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Abstract 

Sequential selections are to be made from two stochastic 

processes or "arms." At each stage the arm selected for 

observation depends on past observations. The objective is to 

maximize the expected sum of the first n observations. For arm 1 

the observations are identically distributed with probability 

measure P and for arm 2 the observations have probability measure 

Q; Pis a Dirichlet process and Q is known. A stay-with-a-winner 

rule is defined in this setting and shown to be optimal. A 

simple form of such a rule is expressed in terms of a degenerate 

Dirichlet process. 

1. Introduction 

A bandit problem involves sequential selections from a number 

of stochastic processes (or ••arms", machines, treatments, etc.> .• 

The available processes have unknown characteristics, so learning 

can take place as the processes are observed. In this paper, we 

follow Bradt, Johnson, and Karlin (1956) and restrict 

consideration to the discrete time setting in which the objective 

is ta maximize the expected sum of the first n observations. 

This is a special case of the more general setting--nat 

considered here--of Berry and Fristedt (1979) in which infinitely 

many observations may be taken and future observations are 

discounted. 
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The arm selected far observation at any time depends an the 

previous selections and results. A decision procedure ar 

strategy specifies which arm ta select at any stage far every 

history af previous selections and observations. The worth af a 

strategy is defined in the usual way as the average af the sums 

af the first n observations far all possible histories resulting 

from that strategy. A strategy is optimal if it yields the 

maximal expected sum. An arm is said ta be optimal if it is the 

first selection af same optimal strategy. 

We assume that there are two arms. Let X. and Y. denote the 
1 1 

results from arms 1 and 2, respectively, at stage i; far i ~ n 

exactly one af the pair <X.,Y.) is actually observed. We assume 
1 1 

that the vector cx 1 , ••• , Xn> is independent af (v1 , ' y ) • n 

In addition, we assume that given the probability measure Cp.m.) 

P, the random variables x1 , , X are independent and n 

identically distributed with known p.m. Q. Since the objective 

is to maximize the expected sum af the observations and since na 

data can change the information concerning Q, it is sufficient ta 

assume that all the Y. 's are equal to the mean af Q, call it X. 
1 

The p.m. Pis unknown and, fallowing the Bayesian approach, 

we take P to be random and assume that prior information 

regarding P can be expressed by its probability distribution. 

Much af the bandit literature assumes the arms ta be Bernoulli 

(Bradt, et al. 1956, Berry 1972, 1984) in which case the support 

af Pis contained in the set af those p.m. 's which concentrate 

2 



their mass an {0,1}. We want a distribution for P which has 

large support and which yields analytically manageable posterior 

distributions for P conditional on observations from P. 

Following Ferguson (1973), we assume that Pis a Dirichlet 

process with parameter a. The parameter a is a bounded non-null 

measure an the reals, R, with finite first moment. Let M = a<R> 

and F<x> = a<-oo,x]/M. With these definitions, Fis the prior 

mean (in distribution function form) far Pin the sense that it 

is the expectation of PCX ~ x), and the total measure M may be 

interpreted as the "weight 11 of the prior in terms of sample 

number (Ferguson 1973, p. 223). The prior mean,µ, for an 

observation from arm 1 is the mean of F. We shall frequently use 

MF ta denote the parameter a. 

The important special case M = 0 gives rise to an improper 

Dirichlet process. By a Dirichlet process with parameter O•F we 

mean a process which generates observations x
1

, x
2

, •.• 

such that x1 = x2 = ••• = xn almost surely and x1 has 

' X ' n 

distribution measure F. In such a situation, one pull of arm 1 

yields complete information about P. In a sense described in 

detail by Sethuraman and Tiwari (1983), as M tends to zero the 

Dirichlet process with parameter MF tends to the process with 

parameter O•F defined here. For another application of improper 

Dirichlet processes see Clayton (1983). 

The parameter a summarizes the prior information about P. 

Conditional an observations x1 , ••• , Xk, the measure Pis a 

3 



. 

Dirichlet process with parameter a+ E~SXi where S gives mass 1 
X 

tax (Ferguson 1973, Theorem 1). Let X be a generic observation 

from arm 1. The conditional expectation of a function g(X) given 

x
1

, ••• , Xk can be computed for each«+ E~SXi using Theorem 3 

of Ferguson (1973). We shall denote this expectation by 

Etg(X) 1a + EiSXi], and shall delete the measure from the notation 

when appropriate. Nate in particular that E<Xra> = µ. 

