|

(ˆ
e
(u−πu) ·νe ds

)
ve

∣∣∣∣2, (A.3.7)
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since at each point in Ω the sum above is finite and independent of h (each edge

basis function is supported on at most two rectangles). Similarly for the gradient,

after integrating,

‖πu‖2
1 = ‖Iu‖2

1 + ∑
e∈Th

1
|e|2

∥∥∥∥(ˆ
e
(u−πu) ·νe ds

)
ve

∥∥∥∥2

. (A.3.8)

Recall that under an affine change variables to and from the reference element R̂,

for any φ ,

‖φ‖0,R = |R|1/2‖φ̂‖0,R̂ ≤Ch‖φ̂‖0,R̂ ≤C‖φ‖0,R, (A.3.9)

|φ |1,R ≤C|R|1/2h−1‖φ̂‖1,R̂ ≤C‖φ̂‖1,R̂ ≤C|φ |1,R (A.3.10)

since Th is quasi-regular (i.e., |R|1/2 is O(h)). Then over Ω,

‖ve‖=
(

∑
R∈Th

‖ve‖2
0,R

)1/2
≤C

(
∑

R∈Th

|R|‖v̂ê‖2
0,R̂

)1/2
≤Ch (A.3.11)

‖ve‖1 =
(

∑
R∈Th

‖ve‖2
1,R

)1/2
≤C

(
∑

R∈Th

‖v̂ê‖2
1,R̂

)1/2
≤C. (A.3.12)

By the trace theorem, for every v ∈ (H1(Ω))2

1
|e|

∣∣∣∣ˆ
e
ve ·νe ds

∣∣∣∣= ∣∣∣∣ˆ
ê
v̂ê ·νê dŝ

∣∣∣∣,
≤C‖v̂‖1,R̂

≤C{h−1‖v‖0,R + |v|1,R}.

Therefore,

∑
e

1
|e|

∥∥∥∥(ˆ
e
v ·νe ds

)
ve

∥∥∥∥2

≤ ∑
e∈Th

C{h−1‖v‖0,R + |v|1,R}

≤C{h−1‖v‖0 + |v|1}
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and we deduce by (A.2.4) that

‖πu‖1 ≤C{‖Iu‖1 +h−1‖u− Iu‖+ |u− Iu|1} ≤C‖u‖1 (A.3.13)

To prove 2., the case with j = 1 follows from Bramble-Hilbert [17] since π

preserves polynomials of order 1. For j = 0,

‖u−πu‖ ≤ ‖u− Iu‖+ ∑
e∈Th

∥∥∥∥(ˆ (u− Iu) ·νe ds
)

ve

∥∥∥∥
0

≤ ‖u− Iu‖+ ∑
e∈Th

∣∣∣∣ˆ (u− Iu) ·νe ds
∣∣∣∣‖ve‖0

≤ ‖u− Iu‖+C{h−1‖u− Iu‖0 + |u− Iu|1}h

≤Chr‖u‖r r = 1,2.

For 3., let wh ∈Wh (i.e., wh is constant over R). Then

(∇ ·u,wh)R = 〈u ·ν ,wh〉dR = 〈πu ·ν ,wh〉dR = (∇ ·πu,wh)R.

A.4 Discrete inf-sup condition

Theorem A.4.1. The discrete spaces Vh×Wh, also called BR, satisfy the inf-sup

condition

inf
wh∈Wh

sup
vh∈Vh

(wh,∇ ·vh)
‖wh‖W‖vh‖V

≥ γh (A.4.1)

for V = (H1(Ω))2 (for the Stokes problem) or V = H(div;Ω) (for the Darcy prob-

lem) and W = L2(Ω).

110



Proof. It is sufficient to show the inf-sup condition holds for the Stokes problem

since for v ∈ (H1(Ω))2,‖v‖div ≤ ‖v‖1. As observed in the previous section, there

exists an interpolation operator π : (H1(Ω))2→Vh with the properties:

1. For v ∈ (H1(Ω))2,

PW ∇ ·πv = PW ∇ ·v. (A.4.2)

2. π is bounded on (H1(Ω))2:

‖πv‖1 ≤C‖v‖1. (A.4.3)

Moreover, the inf-sup condition holds on the continuous spaces [29]

inf
w∈L2(Ω)

sup
v∈(H1(Ω))2

(w,∇ ·v)
‖w‖‖v‖1

≥ γ. (A.4.4)

Then, since π : (H1(Ω))2→Vh, using (A.4.2)–(A.4.4)

sup
vh∈Vh

(wh,∇ ·vh)
‖vh‖V

≥ sup
v∈(H1(Ω))2

(wh,∇ ·πv)
‖πv‖1

= sup
v∈(H1(Ω))2

(wh,∇ ·v)
‖πv‖1

≥ sup
v∈(H1(Ω))2

(wh,∇ ·v)
C‖v‖1

≥ γ

C
‖wh‖.
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Appendix B

Time Evolution

Below we derive a closed set of equations that govern the time evolution of

porosity. Conservation laws for energy and composition are derived. The enthalpy

method [32] is then used to close the system.

