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I. Introduction 

In survival studies the experimenter is sometimes unable to observe 

the lifetime X
0 

·of every subject in the experiment because the study may 

end while the subject is still alive, or the subject may leave during 

the study. In both cases, the experimenter will then know a lower bound 

Yon the subjectrs lifetime. It is conventional to refer to Y as a censor

ed observation, or a censoring time. Y may or may not be random relative 

to X
0

• In either case, what is known as the censored data problem consists 

of attempting to make inferences about the distribution of the lifetime 

X0 given that what is observable is X = min(X
0 ,-Y). 

It is rarely possible to characterize the distribution of X0 as being 

a member of a known parametric family of distributions. Consequently, 

it is of considerable interest to obtain a nonparametric estimate of F0 
,

the c.d.f. of X
0

, or equivalently S
0

, the survival function of X
0 

,- where 

0 0 0 ) S (t) =1-f (t) =Pr(X >t. There are a number of established procedures 

for estimating S0 
,- but this paper will consider only the Kaplan-Meier 

method (defined explicitly in Section 4). 

If a characteristic 8 of the lifetime distribution, such as the 

mean or median, is of interest, then 8 can be characterized as a functional 

of F0 or S0
, say 8 = t(F0

). 
~o o 

Then given F, an estimate of F ,- the natural 

. ..., "'o 
estimate of 8 is simply 8 = t(F )·. In general, however, it is not a simple 

.... 
task to obtain estimates for the bias and variance of 8, or to obtain 

confidence intervals for a. The jackknife and bootstrap are two related 

nonparametric methods which are applicable to such problems. 
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In this paper we attempt to evaluate, in a limited way, the performances 

of the jackknife and bootstrap with respect to inference about the mean 

lifetime in a censored data problem. For these purposes, underlying 

distributions were assumed for the survival and censoring times and a 

number of Monte Carlo simulations were done. Since the distributions are 

known to us, it is then possible to study parametric confidence intervals 

for the mean, which represent a "control" against which to judge the non

parametric methods. 
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2. The Jackknife 

The jackknife is a very general numerical procedure which can be used 
,. 

to give estimates of the bias and variance of a statistic 8. If a normal 
,. 

approximation is reasonable for a, it is then possible to construct 

"' 
approximate confidence intervals for 8, the parameter estimated by a. 

In this section we outline the general jackknife method, together with 

some of the supporting theory. 

We assume here that 8 is a functional map t(F) of the underlying 

distribution F, i.e. t:C~R where C is a set of one-dimensional c.d.f. 's, 

FE C. As an example, consider the case where 8, the distributional 

characteristic of interest, is the mean. For any c.d.f. F, the mean is 

uniquely defined by the equation, 8 = J. zdF(z), if the integral exists. 
-oo 

Let C be the set of all c.d.f.'s for which the mean is defined. Clearly, 

the previous equation defines a functional t from C to R such that 

~ = t (F), V FE C. 

If F is an estimate of F, then 8 = t(F) is an estimate of 8. Such 

,. "' 
a definition of 8 implies that 8 is consistent if Fis consistent, provided 

t 1s a continuous function in an appropriate sense. Furthermore, 

"' 
in the nonparametric context, this definition of 8 has robustness of 

validity since it does not depend on a model assumption. 

We describe next some assumptions and notation pertinent to the 

jackknife. Let x 1 , ..• ,xn be a random sample of size n drawn from F, 

where F E:c and 8 = t(F). Let F be the sample c.d.f. of x1 , ••• ,xn' where 
A A A A 

FE C and 8 = t(F). Define F (j) to ~e ~~e c~rresp~nding estimate of~----

derived from the subsample x
1

, ••. ,x. 
1
,x.+1 , ••• ,x, i.e. the subsample with 

J- J n . 

xj omitted. Then, assuming that F (j) E c, 1 < j < n, let 8 j = t(F (j)) be 

the jth subsample estimate of 8. 
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The first step in the jackknife procedure is the calculation of 

8., 1 < j < n. The next step is the calculation of the sample influence 
J 

values I., 1 < j ~ n, defined by 
J 

(2. 3) ij = (n - 1) { t (F) - t(F <:1))} 

= (n-1) (e-ej). 

-It turns out that Ij is ultimately related to the theoretical influence 

function which is defined below. 