Using notation similar to that of Berry (1972), let W <«,X) n 

be the expected payoff of an optimal strategy, where a, X, and n 

i Let W <«,A> be the expected ~ayoff n are as described above. 

attained by selecting arm i initially and then proceeding 

optimally. 1 We then have W = W 
n n 

relations are evident: 

..., 
V W-'­

n• For n ~ 2 the fallowing 

w1 <o:,A) = µ + E[W 1<a + sx,A) 1a] n n-
( 1 .. 1) 

2 W ca,A) =A+ W 1<«,A) . n n-

Together with the evident initial conditions w!ca,X> =µand 

Wi<«,h) = X, equations (1.1) give a recursion for determining 

w o:,)d. 
n 

In addition, repeated application of (1 .. 1) gives all 

optimal strategies if one keeps track of whether the various W . n-J 
1 2 are equal ta W . of W .• n-J n-J 

Nate that w .ca+ EJ
1
·s ,A> is 

n-J Xi 

measurable and integrable far j = 1, ••• , n-1, and far x 1 , ••• , 

x. in the support of a. Measurability follows from (1.1) and the 
J 

fact that "the integral of measurable functions is measurable" 
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(Billingsley 1979, Theorem 18.3). Integrability follows from 

'-MJ.1 + Ets 
A V Xi 

M + j 

M 1 Ej . 
~ M + j E<X v x1a> + M + j i <xiv A> • 

These inequalities correspond to the intuitive notion that the 

maximum expected payoff is at least that of a strategy in which 

the same arm is pulled at every stage, and at most that for the 

case in which Pis known at the outset. Note that (1.1) holds 

for a= O•F, with the convention that parameter O•F + S equals 
X 

s . 
X 

Some of the properties of W follow from the straightforward 
n 

extension of results in Berry and Fristedt (1979). For example, 

W <a,X> is nondecreasing in both n and X, and is continuous in X. n 

Further properties of W are given in Section 2. 
n In that section 

we also begin describing the properties of optimal strategies. 

In Section 3 we show that a ''stay-with-a-winner" rule is optimal. 

In Section 4 we give several examples and some miscellaneous 

results. 

The problem described here is a finite horizon two-armed 

bandit with one arm known. A straightforward generalization of 

Theorem 2.1 of Berry and Fristedt (1979) shows that in fact we 

have described an "optimal stopping problem." That is, we need 

not consider strategies which follow a pull of arm 2 by a pull of 

arm 1, and so we need only determine the stage at which arm 2 is 
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first pulled, if ever. Problems of this sort are referred to as 

"one-armed bandits" (Berry 1984). If A= O, this description is 

especially fitting, since a pull of arm 2 in that case has no 

effect an the sum. Consequently, we could consider the problem 

with A= 0 to be one in which at most n observations are ta be 

taken from a population, such that the actual number of 

observations taken is decided upon sequentially and the goal is 

ta maximize the expected total of the observations taken. 

As mentioned, the majority of the literature an bandit 

problems deals with Bernoulli bandits. The only other model 

discussed in detail in the literature is for normally distributed 

observations. Recent work includes that of Fahrenholz (1982) and 

a continuous time version using Wiener processes (Chernoff, 

1968). 

The Dirichlet process model is in many senses more flexible 

than either the Bernoulli or the normal. Actually, the Dirichlet 

model encompasses the Bernoulli model to an extent: if a= as
0 

+ 

b 8 
1 

then X 1 , ••• , X are distributed as if they were, given P, 
n 

independent Bernoulli observations with parameter P, and P has a 

beta distribution with parameters a and b. The improper 

Dirichlet prior O• CaS
0 

+ bS
1

> corresponds to a two-point prior 

for p on {0, 1}. Another advantage of the Dirichlet process 

model is that, with respect to the topology of convergence in 

distribution, the support of Pis the set of all distributions 

whose supports are contained in the support o~ « (Ferguson 1973, 
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Proposition 3). This provides an essentially nonparametric 

approach allowing us to model those situations in which the 

responses can take on values in a specified set. In particular, 

as opposed ta the Bernoulli model, we can model responses which 

are other than 0-1; in contrast with the normal model, we have 

more liberty in modeling the marginal distributions for the 

observations and so, for example, we can limit the possible 

outcomes to be other than the real line. 