B.1 Energy and composition equations

For conservation of energy, let bulk enthalpy be denoted by H = ρh (hm and

h f are the enthalpies of the matrix and fluid, respectively), let x be the coordinate

vector, and take Ψ = H−ρgz ·x in equation (2.2.1). Including diffusive flux gives
ˆ

Ω

∂

∂ t
(H−ρgz ·x)dx =−

ˆ
∂Ω

(ρhv−ρv(gz ·x)− k∇T ) · n̂dx, (B.1.1)

where k is the phase averaged thermal conductivity and T represents temperature.

The terms on the right hand side of (B.1.1) can be interpreted from left to right as

advection of enthalpy, advection of potential energy, and diffusion of sensible heat.

Neglected from (B.1.1) are internal sources of heat, radioactive decay, and viscous

dissipation of heat.

To reach a manageable differential equation for conservation of energy, we

make several simplifications. Material properties (specific heat, thermal expansiv-

ity, and thermal conductivity) are taken to be constant and phase-independent. We
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also apply the Boussinesq approximation, which states that variations in density

are neglected (i.e., ρ = ρ f = ρm) for terms not associated with buoyancy. In ad-

dition, we assume local thermal equilibrium everywhere within the domain. This

allows the total differential of enthalpy for each phase to be decomposed in terms

of differentials for temperature and pressure according to

dh = cp dT +ρ
−1(1−αT )dP, (B.1.2)

where cp stands for specific heat and α represents thermal expansivity. Assuming

lithostatic pressure, P = Pl = ρgz, and αT � 1, changes due to thermal expansion

can be neglected. The enthalpy differential becomes

dh = cp dT +(1−αT )gdz≈ cp dT +gdz. (B.1.3)

Using the divergence theorem as before and applying the above assump-

tions, (B.1.1) is transformed to the differential equation (the details appear in ap-

pendix A of Katz [32])

∂H
∂ t

+ρcp∇ · (vT ) = ρL∇ ·
(
(1−φ)vm

)
+ k∇

2T, (B.1.4)

where the latent heat L = h f −hm is assumed to be constant. Equation (B.1.4) states

that changes in bulk enthalpy are caused by advection of sensible heat, advection of

latent heat, and thermal diffusion.

If we limit composition to two thermodynamic components, mass conser-

vation for bulk composition gives

d
dt

ˆ
V

ρC dV =−
ˆ

S

(ρCv−ρ f φD∇C f ) ·ν dS, (B.1.5)
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where C f and Cm are the mass fractions of one of the components in the melt and

matrix, respectively, and D is the chemical diffusivity of the melt. Taking ρ = ρ f =

ρm and assuming constant diffusivity, we recast (B.1.5) as the differential equation

∂C
∂ t

+∇ ·Cv = D∇ · (φ∇C f ). (B.1.6)

B.2 The enthalpy method

Figure B.1: Pressure-dependent binary phase diagram for a two-component system.
Here γ = ∂T

∂P is the constant Clapeyron slope, T0 is the lowest temperature at which
melting can occur, and p0 determines the pressure scale [32, p. 2104].

The enthalpy method depends on the crucial requirement that local ther-

modynamic equilibrium holds everywhere. This allows porosity, composition, and

temperature to be determined directly from bulk enthalpy and bulk composition.

Quantitatively, composition in each phase depends on lithostatic pressure and tem-

114



perature as shown in Figure B.1. Although it does not represent a rigorous deriva-

tion, Asimow [9] has shown that mantle melting is not eutectic and the continuous

binary phase loop shown in the figure is reasonable. Moreover, leading-order fea-

tures of the overall system are insensitive to the exact composition.

The total differential given in (B.1.2), neglecting local variations in pressure

(i.e., dP≈ 0), can be integrated to give the enthalpy per unit mass for the melt and

matrix. This gives

hm = h0 + cp(T −T0), (B.2.1)

h f = h0 + cp(T −T0)+L, (B.2.2)

where h0, assigned to be zero, is the reference enthalpy at the reference temperature

T0, T0 is the minimum melting temperature over all compositions (see Fig. B.1),

and L is the latent heat of the fluid. As before, cp is taken constant and phase-

independent, ρ = ρ f = ρm, and variations in latent heat with temperature are ne-

glected (L is constant). The bulk enthalpy is then given by

H = ρh = φρL+ρcp(T −T0). (B.2.3)

From Figure B.1 we obtain two algebraic equations for the melt and matrix

composition,

Cm = fm(T,Pl), (B.2.4)

C f = f f (T,Pl), (B.2.5)

where Pl = ρgz is the lithostatic pressure. Recalling the definition of bulk compo-

sition, we combine (B.2.3)–(B.2.5) to obtain an equation for the porosity in terms
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of H and C,

φ f f

(H−φρL
ρcp

+T0,Pl

)
+(1−φ) fm

(H−φρL
ρcp

+T0,Pl

)
−C = 0. (B.2.6)

The porosity can then be substituted back into (B.2.3)–(B.2.5) to obtain T , Cm, and

C f .

Table B.1 lists the representative value of parameters for energy and com-

position in the mantle.