Let b represent the bias of a= t(F), where b = E(e) - a= E[ t(F)] - t(F). 

Then, o, the jackknife estimate of b, is 

(2.2) 
n -

b =-( E 1-~)/n=·-I. 
. 1 .J J= 

,.. 
Subtraction of b from 8 gives the jackknife estimate of a, 

_. A A ::' 

(2.3) 8=8-b=S+I. 

Let V represent the variance of a= t(F). 

estimate of V, is given in terms of the IJ by 

N 

Then V, the jackknife 

A full description of the theory supporting band Vis beyond the scope 

of this paper, but we can outline the basic element. The main ideas flow 
,.. 

from an expansion of t(F) using a generalization of Taylors' method, known 

as the von Mises expansion. 

If G and Fare c.d.f. 'sand if tis a functional, then the von Mises 

expansion for t(G) in terms of t(F) is given by (6) below, where n1 and 

n
2 

are respectively, the first and second order differential operators, 

and where the x and yin t(x;F) and t(x;y;F) are included in the functional 

notation to indicate the appropriate dummy variable with respect to which 

p
1 

and n2 operate. 
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(2.5) t(G) = t(F) + Jnl t(x;F)d(G - F)(x) 

+ ½.ffiD2t(x;y;F)d(G - F) (x)d(G - F) (y) 

+ ••• 

.... 
If F is the sample c.d.f. of x

1
, ••• ,xn, then substituting G = F in (2.5) 

and rearranging terms yields (2.6) below, with It and Qt defined in 

(2.7) and (2.8), respectively. 

(2.6) t(F) = t(G) + Jrt(x;F)dF(x) 

(2.7) 

(2.8) 

+ ½Jf Qf(z;j ;F)dF(x)dF(y) 

+ ••. 

It(x;F) = D1t(x;F) - fn1t(u;F)dF(u) 

Qt(x;y;F) = n2t(x;y;F) - Jn2t(u;y;F)dF(u) 

- Jn2t(x;v,F)dF(v) 

+ ff n
2 

(u;v;F)dF(u) dF(v) 

It is the influence function and will be discussed below. For future 

reference, note that E It(x;F) = E [Qt(x;y;F)] = O. Since F assigns 
x:/:y 

mass T/n to x., 1 < j < n, (2 .6) becomes 
J 

(2.9) 
.... 1 n 1 n n 

t(F) = t(F) + - I: I(x~ ;F) + - I:.: I: Qt(xJ. ,~;F) + ... 
n j=l J 2n2 j=l k=l 

-The theoretical basis of the jackknife is the approximation of t(F) by 

the first three terms of (2.6) or (2.9), where we assume that Qt exists 

and is continuous in F. 

To understand the influence function It(x;F) and its relationship 

to I., it is helpful to rewrite (2.7) as 
J 

(2 .10) 
d 

It(x;F) = dt ti (1 - E)F + Eox) IE= 0 , 
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where o is the c.d.f. defined by o (y) = 0, Vy<x and o (y) = 1, 
X X X 

Vy> x (i.e. o puts unit mass at x). From (2 .10) it can be seen that 
X 

It(x;F) is a measure of the change in t(F) if the mass at xis changed 

-by an infinitesimal amount. Recall that I. is a measure of the change 
J 

in t(F) when the mass at x. is changed, i.e. when x. is omitted. There 
J J 

is a strong similarity in the definitions of It(x;F) and Ij. Indeed, 

under suitable smoothness assumptions, 

(2.11) 
- -1 I.= It(x~;F) + o(n ). 

J J 

We can now give a ro~gh, but simple justification of (2.2) and (2.3), 

- -the formulas for band V, respectively. Rewrite (2.9) as 
n n 

c2·~ 12) t(F) - t(F) = J"+l I(xj ,F) + --½- l: k--l:1 Q(xj ;~;F) + •••• 
2n j=l 

Taking the expectation on both sides yields 

bias [t(F)] = E[t(F)] - t(F) = 2~ E[Q(x;x;F)] + 

It can be shown that E[ I.] = -½E[Q(x;x; F)] + . . . , 1 < j < n. Therefore, 
J - -

if i. is used to estimate E[I.], (2.2) follows iDDnediately. If we take the 
J 

variance on both sides of (2.12) we get var (t(F))= .!.var[I(x;F)] + 
n 

- 1 n - ~ 2 . But (2.11) implies var [I(x;F)] ~ var [I.]. If - 1 l: (I. - I.) is 
J n- . 1 J 

- J= 
used to estimate var [Ij], (2.3) follows immediately. 