2. Properties of Optimal Strategies. 

In this section we describe some properties of optimal 

strategies and their expected payoffs. A useful tool is the 

"break even value" of Bradt, et al. (1956, Lemma 4.2) and Berry 

and Fristedt (1979, Theorem 2.2). As indicated by Berry and 

Fristedt, their result can be generalized ta include the current 

model. We state the appropriate version without proof. 

Theorem 2.1: For each a and n there exists a A (a> such that the 
n 

only optimal initial actions are "pull arm 1 if A :5; A <a>" 
n 

and "pull arm 2 if }t. ~ A (a). 11 

n 

Optimal strategies are completely determined by A. If 
n 

A< A <a>, then arm 1 is uniquely optimal initially; if }t. > A 
n n 

then arm 2 is uniquely optimal; and if A= A then both arms are 
n 

optimal initially. At the second stage we compare A to ~-l <a> 
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or A 1 <a + S > accordingly as arm 2 was pulled initially or arm n- Xl 

1 was pulled,and x
1 

= x
1 

was observed; and so on for subsequent 

stages. Since the problem is an optimal stopping problem, it 

follows that A> A <a> implies X > A 
1

<a>. n n-

nondecreasing inn. 

That is, A ( a) is 
n 

An easy consequence of this result gives some flavor of 

bandit problems more generally when comparing a known with an 

unknown arm. Namely, if ECX1a> ~ A then arm 1 is optimal 

initially. This is easy to see by comparing pulls of arm 1 

exclusively with pulls of arm 2. Moreover, if E<X1a> = A, n ~ 2, 

Fis not concentrated on one point, and M < oo, or if E<X1a> > X, 

then arm 1 is uniquely optimal initially. 

Another consequence of the optimal stopping nature of this 

problem is that X ~ A <a> implies W <a,X> = nA, while if A< 
n n 

A <a> then W <a,X> > nX. This give a characterization of A Ca> n n n 

which lets us easily translate properties of W into properties n 

of A <a). Namely: 
n 

Lemma 2.1: For n ~ 1 and for all a, A <a> is the smallest A n 

such that W <a,X> - nX ~ O. 
n 

We mentioned in Section 1 that W <a,X) is nondecreasing in X. 
n 

We might also expect the expected payoff to increase if we add a 

constant to each observation from arm 1. This is a special case 

of a more general notion: 
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Definition 2.1: The distribution function F' is to the right of 

F if F'(x) $ F(x), x ER. If X has distribution function F 

and if X' has distribution function F', then we say X' is 

stochastically larger than X. 

The following lemma appears as Proposition 17.A.1 in Marshall 

and Olkin (1979): 

Lemma 2.2: If F' is ta the right of F, and if g is 

nondecreasing, then E[g<x> IF]$ ECg<X> IF'] whenever bath 

expectations exist. 

We now set out ta prove that W <MF,A) increases when F moves n 

ta the right. It is necessary to first to prove a special case. 

Proposition 2.1: Far all F and M ~ O, and fork> o, 

W (MF+ kS) is nondecreasing in z. 
n z 

Remark: Let z < z'. Nate that the distribution function form of 

MF+ kS , is (MF+ kS ,)/(M + k), and this is ta the right of the z z 

distribution function form of MF+ kG. z 

Proof: By induction. Let z < z'. 

Far the case n = 1 we have 
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W l C MF + k S 
2 

, A) _ MJI + kz .>.. 
- M + k V 

< MJJ + kz' 
V A - M + k 

= W1 <MF + k8
2

,,A)a 

Far the induction step, suppose the result is true for n = m - 1. 

By C1a1), the induction hypothesis easily gives 

w2 ( MF + k S , A) m z S W2 <MF + kS ,,.>..> m z 

while, also by (1.1), 

W1 CMF + kS , A) = MJJ + kz 
m z M + k 

+ M: k EEWm-l(MF + k8
2 

+ SX 7 }..)·IFJ 

+ M ~ k Wm-l(MF + (k + 1) s '}..) z 

:s; W1 <MF + kS , , A) , 
m z 

by the induction hypothesis. 