Quantity Symbol Value or Range Units
Specific heat cp 1200 J/kg/K

Thermal diffusivity κ 10−6 m2/s
Latent heat L 4×105 J/kg

Clapeyron slope γ 1.7×107 Pa/◦C
Reference temperature T0 1227 ◦C
Reference temperature T1 1927 ◦C

Table B.1: Representative value of parameters for energy and composition in the
mantle.
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Appendix C

Closed Form Solutions

C.1 Compacting column

Consider the mantle column shown in Figure 4.1(a) for z ∈ [0,L] with no

flow through the bottom or top boundary, i.e.,

vm(−L) = vm(L) = u(−L) = u(L) = 0, (C.1.1)

Following the scaling in (4.3.3) we arrive at the dimensionless equations restricted

to the vertical dimension given by

φ
−2(1+Θ)
0 u =−q′f , (C.1.2)

(qm− 1
3(1−4φ0)v′m)′ = 1−φ0, (C.1.3)

v′m = φ0(q f −qm), (C.1.4)

u′ =−φ0(q f −qm). (C.1.5)

C.1.1 Constant porosity

Take constant porosity φ = φ0. Equations (C.1.2), (C.1.4), and (C.1.5) give

v′′m =−u′′ = φ
2(1+Θ)
0 q′′′f ,

which, when substituted back into (C.1.4) gives

q′m =− 1
φ0

v′′m +q′f =−φ
1+2Θ

0 q′′′f +q′f .
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Finally, eliminating all variables but q f in (C.1.3) gives

R−2q′′′f −q′f +1−φ0 = 0, (C.1.6)

where

R = R(φ0) =
(

1−φ0+4φ 2
0

3 φ
1+2Θ

0

)−1/2
≈
√

3φ
−(1+2Θ)/2
0 .

Solving (C.1.6) gives

q′f = (1−φ0)
(
1−C1e−R(z+L)−C2eR(z−L)) ,

and according to (C.1.2) and boundary conditions (C.1.1)

C1 = C2 = C =
1

1+ e−2RL ≈ 1 .

Using the remaining equations, and setting the scale for the fluid pressure such that

q f (0) = 0, we have

vm =−u = φ
2(1+Θ)
0 (1−φ0)

(
1−Ce−R(z+L)−CeR(z−L)), (C.1.7)

q f = (1−φ0)
(

z+ C
R

(
e−R(z+L)− eR(z−L))), (C.1.8)

qm = (1−φ0)
(

z− 1−4φ0
1−φ0+4φ 2

0
φ0

C
R

(
e−R(z+L)− eR(z−L))). (C.1.9)

As the system evolves, the heavier matrix compacts downward while fluid is squeezed

up, developing a boundary layer at both top and bottom boundaries as L increases

or φ0 (and thus R increases) decreases. The matrix and Darcy velocities are equal

and opposite in sign. The two pressures are close to hydrostatic, but are affected by

strong gradients in the flow near the boundaries. Plots of the solution for various

domain lengths L can be seen in Figure C.1.
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(a)

(b)

Figure C.1: Closed form solution in dimensionless variables (4.3.3) to a compacting
column with constant porosity φ0 = .04, no flow boundary conditions, and Θ = 0.
(a) L = .25Lc. (b) L = 3Lc.
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C.1.2 Discontinuous porosity

Take discontinuous porosity function on z ∈ [−L,L],

φ =

{
φ− if z≤ 0,

φ+ if z > 0.
(C.1.10)

solving (C.1.6) for z≤ 0 and z > 0 gives, respectively,

q f ,− = (1−φ−)
(

z+
C1,−
R−

e−R−(z+L)−
C2,−
R−

eR−z
)

+Cint,−,

q f ,+ = (1−φ+)
(

z+
C1,+

R+
e−R+z−

C2,+

R+
eR+(z−L)

)
+Cint,+.

So there are six unknowns we must find, C1,−, C2,−, Cint,−, C1,+,C2,+, and Cint,+.

Using boundary conditions (C.1.1) we have

u−(−L) = 0, u+(L) = 0. (C.1.11)

Moreover, continuity of both pressures and the Darcy velocity (or alternatively the

matrix velocity) as well as setting the fluid pressure scaling gives

q f ,−(0) = q f ,+(0) = 0, qm,−(0) = qm,+(0), u−(0) = u+(0), (C.1.12)

and provides us with six independent equations.

Plots of the solution are shown in Figure C.2. For φ+� φ−, the fluid pres-

sure approaches a step function at z = 0. When φ+ and φ− are similar in magnitude,

the relative velocity is discontinuous to balance the discontinuity in the porosity.

C.1.3 Quadratic porosity approximation

Combining (C.1.2), (C.1.4), and (C.1.5) gives

v′m =−u′ =
(
φ

2(1+Θ)q′f
)′
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(a)

(b)
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(c)

Figure C.2: Closed form solution in dimensionless variables (4.3.3) to a compacting
column with no flow boundary conditions and Θ = 0. Auxiliary velocity represents
the velocity calculated by the expanded method. (a) L = .25Lc, φ− = .01, φ+ = .04.
(b) L = 2Lc, φ− = .04, φ+ = .01. (c) L = .25Lc, φ− = 10−6, φ+ = .04.
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which, when substituted back into (C.1.4) gives

qm = q f − 1
φ

(
φ

2(1+Θ)q′f
)′

.