Based on the first two tenns of (2.9), application of the central 

limit theorem shows that (t(F) - t(F))/IVar [t(F~)is asymptotically 

N(0,1), where var [t(F)] =.!.var [I(x;F)], asymptotically. If it can 
n 

further be assumed that Vis a consistent estimator of var[t(F)], then 

(t(F) - t(F))//~v is asymptotically N(0,1). Thus, an approximate 

100(1-p)th percent confidence interval for 8 = t(F) is given by 

(2.13) (t(F) - zp/2 / V , t(F) + zp/2 Iv), 
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where zp/Z is the 100 p/2th percentile of the N(0,1) distribution. 

A connnent on transformations is appropriate at this point. Sometimes, 

" especially when n is small, the normal approximation for t(F) referred n 

to above is not very accurate. Consequently, the normal confidence 

interval (2.13) fore may not be very accurate in the sense that (a) 

the actual coverage rate may be considerably different from the desired 

coverage rate, and/or (b) the probability of a right error (the confidence 

interval falls to the right of 8) may be substantially different than 

the probability of a left error. However, it may be possible to find a 

monotone continuous function (transformation) f, such that f(t(F)) is 

more amenable to accurate normal approximation; the same asymptotic theory 

will apply. Hence, an approximate normal confidence interval for f(S)=f(t(F)) 

can be constructed which will be relatively accurate in terms of (a) and 

_(b). To be specific, a 100(1-p)th percent confidence interval for f(8) is 

given by 

(2.14) (f (t(F)) - zplf;_, f ( t(F)) + z/ V f)' 

-f " 
where Vf is calculated as in (2.4) given that Ij = (n-l){f (t(F)) - f(t(F(j)))}. 

The confidence interval for f(8) can then be inverted to form a confidence 

interval fore which is accurate in the sense of (a) and (b). Finally, 

note that except for a few well analyzed cases, the best choice off is 

usually unclear. 
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3. The Bootstrap 

The bootstrap is another procedure especially well suited to dealing 

with nonparametric problems. Like the jackknife, it can be used to give 

estimates of the bias and variance of a statistic a= t(F). Furthermore, 

the bootstrap can give confidence intervals for 8 which do not require 

any assumption of normality. 

The basic idea of the bootstrap is very simple. Suppose, for example, 

that we wish to calculate a quantitative property of the distribution of 

a= t(F), such as E(8) - e or Pr(B <a). u this property is denoted by 

Nt.(F), then we estimate it by Nt(F), the corresponding property of 

""* A A 8 = t(F). More explicitly, to estimate E(8) - 8, for example, we use 

The expectation on the right hand side may be calculable theoretically, 

but this is usually not possible. We then resort to Monte Carlo simulation 

of the expectation. It is the estimation of N (F) by a simulation 
r 

estimate of N (F) which is the actual bootstrap procedure. 
r 

The details of the bootstrap are as follows: N pseudo-random "bootstrap" 

samples of size n are generated from F. If Fis the sample c.d.f. of the 

original sample x1, ••• Xn, then generating a bootstrap sample xt, ... ,x: 
amounts to sampling n times independently and with replacement from x

1
, ••• ,Xn. 

(The asterisk superscript is used to distinguish bootstrap quantities from 

,. "* the corresponding original sample quantities, eg. 8 and 8 .) The value 

of a* is computed for each of the N bootstrap samples, yielding a single 

"* ,. sample size N of 8 values which can be used to estimate Nt(F). For example, 

if Nt(F) =E(e*), the sample average is the appropriate estimate. 
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"* "* Let 8. be the value of 8 computed from the jth bootstrap sample. 
J 

Then the bootstrap estimates of the bias and variance of 8 are, respectively, 

"* N "* " (3 .1) b = I: 8 /N - 8 • 
j=l j ' 