Since W = w1 v w2 , we have W <MF+ kS ,.>..> :s; W <MF+ kS ,,X> m m m m z m z 

and the proposition follows. a 

Corollary 2.1: For all M ~ o, far all F and for n ~ 1, 

A <MF+ S) is nondecreasing in Za n z 

Proof: Let z < z'. By Proposition 2.1, 

W <MF+ S, A (MF+ S ,>> n z n z 

:s; W CMF + S ., A (MF+ 8 ,>>, n z n z 

and so by Lemma 2.1, 
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W (MF+ 8, A (MF+ 8 ,)) 
n z n z 

nA (MF+ S ,) S 0. 
n z 

But Lemma 2.1 then implies A (MF+ 8 >SA (MF+ S ,). a n z n z 

Remark: Corollary 2.1 says that, given the observation x
1 

= z, 

our inclination ta pull arm 1 increases with increased z. 

We next prove a more general resulta 

Proposition 2.2: Fix M ~ o, n ~ 1 and X. If F' is to the right 

of F, then 

Proof: By inductiona The case n = 1 follows by Lemma 2a2. For 

the induction step assume the proposition holds for n = m - 1. 

Then, by (1.1), we immediately have 

Also by (1.1), 

w1 <MF' }d m , W1
<MF,X> 

m 

= E[XIF'] - E[XIF] + E[Wm-l(MF' + sx,X> IF'] 

- EtWm-l(MF + SX,X) IF] 

~ E[Wm-l(MF' + sx,X> IF] - E[Wm-l(MF + sx,X> IF] 

~ o. 
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The first inequality holds by Proposition 2.1 and Lemma 2.2; the 

second inequality holds by the induction hypothesis and the fact 

that the distribution function form of MF'+ S is ta the right 
X 

of the distribution function farm of MF+ S. a 
X 

Corollary 2.2: For all n ~ 1 and M ~ O, A CMF) ~ A CMF') when F' 
n n 

is ta the right of F. 

Proof: Fallows by Lemma 2a1 and Proposition 2a2. a 

Remark: Results similar ta Proposition 2.2 and Corollary 2.2 

were proved by Berry and Fristedt (1979, Theorem 3.1) for the 

Bernoulli model. 

3a Stay-with-a-winner rules. 

In this section we prove a stay-with-a-winner rule. This was 

proved for the finite horizon Bernoulli one-armed bandit in Bradt 

et al. (1956), and far the Bernoulli one-armed bandit with a 

regular discount sequence in Berry and Fristedt (1979). See 

Berry (1984) far other references. Far the Bernoulli bandit such 

a rule says that if it is optimal ta pull arm 1 initially, and if 

a success is obtained, then it is optimal ta pull arm 1 again. 

Far the Dirichlet bandit, the stay-with-a-winner rule has the 

farm: "If arm 1 is optimal initially, and if the resulting 

observation is sufficiently large, then it is optimal ta pull arm 
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1 again." 

Proposition 3.1: Given a and n ~ 2, there exist points x' and 

x'' such that A 
1

<a + o ,) ~ A <a>~ A 
1

<a + 8 ,,>. n- x n n- x 

Moreover, if the support of a is bounded above by LI, we can 

take x'' = LI; if the support of a is bounded below by L, then 

we can take x' = L. 

Proof: x'' exists since 

lim 
x-~oo 

A (C< 
n 

+ 8 > ~ lim 
X x-~oo 

Al ( a + 6 X ) = oo. 

The inequality fallows since A is nondecreasing inn, the n 

equality fallows since A1 Ca + 8 >=CMµ+ x)/(M + 1). The 
X 

existence of x'' follows from the fact that 

lim 
x-~-oo 

A (a+ 8) = n X 
-oo. 