Finally, eliminating all variables but q f in (C.1.3) and integrating gives

q f − 3+φ−4φ 2

3φ
(φ 2(1+Θ)q′f )

′ = (1−φ)z+C.

We assume porosity is much less than one, and set 3+φ−4φ 2

3 ≈ 1. Then,

−φ
1+2Θq′′f −2(1+Θ)φ 2Θ

φ
′q′f +q f = z+C.

Choosing

φ(z) =

{
0, z≤ 0,

zα , z > 0.
(C.1.13)

then

−zα(1+2Θ)q′′f −2α(1+Θ)zα(1+2Θ)−1q′f +q f = z+C.

The fluid pressure scaling, q f (0) = 0, implies C = 0. For simplicity take Θ = 0. Set

α =
2

1+2Θ
= 2 to get an Euler equation given by

−z2q′′f −4zq′f +q f = z (C.1.14)

In this case the Euler exponents satisfy r(r−1)+4r−1 = 0, and so

r1 =
−3+

√
13

2
≈ 0.3 > 0 and r2 =

−3−
√

13
2

≈−3.3 < 0, (C.1.15)

and the solution to the homogeneous equation is q f ,hom(z) =C1zr1 +C2zr2 . Variation

of parameters gives us the non-homogeneous solution for z > 0,

q f (z) =
−1

r1− r2

{
zr1

(ˆ
y

yr1+1 dy+ c1

)
− zr2

(ˆ
y

yr2+1 dy+ c2

)}
.
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The Darcy velocity u = −φ 2q f ∈ L2(0,1) implies C2 = 0, and the boundary con-

ditions determine C1. For z ≤ 0, u = vm = 0, qm = z, and we choose q f = 0 (q f is

arbitrary when φ = 0). For z > 0 the solution is

vm =−u =
−z4 +L1−r1zr1+3

(1− r1)(1− r2)
, (C.1.16)

q f =
−r1z+L1−r1zr1

r1(1− r1)(1− r2)
, (C.1.17)

qm = z. (C.1.18)

A plot of the approximate solution is shown in figure C.3. Note that it is qualita-

tively very similar to the solution for discontinuous porosity in figure C.2(c). The

auxillary velocity is omitted since it blows up at z = 0.

C.2 Viscous corner flow

The viscous corner flow model with constant porosity φ = φ0 and no melt-

ing, presented in section 4.3.2, with boundary conditions shown in figure 4.2(a) is

given by the dimensionless equations

∇ ·vm = ∇ ·u = 0 , (C.2.1)

∇q− (1−φ0)∇2vm = (1−φ0)ẑ , (C.2.2)

u =−w0

U0
∇q , (C.2.3)

where

w0 =
k0φ

2(1+Θ)
0 ∆ρg

µ f
, (C.2.4)
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Figure C.3: Approximate solution to a compacting column with porosity given by
(5.7.3) and no flow boundary conditions. Θ = 0.

125



is the percolation velocity. Equation (C.2.1) implies a stream function solution

vm = ∇× (Ψmk̂) ,

u = ∇× (Ψrk̂) .

where k̂ is a vector perpendicular to the plane of the problem. Taking the cross

product of (C.2.2) results in a biharmonic equation for Ψm given by

∇
4
Ψm = 0 . (C.2.5)

This equation is solved by inspection [11, 40] in polar coordinates with

vm =
1
r

∂Ψm

∂θ
r̂− ∂Ψm

∂ r
θ̂θθ , (C.2.6)

Ψm = r f (θ) ,

f (θ) = C1 sinθ +C2 cosθ +C3θ sinθ +C4θ cosθ ,

where r is the distance from the corner, θ is the angle measured from the z-axis, and

Ci are constants determined by the boundary conditions. The boundary conditions,

in polar coordinates, imply the constraints

vm,θ (r,0) = 0 ,
∂vm,r

∂θ
(r,0) = 0 , vm

(
r,

π

2
)

= r̂ ,

and so

f (θ) =− 2
π

θ cosθ .
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By (C.2.6) we have vm, with qm and u derived from (C.2.2)–(C.2.3). For r > 0,

vm =
2
π

((θ sinθ − cosθ)r̂+θ cosθθ̂θθ) (C.2.7)

q = (1−φ0)
(
− 4

πr
+ r
)

cosθ = (1−φ0)
(
− 4cosθ

πr
+ z
)
, (C.2.8)

u =−w0

U0
(1−φ0)

( 4
πr2 (cosθ r̂+ sinθθ̂θθ)+ ẑ

)
. (C.2.9)

As shown in Figure C.4, the matrix velocity is independent of r and φ0. Near the

corner, the pressure is dominated by the 1/r-term and decreases as θ increases.