"* N (0~ 
n 

0~ /N)) 
2 

/N - 1. (3. 2) v= I: - ( I: 
j=l J i=l 1 

If a normal approximation for 8 is reasonable, an approximate 100 ( 1 - p) th 

percent confidence interval fore is 

(3.3) " r::; " / "* 
(8 - zp/Z ./ vx , 8 + zp/Z V ) • 

As mentioned, we can construct confidence intervals for 8 which do 

not require an assumption of normality for 8. To this end, assume that 

8 - 8 is pivotal, i.e. Pr(8 - 8 < q ·I 8) = p Ve. Consequently, Pr(8 > 0 - q )=p V8, 
- p - p 

and 8 - z is a 100 pth percent lower confidence bound for e. 
p 

" e is known 

and z can be estimated via the bootstrap as the 100 pth percentile of 
p 

and an approximate 100(1-p)th percent confidence interval for 8 is given by 

" " 
( 3 ~ 4) ( 2 e - y P 12 , 2 e - y < l -p 12) ) • 
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4. C.D.F. and Mean Lifetime Estimation for Censored Data 

For the purposes of this paper, we need to consider the censored 

data problem in more detail. This requires a brief sketch of the notation 

and basic situation. The random variable of interest is x: the lifetime 

of an experimental subject. We shall assume that the censoring time Y 

is also a random variable. In an actual experiment, the observed 

quantities are /X = min (X
0 

, Y) and d = { ~ if X=Y 
if X=X0

./ 

0 F, F, and Gare the 

c.d.f.'s of X, X0
, and Y, respectively. Let the subscript j refer to the 

jth subject in a random sample of size n. x1°, ••• ,X~ are i.i.d. with 

c.d.f. F, and Y1, ••• ,Yn are i.i.d. with c.d.f. G. Furthermore, Y. is 
J 

assumed to be independent of X .• Then observations in a sample are the 
J 

pairs (X1 ,d1), ••• ,(X ,d ), where X. and d. have the obvious meanings. 
n n J J 

As a result of the previous assumptions, the X. are i.i.d. with c.d.f. F. 
J 

OXj will denote the j th order statistic of x1, ••• ,Xn. If OXj = ~, then 

d[j] is the corresponding indicator of censoring, i.e. d[j] =dk. 
---- - --------- -- --------- ---- -- -- ------------- ---- ---~--

It is important in censored data problems to obtain a nonparametric 

estimate of F0
• This paper uses the Kaplan-Meier (K-M) procedure to 

get such an estimate. For convenience, the following discussion uses the 

survival function S0 = 1- F0 instead of F0
• To begin, suppose that 

ox
1

, ••• ,oxn are the observed values of ox1, ••• ,0Xn. For convenience, 

also assume that the oxj are distinct. Define p1 = PR(X
0 

> ox1), and for 

o n 
j > 1 define p . = Pr (X

O > ox. I X0 > ox. 1) • Then, Pr (X > OX.. ) = II p . • The 
J J - J- -~ j=l J 

K-M method estimates p. by /p. =(#survivors at time ox.)/(# survivors just 
J J J 

before ox.)/= 1 - # deaths at ox./# survivors just before ox.. Since the 
J J J 
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d . . ,.. 1 1 ox. are 1st1nct, p. = - ·+l 
J J n-J 

if d[j] = 1, and pj = 1 if d[j] = O. 

Note that no information is available on the behavior of S between 

oxj-l and oxj. Consequently, S (t) = Pr(X0 > t) = Pr(X
0 

> oxj_1) if 

ox. l < t <ox .• 
J- J 

The preceeding facts are summarized in equation (4.1) 
,.. 0 

which gives the formula for S, the K-M estimate of S. 

§o_(t) = II (1- ~+l)d[j] • 
n-J j: ox.<t 

J 

(4.1) 

If d[n] = 0, S(t) never reaches O. To prevent this unrealistic and 

awkward property of S, we define S(t) = 0, for t > oxn. Finally, note 

that F0 
= 1 - 8° ; 

The main focus of this paper will be on the mean~ of F
0 

•· We 

express the mean of F0 ·in the form t (F 0
) = J; x dF

0 
(x) , assuming the 

integral exists, and thence define the K-M estimate ofµ as 

µ = t(F 0
)·= lo x ciF~ (x). In terms of the observed OXj and 8°, 

n ,.. o 
(4.2) µ = E (ox. - ox._

1
) S (ox.- ) 

j=l J J J-1 

where ox0 = 0, and S(ox0) = 0. 
,.. ,.. 0 

The K-M estimatorsµ and S have a ntnnber of nice properties. 