This can be proved using Lemma 2.1 and the fact that 

lim 
x-~-oo 

1 w ca+ s ,x> < nX. 
n X 

Suppose now that the support of a is bounded above by U. To 

shaw x'' = U works we adapt the proof of Theorem 4.1 in Berry and 

Fristedt (1979). Namely, we suppose X ~ A <a>, and show n 

X ~ An-l <a+ Bu>- We have two cases: Ci> X < E<X1a + Su> and 

(ii) X ~ ECX1a + Su>- In case Ci>, X < E<X1a +Bu>= A1 <a+ Bu> 

~ An-l Ca+ Bu> since A is nondecreasing inn. In case (ii), 

13 



suppose, ta the contrary, that X > An-l Cu+ Su>- Then 

X ~ A 1 cu + 8 > far x SU by Corollary 2.1, and so, irrespective n- X 

of the outcome of the initial pull of arm 1, it is optimal by 

Theorem 2.1 ta pull arm 2 an the remaining pulls. Consequently, 

W <a,X> = p + <n - 1>X n 

S <MP+ U)/(M + 1) + (n - l>X 

= E<X1a +Su>+ (n - 1)X 

< nX, 

the worth of pulling arm 1 n times. 

Finally, if the support of a is bounded below by L, then we 

have 

(3. 1) A 
1

<u + SL) SA 1 (a) S n- n-
A (U). 

n 

The first inequality in (3.1> fallows from Corollary 2.2 since 

the normalized form of a is ta the right of the normalized form 

of a+ SLa The second inequality in (3.1) fallows since A is 

nondecreasing inn. a 

The above result gives one form of a stay-with-a-winner rule. 

Namely, if arm 1 is optimal initially, and if x1 = x·· is 

observed, then arm 1 is optimal again. A less stringent version 

of the stay-with-a-winner rule exists. We show this by showing 

that A (a+ S > is continuous in x. This fallows from the next 
n X 

lemma. 
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Lemma 3.1: For all n ~ 1, fork= o, 1, 2, ••• and for 

x 
1 

, x 
2 

, • • • , x k g i ven , 

(i) W <a+ Ek1·s + S ,h> is jointly continuous in z and 
n Xi Z 

>.; 

(ii) For j = 1, 2, Wj<a + 6 ,h> is jointly continuous in n z 

z and h. 

Proof: We prove part Ci) by inductiono Fix z
0

, >.
0 

and let 

z . < z
0 

< z . ' , }.. ' < x
0 

< >..' '. We shaw continuity at z
0 

and x
0

. 

Note first that, for n ~ 1, for z E (z', z'') and XE Ch', X''), 

(3.2) W Ca + E~ 8 + 8 z . ' 
X. > 

n Xi 

~ W Ca+ E~S + S , h) 
n Xi Z 

~ w ca+ Eks + S· .. , X •• ) 
n 1 Xi z 

by Proposition 2.1 and the fact that W ( 1 ,h) is nondecreasing in 
n 

}.. . 
The case n = 1 being easy, suppose part (i) of Lemma 3.1 

holds for n = m - 1. By (1.1), (3.2), and Lebesgue's dominated 

convergence theorem, 

MJ1 
(3.3) lim W1 <a + E~S + 6 ,X> = 

<z,>..>-~<zo,>..o> m xi z 

+ E~SXi + zo 
M + k + 1 

+ M EC lim w 1 ca + Ek1 o + s + sx,x>1FJ m- X. Z <z,>..>-~cz 0 ,>..0 > 1 

+ M + k + 1 
1 1 k k -~~--

E .=1 Iim w _1 ca + E._1 s + s + 
J ( '- ) -~ ( '- ) m 1 - X • Z z , I\ z O , "'o 1 

-

8 ').) x. 
J 
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+ 1 
M + k + 1 lim W 1 ca m- + E~ 1s + 28 ,X> 

1= X. Z 

= wt ca + 
m 

e z , .>d -? < z 
O 

, Ao> 

1ts + 1 X. 
1 

S ,x
0

>. 
zo 

1 

The last equality fallows by the induction hypothesis. As well, 

the induction hypothesis and (1.1> immediately give 

(3.4) lim w2 ca + E~_1o + S ,X> 
( ~)-~( ~ ) m 1- X. Z z,~ zo,~o 1 

= w2 ca + E~_
1

s + s~ ,).
0

> m 1- xi _
0 

Part Ci> now fallows since W = w1 v w2 . m m m 

Part (ii) fallows from part Ci) and equations (3.3) and (3.4) 

if n ~ 2a The case n = 1 is easy. a 

Hence, 

0 = lim cw1 ca + S A ((X + s > > -w2 ca + 8 ,A ((X + 8 )) ] 
n X' n X n X n X x-4 x . 0 