The relative velocity is in the (−r̂)-direction for small θ and in the (−θ̂θθ)-direction

for large θ , focusing the fluid toward the corner. Far away from the corner, the

fluid moves upward relative to the matrix due to its buoyancy. Note that there is

a stationary point in the relative (and thus fluid) velocity. The fluid pressure and

relative velocity blow up at the corner.
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(a)

(b)

Figure C.4: Closed form solution in dimensionless variables (4.3.15) to viscous
corner flow with boundary conditions given in figure 4.2(a) and L = 2Ls. (a) Solid
lines represent matrix velocity stream lines. Dashed lines represent relative (fluid)
velocity stream lines. (b) matrix (or fluid) pressure.
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Appendix D

General Finite Element Code for Coupled Systems of
Equations

D.1 Motivation

Presented in this document is a guide to a general finite element code for

solving coupled nonlinear second order PDE’s in 2D. I created this code with the in-

tention of solving 2D problems in mantle convection using the mixed finite element

method. This project began with a sincere attempt at a mixed method in PETSc, but

ran out of steam party because PETSc documentation for my application is lacking,

and partly due to my lack of necessity for and experience with parallel computing. I

eliminated using standard finite element packages such as Deal.II and FEnICS and

realized in a natural way that writing this code primarily in MATLAB (interfac-

ing with C when necessary) was the right development direction. Undertaking the

task of writing such an immense code from scratch requires justification. First, the

multiphysics equations of mantle dynamics are not well-established especially in

computational mathematics, and there appears to be no previous work in the finite

element community. Even our own formulation of the equations remained in flux

for much of the project’s duration and the numerical interpretation of the porosity

required significant tinkering and some non-standard techniques. This requires a

general approach to implementing the variational form. Another key part of my
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project is an investigation of the AW0 basis functions. These basis functions are not

easy to implement in standard finite element packages (PETSc, for example) be-

cause they do not form a tensor product space. Aside from interest in the improved

performance of AW0 over more standard elements for Stokes flow like Taylor-Hood,

this is not a performance code. The code is entirely sequential, though the unstruc-

tured approach to the mesh does lend itself to convenient parallelization. There are

no bells and whistles like adaptive mesh refinement, and the Newton method uses a

direct solver for each iteration. The intention is only to demonstrate that the mixed

method is a viable approach for the equations of mantle dynamics. Finally, this

code is also intended for users in the geoscience community who are much more

comfortable with MATLAB code over C++, for example.

D.2 Functionality and input file

I will outline here the different user inputs and functionality of the code to

solve an arbitrary number of coupled non-linear PDE’s. It uses an unstructured

mesh defined by the user. The user can also pick the order of the Gaussian quadra-

ture rule. The code includes functionality to enter new finite element basis, and

many standard options as well as the AW0 elements are already implemented. Most

exciting about the code is its general approach to implementing the variational form

and boundary condition as well as its approach to constructing the Jacobian. I will

use Stokes corner flow on Ω = [0,1]2 as an example problem. Though this problem

is linear and does not take full advantage of the functionality of the code, it will
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sufficiently illustrate how it can be used. For velocity u and pressure p,−∇ ·∇u+∇p = 0, Ω,

−∇ ·u = 0, Ω.
(D.2.1)

y

x

u ·ν = 0
u · τ =−1

u ·ν = 0
∇uν · τ = 0

(∇u− pI)ν = 0

(∇u− pI)ν = 0Ω

Figure D.1: Boundary conditions for Stokes symmetric corner flow.

Following Fig. D.1, ν and τ denote the outward pointing normal and tangent

to the boundary ∂Ω, respectively. The right and top boundary Γ1 = {1}× [0,1]∪

[0,1]×{1}. Flow on these edges has normal stress equal to zero (recall, the stress

is defined as σ = ∇u− pI). The left boundary Γ2 = [0,1]×{0} is moving with

a velocity 1 to the right. The bottom boundary Γ3 = {0}× [0,1] is a symmetry

boundary (i.e. uy = u ·ν = 0 and ∂ux
∂y = ∇uν ·τ = 0) so we set zero normal flux and

tangential component of the normal stress set to zero.

D.2.1 Mesh

Currently only rectangular meshes are implemented. To uniquely define the

mesh, the input file must provide:
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Figure D.2: Domain [0,1]2 with the bottom-left cell removed. Blue indices repre-
sent nodes, red indices represent edges, and pink indices represent cells.

• x and y arrays representing the x-vertices and y-vertices of the mesh, OR

• nx, Lx representing the number of x elements between Lx(1) and Lx(2),

and ny, Ly representing the number of y elements between Ly(1) and Ly(2).

• Optionally, loc is a function handle of two variables that eliminates vertices

from the mesh where loc(x,y)≤0

For example, the following input would generate the mesh in Fig. D.2:

x = 0:1/3:1; y = 0:1/3:1;
loc = @(x,y) (x≥1/3)*(y≥1/3));

D.2.2 Problem variables

For the problem’s variables, The user provides field names and number of

components for each field. For the Stokes problem the velocity is a vector and the

pressure is a scalar. Hence, with velocity first and pressure second,
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field(1).name = 'velocity';
field(1).numComp = 2;
field(2).name = 'pressure';
field(2).numComp = 1;

This initializes the problem variable u which contains the degrees of freedom of the

entire problem.

D.2.3 Quadrature

The user provides the precision of the Gauss quadrature rule for all interior

and boundary integrals evaluated in the Jacobian and variational form. For exam-

ple, for the AW0 elements, prec = 5 would integrate the discrete variational form

exactly.