8° ·is (a) the maximtnn likelihood estimator (m.l.e.) of S, and (b) a 

consistent estimator of S. Properties (a) and (b) of 8° ·and the functional 

nature of µ, µ = t(l - 8°)·, imply that (1) µ is the m.1.e. ofµ, and 

(2) µ is consistent. It can also be shown thatµ is asymptotically 

normal for reasonable F0 ·and G. 
A 0 

Finally, not that S is a m.1.e. on an 

infinite-dimensional parameter space, and thus, the customary properties 

"'O A 

of a m.1.e. do not necessarily hold for either S ·orµ. 
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5. Parametric Estimation of the Mean Lifetime 

Since F
0 

and Gare generally unknown, parametric methods of statistical 

analysis for the censored data problem are considered here basically as a 

reference point for the jackknife and bootstrap. In particular, we will 

consider two confidence interval procedures forµ which are based on the 

likelihood ofµ given (X1 ,d
1
), ••• ,(Xn,dn). To this end, we assume that 

X
0 

and Y are exponentially distributed with E(X
0

)· = µ = 1/),
1

, and E(Y) = 8 = l/A
2

, 

i.e. 
o -A1t -At F (t) = 1- e _ , and G(t) = 1 - e 2 • 

Let 10,1) be the likelihood of Al =1/µ. Given (X1 ,d1), ••• ,(Xn,dn). 

n 
By definition, L(A

1
) = Il lim Pr(x. < X. < x. +1:,,.).f~. To evaluate L(A

1
), 

j=l ~o J- J J 

note that 

lim Pr (x . < X . < x . + 1:,,., d . = 1) / 1:,,. 
t:,,.+Q . "J - J J J . 

= lim Pr(x. <.x: < x. +1:,,., Y. > X0
)/t:,,. 

.A+Q J- J J J 

= lim Pr(x. < x: < x. +~) Pr(Y. > x. +1:,,.) 
/:,,.+Q J- J J J J 

1
. " -A 1·,x. . -A

2
(x. +1:,,.)/t:,,. 

= im Ale · J 1:,,. e J 
LS.+() 

= -A1xJ· -A2x. Ale . e J • 

-Az~· 
Similarly, lim Pr~x. < X. < x. + 1:,,., d. = 0) = :\

2
e .. J Therefore, L(A

1
) 

J- J- J J 
nl:,,.+Q 

-A r x. 
= Aire 

1
j?~ J where r = II of uncensored data points. The log-likelihood is 

(5.1) x .• 
J 

The two methods that will be used for calculating confidence intervals 

are (i) normal intervals cantered on the m.l.e., and (ii) likelihood ratio 

intervals. Recall that the m.1.e. of Al is the solution to a1/aA1 = 0, 

i.e. i1 = r/ jil xj. If now, IA = -a
2L/ni I~ , the observed Fisher information 

1 ,. 1 2 2 
with respect to Ap then for large n, IA (},

1 
- A

1
) ~x:

1
• It is likely that 

1 
this result is more accurate for the transformed parameter q =log(µ)= -log(A

1
), 
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Hence, an approximate 100(1-p) percent confidence interval for q will be 

(5.2) 

The second (invariant) method is based on the likelihood ratio,., 

A 2 
using the fact that 2{LC\

1
) - LC\)} ~ x

1 
for large n. Thus, 

(5. 3) 
" 2 

{q: 2[~(q) - L{q)] < x
1 

(p)} 

is an approximate 100(l~p)% confidence interval for q. To express (5.3) 
n " · -l~g(Ex ./r) 

in terms of sample quantities, note ~hat L(q) = -rq - e -qj~l xj, e· q = e· · · :J 

n 
= j~l xj/r, and hence, L{q} = -rq - req - q. Thus, 2[L{q} - L{q)} = 2r(y+ e-y + 1), 

A 

where y = q - q. Hence an approximate 100(1-p} percent confidence interval 

for q is 

(5. 4) 

where y 
1 

< y
2 

are the solutions to 2r(y + e-y + 1} 
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6. Applying the Jackknife to Censored Data 

It is straightforward to use the jackknife procedure to estimate 
,. 

the bias and variance ofµ. With the assumption thatµ is approximately 

normal, it is also possible to give approximate confidence intervals for 

µ. However, it is reasonable to believe that log (µ) is more nearly normal 

thanµ in finite samples; e.g. log(µ) can be negative whileµ cannot. 