= w1 ca + S , lim I\ ca + s )) 
n XO n X x--+x 

0 

w2 ca + S , lim A Ca+ S )). 
n x

0 
~ n x x-~x 

0 

The second equality fallows from Lemma 3.1 (ii). By uniqueness, 
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A ((X + S ) = lim A ca+ s >. a 
n x

0 x--+x n x 
0 

Theorem 3 D 1 : Given (X and n ~ 2, there exists a unique b = 

such that 

A Ca) = A 1 ca + Sb). n n-

b ((X) 
n 

Proof: Existence follows from Proposition 3.1 and the fact that 

A 
1

ca + S > is continuous (Lemma 3.2) and nondecreasing in x n- X 

(Corollary 2.1). 

We show bis unique by contradiction. Suppose b < b' and 

suppose 

A= A (a)= A lea+ Sb)= A lea+ Sb,). n n- n- -

Then since an initial pull of arm 2 is optimal, 

Wn-l Ca+ Sb,A) = (n-l)X = Wn-l Ca+ Sb,,A). 

However, since an initial pull of arm 1 is also optimal, by (1.1) 

we have 

wn-l ca+ sb,,A> - wn_ 1 ca + sb,X> 

= Cb' - b)/CM + 1> 

+ EWn_2 ca +Sb,+ SX,Xta + Sb,> 

EWn_2 ca +Sb+ SX,Afa + Sb> 

> o. a 

Remark: A proof similar to that of Theorem 3.1 shows that there 
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exists a C = C (a) such that A= A lea+ s )a Therefore, n n- c 

given a pull (optimal or not) of arm 1 resulting in x
1 

= x, 

it is uniquely optimal in the second stage to pull arm 1 if 

x > c and arm 2 if x < c; if x = c either arm is optimal. 

The quantity x'' given in Proposition 3al is an upper bound 

for b <a>. Unfortunately, beyond knowing that it exists, we have n 

little guidance in determining x'' unless the support of a is 

bounded above by U, in which case x'',= U. 

We now present a series of results which show that 

b < a> ~ A co• F>. n n 
It is easy to show that A (O•F> ~ U when U n 

exists, in which case A (O•F) is never worse, and usually better n 

than U in bounding b <a>. Moreover, A CO•F) is easy to computea 
n n 

When M = o, a single observation from arm 1 yields complete 

information about P. Accordingly, 

W (O•F,A) =max{µ+ (n-1)E[(X v A) l«l, nA}, 
n 

and so, by Lemma 2.1, A CO•F) is the smallest A to satisfy n 

max{µ+ + (n-l>E<X -X> ) - X, 0} = O, 

where a+= av O. It follows that A CO•F> uniquely satisfies 
n 

+ (3.5) A (O•F) = µ + (n-l)E(X - A (O•F)) • 
n n 

To show b <a>~ A <O•F>, we first prove a seemingly unrelated n n 
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result. Let x and Y be fixed values, x ~ Y- While it is true 

that Wn<a + sx,A) ~ Wn<a + Sy,A>, a bandit with Dirichlet process 

parameter a+ S is not preferred ta a bandit with parameter 
X 

a+ Sy when Cx - Y>ICM + 1> is added ta each observation from 

the latter bandit. Mare specifically, 

Lemma 3.3: For all Y, far all k > O, for all a, for n ~ 1, and 

for all A, if x ~ Y, then 

D n = nk<x - t> + w ca+ kSy,A> - w ca+ kS ,A> ~ o. 
M + k n n x 

Proof: By induction. The case n = 1 is straightforward. For 

the induction step, suppose the lemma is true when n = m - 1. 

Then we have two cases: 

in which case 

and 

D 
m 

= mk(x - t> + mA - mX ~ O, 
M + k 

(ii) A ca+ kS) ~ A. 