D.2.4 Finite element basis

Each field requires the user to enter a finite element basis. Provided finite

element spaces basis include basis functions shown in table D.1. For example, to

basis command

vector fields

RT0 Velocity RT0Velocity

(P1)2 P1Quad2

AW0 velocity AWVelocity

Taylor-Hood velocity TaylorHoodVelocity

scalar fields
P0 piecewiseConst

P1 P1Quad

Table D.1: provided finite element options.
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solve Stokes using the AW0 finite elements, the input file must contain the lines:

field(1).basisType = @AWVelocity;
field(2).basisType = @piecewiseConst;

Moreover, the code has built-in functionality to quickly add new finite element

basis.

D.2.5 Exact solution

Optionally, to check the finite element solution against an exact solution, the

input file must define uExact. uExact is set by providing a function handle of 2

variables for every component of every field. To check the error in the H1 or H(div)

norms, define gradUExact for every field, component, and derivative direction or

use this provided routine to take symbolic derivatives of uExact:

field = symbolicDerivatives(field);

Note that this function is fragile because MATLAB’s symbolic library is easily

broken. For Stokes corner flow:

B = 2/pi;
r = @(x,y) sqrt(xˆ2+yˆ2);
r2 = @(x,y) xˆ2+yˆ2;
theta = @(x,y) atan(y/x);

% u x = B*cos(theta)ˆ2
field(1).uExact{1} = @(x,y) −B*cos(theta(x,y))ˆ2;
% u y = B*(theta − sin(theta)*cos(theta))
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field(1).uExact{2} = @(x,y) B*(theta(x,y) − sin(2*theta(x,y))/2);
% p = −2*B*U 0*cos(theta)/r
field(2).uExact{1} = @(x,y) −2*B*cos(theta(x,y))/r(x,y);

D.2.6 Variational form

Let,

V =
{

u ∈ (H1(Ω))2;u|Γ2 = 0;u|Γ3 ·ν = 0
}

, (D.2.2)

W = L2
0(Ω). (D.2.3)

With an arbitrary lift uN ∈ (H1(Ω))2 satisfying uN |Γ3 =
(

0
−1
)
, and uN |Γ4 · ν = 0,

the variational form for Stokes becomes:

Find u ∈ V+uN , p ∈W such that,

(∇u : ∇v)− (p,∇ ·v)−〈(∇u− pI)ν ,v〉∂Ω

= (∇u : ∇v)− (p,∇ ·v)

−〈(∇u− pI)ν ·ν ,v ·ν〉Γ3−〈∇uν · τ,v · τ〉Γ2∪Γ3 = 0 ∀v ∈ V

(D.2.4)

(∇ ·u,w)+(g,w) = 0 ∀w ∈W (D.2.5)

Next, consider the discrete system for finite element spaces Vh and Wh and test

basis function vi and wi. Ignoring boundary terms for the moment, the discrete

variational form becomes:

Find uh ∈Vh +uN , ph ∈Wh such that,

Fu,i(uh, ph) = (∇uh : ∇vi)− (ph,∇ ·vi) = 0 ∀vi ∈ Vh (D.2.6)

Fp,i(uh, ph) =−(∇ ·uh,qi) = 0 ∀qi ∈Wh (D.2.7)
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Very useful observation: since the variational form is always linear in the test func-

tions, it can be expressed generally for first order forms as, dropping subscript h’s,

Fu,i(u, p) = (fv(u,∇u, p,∇p),vi)+(f∇v(u,∇u, p,∇p) : ∇vi) = 0 (D.2.8)

Fp,i(u, p) = ( fq(u,∇u, p,∇p),qi)+(f∇q(u,∇u, p,∇p),∇qi) = 0 (D.2.9)

where, for Stokes,

fv(u,∇u, p,∇p) = 0, (D.2.10)

f∇v(u,∇u, p,∇p) = ∇u− pI, (D.2.11)

fq(u,∇u, p,∇p) =−∇ ·u−g, (D.2.12)

f∇q(u,∇u, p,∇p) = 0. (D.2.13)

To specify fq the input file must set field(2).varForm.v. To specify f∇v set

field(1).varForm.gradV. Using this general framework, the Stokes varia-

tional form is set by the following lines:

% (gradU , gradV) − (p , divV)
field(1).varForm.gradV{1,1} = @(u, gradU, x, y) ...

gradU.field{1}(1,1) − u.field{2}(1);
field(1).varForm.gradV{1,2} = @(u, gradU, x, y) ...

gradU.field{1}(1,2);
field(1).varForm.gradV{2,1} = @(u, gradU, x, y) ...

gradU.field{1}(2,1);
field(1).varForm.gradV{2,2} = @(u, gradU, x, y) ...

gradU.field{1}(2,2) − u.field{2}(1);
% −(divU , v)
field(2).varForm.v{1} = @(u, gradU, x, y) −gradU.field{1}(1,1) ...
− gradU.field{1}(2,2);
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where, for example, u.field{1} and u.field{2} represent the velocity and pres-

sure trial functions, respectively, and gradU.field{1}(i,j) represents the deriva-

tive of the ith component in the jth direction.