Therefore, it would also be desirable to do a jackknife analysis ofµ on 

the log scale. In what follows, the quantities related to a log scale 

analysis will be denoted by an L subscript or superscript. 

All the formulas needed for the jackknife analysis ofµ and log(µ) 

have already been given. Equation (4.2) is the formula for calculating 

" "O "O "O ( ) µ = t(F )·, given the estimated survival function, S = 1 - F .- Equation 4 .1 

is the formula for calculating S, given the observed data (X1 ,d1), ••• ,(Xn,dn). 

Equations (4.1) and (4.2) can also be used to calculate µj = t(F(j)) by simply 

omitting (X.,d.) and using n-1 instead of n. However, in practice it is 
J J 

computationally more efficient to calculate the µ(j) by the following 

algorithm than to calculate each estimate by an application of (4.1) and 

(4.2). 

Algorithm: Let M be the n x n matrix with elements Mil= 1, Mi,i+l = 1; 

-( 1 )d(j-1) . • _ ( 1 )d(j-2) . . _ Mi. - l • l , 2 < J < i, M .. - 1 - . 2 , J > i + 1, M - 0 J -n-J- - - J.J n-J-: nn 
,. n J ,. ,. 

with d(O) = O. Then µ(j) = j~l (X(j) -X(j-l))kJ!l Mik' where µ(j) is the µj 

- -which results from omitt~ng X(j). The formulas for band V, the jack-

knife estimates of the bias and variance ofµ are given by (2.2) and 

(2.3), where I. is as defined by (2.1). An approximate 100(1-p) percent 
J 

confidence interval is as given by (2.13). 
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.. 
-L . ,;_ " . 

If I.= (_n-l){log(µ) - log(µ (.))} is taken as a starting point, then the 
. J . '- J 

jackknife analysis of log(µ) is completely analogous to the jackknife 

analysis ofµ. The symbols ~Land VL will represent the jackknife estimate 

of the bias and variance of log(µ}. 
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7. Applying the Bootstrap to Censored Data 

The application of the bootstrap procedure to the censored data problem 

requires a bit of care. The previous description of the bootstrap involved 

only a single underlying distribution, whereas the censored data problem 

has two underlying distributions, F
0 and G. The major effect of this 

difference is in the manner in which bootstrap samples are generated. 

The most general way in which to generate a bootstrap sample for the 

censored data problem is as follows. Obtain F0 
and G, the K-M estimates 

of F and G, from the given sample (X1,d1), ••• ,(Xn,dn). Generate an 1• 

artificial sample of independent pairs, where x;x. r,J F0 
,- and y;·...:..G, and 

* * * * * * where X. and Y. are independent. Then (X1,d1), ••• ,(X ,d) is the desired 

J J * o-* o *----------;·-{1, n X1f 1!: x~ * . If Y 
bootstrap sample, where X. =min(X. ·,Y. -) and d. = 0 X~ YJ* 

J J J J. , i= 
is a random variable, as in this paper, an equivalent and slmpler way to 

. . * * * * generate a bootstrap sample is the following: Obtain (X1,d1), ••• ,(Xn,dn) 

by sampling n times randomly and with replacement from (X1;·d1), ••• , (Xn,dn). 

To understand this equivalence we consider the m.l.e. 's of S = 1 - F , 

__ S_
0
_= 1 - F

0 

.!~_cl?~ R = 1_:_~_._S _, __ t!1e ~;-~~~-- °-~. S, is as defined in (4 .1). 

The K-M estimate R, the m.l.e. of R = 1 - G, is given by 
.,,. l 1-d(.) 
R(t) = . IT <t (1 - ·+l) J If a, b, c are independent random variables 

J:X(j) n-J 
having c.d.f. 's A, B, and C, and if a=min(b,c), then it is easily shown that 

A= 1 - (1-B) (1-C), i.e. (1-A) = (.i-B) (1-C). From this we conclude that 

(1) S = S.0R, i.e. S is the nonparametric m.l.e. of S = 1 - F, and (2) S is the 

* c. d • f • of X. , 1 < j < n. 
J 

" " The definitions of$ and R imply 

S(t) 1 
= · X Il t (l - ·+1) J: (j)< n-J . 