Here, 

(3.6) 

m X 

W ca+ kS ,h> = w1 ca + kS ,X>, and it suffices ta prove m x m x 

mk(x - r> 
M + k 

since the left hand side of (3.6) is a lower bound for D. But 
m 

the left hand side of (3.6) is 
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(3.7) mk(x - Y> 
+ w;<a + ks-,,,x> - w

1
ca + kS ,X> 

M + k m X 

mldx - y) +MP+ kY + ECW <a+ kS + &x,X>1a + kS-,,J = M + k M + k m-1 Y 

Mp+ k 
- E[W ((X + kS + sx,X> 1a + kSX ] 

X 

M + k m-1 X 

= mk Cx - Y> + k<Y - x> 
M + k M + k 

M 
+ M + k E[Wm-1((X +ks.,,+ sx,X> I] 

+ k w 
M + k m-1 

((X + <k+U s-,,,x> 

- M: k ECWm_ 1 ca + k8x + Sx,X> 1aJ 

k (k+1) 8 , ).) + M + k Wm-lea+ D 

X 

Same manipulation shows this ta equal 

(3.8) M (m-l)k(x--r> 
+ W (a+ SX + kS-,,,X> M + k E{[ M + k + 1 m-1 

- W ca + 8 + kS , X) ]} 
m-1 X x 

k (m-1> Ck+1> Cx-1'> 
+ w 1 ((X + ( k+1) 8 .,,, ).) + M + k [ M + k + 1 m-

- W 
1

<a + Ck+1)8 ,X>J. m- X 

But the quantities in square brackets in (3.8) are nonnegative by 

the induction hypothesis. a 

Suppose we are given a choice between n pulls of a bandit 

with Dirichlet process parameter a, or a single observation of 

known value and n - 1 pulls of a bandit with Dirichlet process 
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parameter u +Sa The latter is preferred if this observation z 

and z are large enough. 

Lemma 3.4: For n ~ 2, for all u = MF, and for all A, 

C3.9) wnca,A> ~ ex v An-l ca+ 8A0 >J + wn-l ca+ &A0 ,A> 

D 
where A = A (O•F>. 

n n 

n n 

Proof: There are two cases. 

Case (i): A> A CU). 
n 

holds im~ediately. 

Case (ii>: A~ A ca>. 
n 

In this use W <a,X> = nA, and (3.9) n 

In this case we must prove 

C3.10) w~ca,X) ~(Xv An-1 (U + SAO)) + wn-l(a + SAO'A). 
n n 

Since A1 Ca+ SA0 > ~ An-l ca+ SA0 >, to prove (3.10) it 
n n 

will suffice to prove 

(3.11) W~(a,X) ~ A1(a + SAO) + wn_lca + SAO'A). 
n n 

Now by (3.5), Al ca+ SAO) = 
n 

Mµ + AO 
n 

M + 1 

0 + 
= µ + Cn-l)ECX-A) /CM+ 1). 

n 

Also by (1.1), W~(a,X> = µ + EWn_ 1 <a + SX,X). 

Therefore (3.11) is equivalent to 
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+ (n-l>E(X-AD) 
(3.12) 

M + 1 
n 

+ Wn-1 (U + SAD'A), 
n 

and (3.12) is equivalent ta E[f(X)J ~ o, where 

+ Cn-1> <x-AD) 
f (x) = 

M + 1 
n 

+ wn_ 1 <a + SA0 ,A> - wn_1 ca + sx,A>. 
n 

0 
However, when x ~A, f(x) ~ 0 by Proposition 2.1, while n 

0 
if x >A, f(x) ~ 0 by Lemma 3a3a a n 

Theorem 3.2: Far all a and far n ~ 2, b <a>~ A CO•F>. 
n n 

Proof: Let AD = A (O•F) and take ·A = An-1 <a + 8 j\D) n n 

w ca,A <a+ SAO)) n n 
n 

n 
:S; An-1 ((X + 8 j\O) 

n 

+ w 1<a + S J\O ,An-1 ((X n-

= n/\n-1 Ca + 8 I\ o > 
n 

n 

in 

+ 

(3.9): 

8 J\O) 
n 

by Theorem 2.1~ But then, by Lemma 2.1, "n<a> ~ /\n-l <a+ 8/\
0
). 

The desired result now fallows by definition of b Ca> and n 
n 

Corollary 2.1. a 

Theorem 3.2 gives an easily described stay-with-a-winner 

rule: if arm 1 is optimal initially, and if x
1 
~ An(O•F> is 

observed, then arm 1 is again optimal. 
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Example 3.1: The Bernoulli model with a beta prior. If a= 

MCq8 0 + pS 1 >, 0 < p < 1, p + q = 1, then AnCO• (q80 + pS 1)l = 
0 

np/ «n-1) p + 1). Since A E (0,1) in this case, Theorem 3.2 n 

gives the traditional stay-with-a-winner rule far the Bernoulli 

bandit. a 

By Corollary 2.1 and Theorem 3.1, the Dirichlet process 

bandit is 11 monotane 11
: if arm 1 is initially optimal and if x

1 
= 

xis observed, then there is a unique b such that arm 1 is again 

optimal for any x ~ b. The next example shows that such 

monotonicity need not hold if Pis not a Dirichlet process. 