D.2.7 Jacobian form

Since the Jacobian form is always bi-linear for the test functions, a similar

approach to the formulation of the residual applies. For the discrete problem denote

basis functions wi and ri for the velocity and pressure, respectively, so that u =

∑uiwi and p = ∑ piri.

J =

(
∂Fu
∂u

∂Fu
∂ p

∂Fp
∂u

∂Fp
∂ p

)
(D.2.14)

For example, for the term ∂Fu
∂u , by the chain rule,

∂Fu
∂u

(i, j) =
∂Fu,i

∂u j
=
(

∂ fv
∂u

(u,∇u, p,∇p)w j : vi

)
+
(

∂ fv
∂ (∇u)

(u,∇u, p,∇p)∇w j,vi

)
+
(

∂ f∇v
∂u

(u,∇u, p,∇p)w j,∇vi

)
+
(

∂ f∇v
∂ (∇u)

(u,∇u, p,∇p)∇w j : ∇vi

)
(D.2.15)

with the three remaining terms (∂Fu
∂ p , ∂Fp

∂u , ∂Fp
∂ p ) in the Jacobian derived analogously.

In the input file, the coefficient corresponding to ∂ fp
∂ (∇u)(u,∇u, p,∇p) is set by

field(1).JacForm.field(2).gradW.v. For the Stokes example:

% (gradW, gradV)
field(1).JacForm.field(1).gradW{1,1}.gradV{1,1} = ...

@(u,gradU,x,y) 1;
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field(1).JacForm.field(1).gradW{1,2}.gradV{1,2} = ...
@(u,gradU,x,y) 1;

field(1).JacForm.field(1).gradW{2,1}.gradV{2,1} = ...
@(u,gradU,x,y) 1;

field(1).JacForm.field(1).gradW{2,2}.gradV{2,2} = ...
@(u,gradU,x,y) 1;

% −(w,divV)
field(2).JacForm.field(1).w{1}.gradV{1,1} = @(u,gradU,x,y) −1;
field(2).JacForm.field(1).w{1}.gradV{2,2} = @(u,gradU,x,y) −1;
% −(divW,v)
field(1).JacForm.field(2).gradW{1,1}.v{1} = @(u,gradU,x,y) −1;
field(1).JacForm.field(2).gradW{2,2}.v{1} = @(u,gradU,x,y) −1;

Alternately, the user can opt to use a finite difference Jacobian approximation by

providing a nonzero parameter h to be used in a finite difference scheme. Since

Stokes corner flow is a linear problem, the above Jacobian information need not be

included and the finite difference scheme will calculate the Jacobian exactly with

the input:

% finite difference parameter
h = 1;

Note that in the linear case h can be any non-zero constant.

D.2.8 Boundary conditions

The code handles Neumann and Robin boundary conditions of the form,

α(natural condition)+β p = η (D.2.16)
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α =
(

1
1

)
, β =

(
0
0

)
, η =

(
0
0

)

α =
(

0
0

)
, β =

(
1
1

)
, η =

(
0
−1
)

α =
(

0
1

)
, β =

(
1
0
)
, η =

(
0
0

)
α =

(
1
1

)
, β =

(
0
0

)
, η =

(
0
0

)
Ω

Figure D.3: Values of α , β , and η used to set the boundary conditions in Fig. D.1
for Stokes symmetric corner flow.

for scalar fields p. For vector fields u, the Neumann and Robin boundary condition

becomes

α1(natural condition) ·ν +β1u ·ν = η1, (D.2.17)

α2(natural condition) · τ +β2u · τ = η2, (D.2.18)

where the natural condition is defined by the boundary term in the variational form.

By (D.2.4), theNeumann and Robin conditions for Stokes are defined by seting α ,

β , and η for boundary according to

α1((∇u− pI)ν) ·ν +β1u ·ν = η1, (D.2.19)

α2(∇uν) · τ +β2u · τ = η2. (D.2.20)

Fig. D.3 shows the values of α , β , and η for each boundary Γi. The input file must

contain:
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% top and right edge
field(1).bndry(1).loc = @(x,y) (x−1)*(y−1);
field(1).bndry(1).alpha = [1 1];
field(1).bndry(1).beta = [0 0];
field(1).bndry(1).eta = {@(x,y) x , @(x,y) 0};
% bottom edge
field(1).bndry(2).loc = @(x,y) y;
field(1).bndry(2).alpha = [0 1];
field(1).bndry(2).beta = [1 0];
field(1).bndry(2).eta = {@(x,y) 0 , @(x,y) 0};
% left edge
field(1).bndry(3).loc = @(x,y) x;
field(1).bndry(3).alpha = [0 0];
field(1).bndry(3).beta = [1 1];
field(1).bndry(3).eta = {@(x,y) 0, @(x,y) −1};

D.2.9 Constant nullSpace

If one of the problem variables has a constant nullspace, the input file must

supply the particular field (i.e. pressure for Stokes) by setting

field(2).nullSpace = 'true';

D.2.10 Newton iteration

To solve non-linear problems, the code uses a Newton method for which the

user can enter the relative tolerance (relTol), absolute tolerance (absTol), and

maximum number of iterations (maxIter).
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D.2.11 Example input for Stokes corner flow