n-kt 
=--' n 
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where kt is the largest j such that X(j) < t. In other words, S(t) assigns 

probability .!. to each X., 1 < j < n. 
n J 

AO A A 

F -and G, like F, assign positive probability to only a finite number 

of points - some subset of x
1

, ••• ,X. F0 assigns positive probability only 
n 

to those X. for which d. =1, while G assigns positive probability only 
J J 

to those X. for which d. = O. 
J J 

Thus, if x: = x~*=x., d. = 1 by definition and 
J J 1 J 

* * d. = 1, and likewise, if X. = Y. = X., 
1 J J 1 

d~ = 0 by definition, and d. = O. 
J 1 

Therefore, the only possible values of (X~,d~) in the first method are 
J J 

* * * 1 (X1 ,d1), ••• , (Xn.dn). But Pr{ (X. ,d.) = (x. ,d.)} = Pr(X. = X.) =- by the 
J J 1 1 J 1 n 

previous paragraph, and we have shown that the first and second methods are 

equivalent. The rest of the bootst~ap procedure for the consored data 

problem is as originally described. "* "* Thus b and V, the bootstrap estimates 

of the bias and variance ofµ, are as given in (3.1) and (3.2). Con

fidence intervals forµ are as given by (3.3) or (3.4). 
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8. Simulation Results and Conclusions 

A number of simulations were done to evaluate and compare the per

formances of the jackknife and bootstrap with respect to (a) the estima

tion of the bias and variance of µ and log_(µ) and (b) confidence interval 

procedures forµ and log{µ). For these simulations, it was assumed that 

X
0 

and Y were independently exponentially distributed with means µ = E{X0
) = 1, 

and 0 = E(Y) = 4. These assumptions imply that the censoring rate is 0.20: 

P{X 0 >Y) =J~ r; ¼ e-y/e i e-x/µ dxdy= µ~e = 0.20. 

Tables 1 and 2 display the simulation results for the bootstrap and 

jackknife estimators of the bias and standard deviation f ofµ and log(µ). 

The first column of these two tables contains the actual values of the bias 

and s. d. of µ and log ( µ) as estimated by a large simulation of size N = 10, 000. 

The next two columns are, respectively, simulation estimates of the expected 

values and s.d.'s of the bootstrap and jackknife estimators. The last two 

columns are n, the original sample size, and N, the number of samples in 

each simulation. The number of bootstrap samples used was always 500. 

Table 3 contains the simulation results for the jackknife, bootstrap, 

and likelihood confidence interval procedures forµ and log(µ}. For each 

confidence interval procedure, Table 3 gives the simulation estimates of the 

percentage of right and left errors (RE and LE), and the actual coverage 

rate (percentage of total errors, TE). For the log scale, Table 3 also 

gives the simulation estimates for the expected confidence interval 

length of each procedure. 

f The standard deviation is, in general, of more interest than the variance, 
and thus, it was the quantity which was re.ported~ •. 
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Table 1: Bias Estimation 
,. 

Biasµ 

Jackknife 

Actual E(b) s .d. (b) n N 

-.0313 -.0307(+ .003) .0977 10 1000 
~~0071 -.0074(+ .001) .0225 50 1000 

BootstraE 

Actual E(b*) "* s .d. {b ) n N 

-.03JJ3 -.0279(+ .002) .0487 10 1000 
-.0071 -.0099(± .001) .0154 50 500 

,.. 
Bias log (µ) 

Jackknife 

Actual E(bL) s.d. (bL) n N 

-. 0931 -.0892(+ .004) .1149 10 1000 
-.0197 -.0204(± .001) .0261 50 1000 

BootstraE 

E(b~) "* 
Actual s .d. (bL) n N 

-.0931 -.0688(+ .002) .0534 10 1000 
-.0197 -.0217(+ .001) .0152 50 500 
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Table 2: S.D. Estimation 

s.d. (µ) 

Jackknife 

Actual E(/f) s.d • ./ v n N 

.3448 .3159(+ .006) .1878 10 1000 

.1579 .1555(± .002) .0490 50 1000 

Bootstra:e 

Actual E(/v*} s.d. /v* n N 

_. 3448 .2540(+ .004) .1221 10 1000 
.1579 .1338(± .002) .0367 50 500 

~ 

s.d. (log (µ)) 

Jackknife 

Actual E(~) s~d~ (~) n N - --
.3535 .3451(+ .005) .1470 10 1000 
.1591 .1597(± .001) .0396 50 1000 