Example 3.2 (Non-Dirichlet): Suppose that P = s
1 

with 

probability 1/2 and P = (1/2) Co0 + s
10

> with probability 1/2. 

Then, using an obvious extension of notation, "2 = 3. Assuming 1 

< X < 3, arm 1 is optimal initially and optimal for the second 

pull if x1 = o or 10, but not if x1 = 1. a 

4. Examples and Comments 

In this section we present same examples and suggest some 

easy ta use but suboptimal strategies. 

Let U denote the distribution function of a continuous 

uniform random variable on C0,1], and let w denote the standard 

normal distribution function. In Table 4.1 values of A CMF> and 
n 

b CMF> are given far n = 2, 3, 4, F = LI and ffi, and M = O, .1, 
n 
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.5, 1, 5, 10, 100. 

It is not hard to show that b 2 CMF) = A2 <0•F) for all M ~ 0 

and F, and that b CO•F) = A CO•F> for n ~ 2 and all F. These n n 

facts are reflected in Table 4.1. As well, it is straightforward 

to prove 

(4. 1 > A (O•F) 
n 

~ A (MF) 
n ~ JJ = lim 

M--+oo 
A CMF) 

n 

for n ~ 1, for all F, and for M ~ O. A stronger version of (4.1) 

can be given in the case n = 2: for all nondegenerate F, A~CMF> 
L 

is strictly decreasing in M. Table 4.1 suggests, and we 

conjecture, that A (MF> is strictly decreasing in M for all n ~ 2 n 

when Fis nondegenerate. Roughly speaking, this reflects the 

intuitive notion that the less known about arm 1, the more 

promising is a pull on it. 

One difficulty with the use of the Dirichlet process in 

modeling is that the calculation of quantities like A and b can 
n n 

involve numerical multiple integration, a process which is 

typically expensive. (Of course, this problem exists when any 

other model for continuous data is used.) To deal with this, 

suppose that F has compact support S. Let F
1

, F
2

, .•• be a 

sequence of distribution functions whose supports are contained 

in Sand which converge to F. It is possible to shaw that 

and b (MFk) converge to A <MF) and b (MF>, respectively, 
n n n 

as k--+oo (cf. Christensen (1983)). This suggests a strategy which 
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may be quite goad: choose a discrete Fk sufficiently close ta F 

and act as if a were MFk instead of MF. Same preliminary work 

suggests that this is particularly useful when Mis large. We 

conjecture that this approach will give goad results even when 

the support of Fis unbounded, if Fk is chosen apprapriatelya 

The advantage of proceeding in this manner is that expectations 

can be computed easily as sums instead of integralsa 
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Table 4.1: The quantities A = A <MF> and b = b (MF). n n n n 

a .. F = i 

M At b A 

0 .. 276 .. 276 .. 436 .. 436 .. 549 .549 

• 1 .. 251 .. 276 .. 400 .. 424 .. 505 .529 

.5 .. 184 .276 .300 .388 .. 383 .529 

1 l .. 138 .276 .. 228 .. 359 .. 295 .421 

5 I .. 046 .. 276 .. 079 .. 276 .. 105 .284 

10 I .028 .276 .. 043 .248 .058 .238 

100 I .. 003 .. 276 .. 005 .. 214 .. 007 .182 

b .. F = LI 

M I\ A b-,. 

0 .586 .586 .. 634 .. 634 .667 .667 

.. 1 .578 .586 .. 623 .. 630 .654 .661 

.. 5 .. 557 .. 586 .592 .619 .617 .644 

1 .. 543 .586 .. 570 .. 610 .590 .630 

5 .. 514 .. 586 .. 524 .. 584 .. 532 .589 

10 .. 508 .586 .. 513 .. 576 .518 .574 

100 .501 .. 586 .501 .565 .502 .554 
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