Putting it all together, to solve the homogeneous Stokes corner flow problem

using AW0 elements, the user must provide the following input file StokesCornerFlow.m:

%StokesCornerFlow.m
%% MESH−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% mesh on [0,1]ˆ2 refince at bottom−left corner
x = [0 .025 .05 .1 .15 .25 .35 .45 .55 .65 .75 .85 .95 1];
y = [0 .025 .05 .1 .15 .25 .35 .45 .55 .65 .75 .85 .95 1];

%% VARIABLES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
field(1).name = 'velocity';
field(1).numComp = 2;
field(2).name = 'pressure';
field(2).numComp = 1;

%% GUASS QUADRATURE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
prec = 5;

%% FINITE ELEMENT BASIS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
field(1).basisType = @AWVelocity;
field(2).basisType = @piecewiseConst;

%% EXACT SOLUTION−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B = 2/pi;
r = @(x,y) sqrt(xˆ2+yˆ2);
theta = @(x,y) atan(y/x);

% u x = B*cos(theta)ˆ2
field(1).uExact{1} = @(x,y) −B*cos(theta(x,y))ˆ2;
% u y = B*(theta − sin(theta)*cos(theta))
field(1).uExact{2} = @(x,y) B*(theta(x,y) − sin(2*theta(x,y))/2);
% p = −2*B*U 0*cos(theta)/r
field(2).uExact{1} = @(x,y) −2*B*cos(theta(x,y))/r(x,y);

%% VARIATIONAL FORM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% (gradU , gradV) − (p , divV)
field(1).varForm.gradV{1,1} = @(u, gradU, x, y) ...

gradU.field{1}(1,1) − u.field{2}(1);
field(1).varForm.gradV{1,2} = @(u, gradU, x, y) ...
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gradU.field{1}(1,2);
field(1).varForm.gradV{2,1} = @(u, gradU, x, y) ...

gradU.field{1}(2,1);
field(1).varForm.gradV{2,2} = @(u, gradU, x, y) ...

gradU.field{1}(2,2) − u.field{2}(1);
% −(divU , v)
field(2).varForm.v{1} = @(u, gradU, x, y) −gradU.field{1}(1,1) ...
− gradU.field{1}(2,2);

%% JACOBAIN FORM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% finite difference parameter
h = 1;

%% BOUNDARY CONDITIONS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% top and right edge
field(1).bndry(1).loc = @(x,y) (x−1)*(y−1);
field(1).bndry(1).alpha = [1 1];
field(1).bndry(1).beta = [0 0];
field(1).bndry(1).eta = {@(x,y) x , @(x,y) 0};
% bottom edge
field(1).bndry(2).loc = @(x,y) y;
field(1).bndry(2).alpha = [0 1];
field(1).bndry(2).beta = [1 0];
field(1).bndry(2).eta = {@(x,y) 0 , @(x,y) 0};
% left edge
field(1).bndry(3).loc = @(x,y) x;
field(1).bndry(3).alpha = [0 0];
field(1).bndry(3).beta = [1 1];
field(1).bndry(3).eta = {@(x,y) 0, @(x,y) −1};

%% SOLVER−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Solver uses Newton iteration
relTol = 1e−10;
absTol = 1e−10;
maxIter = 5;

%% NULLSPACE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% fields that have a constant nullSpace
field(2).nullSpace = 'true';
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D.3 Running the code

In order to run the code simply execute

[u, norms, errors, appCtx] = ...
driver(@StokesCornerFlow,DEBUGLEVEL,OUTPUTMODE);

Output:

• u - degrees of freedom of computed solution

• norms - L2-norms, H(div)-norms and H1-norms (when available)

• errors - relative L2-errors, H(div)-errors and H1-errors (when available) as

well as relative interpolation errors in each norm, provided an exact solution

is defined.

• appCtx - data structure storing all problem information

DEBUGLEVEL denoted the amount of tracking and output the user wants to see with

each level adding onto the previous:

• DEBUGLEVEL = 1

1. plot computed solution

2. plot exact solution (if it exists)

3. plot stream function for vector-valued fields

4. output program processes during run-time
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• DEBUGLEVEL = 2

1. plot mesh

2. plot locations of boundary condition

3. plot initial guess

4. plot residual of computed solution evaluated at quadrature points

5. plot error evaluated at quadrature points

6. plot interpolation error evaluated at quadrature points

7. spy-plot of the Jacobian matrix

8. summarize input file

• DEBUGLEVEL = 3

1. plot shape functions for all finite element basis

2. calculate Jacobian condition number

Setting OUTPUTMODE = 1 gives norms and errors (if exact solution exists):

velocity:
L2 norm | L2 err | L2 int−err | H1 norm | H1 err | H1 int−err |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0.668 | 0.207 | 0.280 | 2.71 | 0.502 | 0.531 |

pressure:
L2 norm | L2 err | L2 int−err |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2.145 | 1.412 | 0.690 |
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Figure D.4: Computed solution for Stokes corner flow. Velocity comp 1 denotes
the x-velocity and velocity comp 2 denotes the y-velocity.
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Figure D.5: Velocity stream lines for Stokes corner flow
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