Bootstra:e 

E(b~) "* 
Actual s .d. (b1) n N 

.3535 .2907(+ .003) .0947 10 1000 

.1591 • 13 72 <± • 001) .0248 so 500 
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Table 3: 95% Confidence Intervals 

Forµ 

_Method LE RE TE n N 

Jackknife .146 .005 .151(+ .01) 10 1000 
Bootstrap .182 .016 .198(+ .01) 10 1000 
Bootstrap .206 .046 .252(± .01) 10 1000 

Jackknife .073 .008 .081(+ .01) 50 1000 
Bootstrap .108 .012 .120(+ .01) 50 500 
Bootstrap .110 .020 .130(+ .01) 50 500 

For log {µ) 

Method LE RE TE E(len~th) n N 

Jackknife .089 .019 .108(+ .01) .6764(+ .009) 10 1000 
Bootstrap .116 .032 .148 (+ .01) .5698(+ '.006) io 1000 
Bootstrap .077 .110 .187(+ .01) 1.1071(+ .005) 10 1000 
MLE .047 .005 .052(+ .007) 1.4001(+ .004) 10 1000 
Likelihood .033 .028 .061(+ .008) 1.4206(+ .004) 10 1000 

Jackknife .051 .015 .066(+ .01) .3131(+ .003) 50 1000 
Bootstrap .986 .024 .110(+ .01) .2689(+ .002) 50 500 
Bootstrap .062. .052 .114(+ .01) .5345 (+ .001) so 500 
MLE .018 .016 .034(+ .008) .6204(+ .004) so 1000 
Likelihood .016 .018 .034(+ .008) .6232(+ .004) 50 1000 
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An estimator accurately estimates a parameter only if (a) the expected 

value of the estimator is close to the actual parameter value and (b) 

the s.d. of the estimator is small, especially with respect to the 

expected value of the estimator. In terms of (a), the jackknife estimators 

of bias and s.d. do quite well. The bootstrap estimators of bias and s.d. 

don't do quite as well in terms of (a) especially the bootstrap estimators 

of s.d. which underestimate the actual s.d. In terms of (b) both the 

jackknife and bootstrap do poorly with respect to bias estimation as the 

s.d.'s of the estimator are substantially larger than their expected 

values. However, with respect to (b), both the jackknife and bootstrap do 

well with respect to s.d. estimation in the sense that the s.d. estimators 

have s.d.'s substantially smaller than their expected values. Note that 

in all cases the s.d. of a bootstrap estimator of bias or s.d. is notice

ably smaller than the s.d. of the corresponding mafkknife estimator. 

There seemed to be little advantage in using the log scale instead of the 

original scale in either bias or s.d. estimation. 

A confidence interval procedure performs well only if (a) the actual 

coverage rate is close to the desired coverage rate and (b) the percentage 

of right and left errors is roughly equal. In addition, for any two 

confidence interval procedures with similar (a) and (b) behavior, we 

prefer the one which yields shorter Cl's on the average. The two likeli

hood CI procedures perform well in terms of (a), but are actually too 

conservative for n=50. These procedures also perform well in terms of (b) 

except for the MLE procedure when n= 10. The expected CI lengths are, 

however, long in comparison to the other methods. The jackknife performs 
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.. 
well in terms of (a) when n=SO. In terms of (b), its performance is always 

poor. However, the expected CI length of the jackknife compares favorably 

to that of any other CI procedures. (Note that expected CI lengths were 

given only for the log scale.) Both bootstrap CI procedures perform poorly 

with respect to (a). The percentile method performs well with respect to 

(b) on the log scale. The expected CI lengths of the percentile method 

are relatively large, while the other bootstrap CI procedure has expected 

CI lengths which are relatively short. Overall, it seems that the jack

knife is superior to bootstrap as far as CI procedures forµ and log(µ) 

are concerned. 
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9. Bibliographic Notes 

Basic reviews of jackknife methodology and theory are given by 

Miller (1974), Efron (1982), Hinkley (1982). The latter two references 

also discuss bootstrap methods. A specific discussion of bootstrapping 

with censored data is given by Efrom (1980). A study of influence 

functions in censored data problems has been published by Reid (1981). 

General accounts of the Kaplan-Meier estimate may be found in Miller (1980) 

and in Kalbfleisch & Prentice (1980). 
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