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1. Introduction 

Econometric and other statistical models are often simplifications of 

extremely complicated phenomena and it is a mistake to assume that any par­

ticular model is actually a true representation of the underlying process. 

What is assumed or hoped is that the model may be an adequate description 

and perhaps potentially useful for some purpose. Hence it is often 

puzzling why there has been so much effort, especially in the softer 

social sciences, devoted to "testing" parameters of a model as if they were 

true entities and not as in most instances, convenient artifices. A more 

substantial enterprise than testing should be model selection, i.e. 

selecting one of several alternative models such that the selected model 

(irrespective of its truth) would serve best some purpose of the investiga­

tor (descriptive or predictive, perhaps). Hopefully, the selected model 

also represents some reasonable approximation to the truth, complicated as 

that may be. 

In theory, there is no intrinsic difficulty for the Bayesian statistician 

who can determine a prior probability qk for each potential model ~ 

that could have generated the set of data, and who can also determine, 

given a particular model ~, a proper prior density for the parameters 

specified by the model. A posterior probability qk is obtained for 

each model and a model selected based on all of the qk and a cost or 

penalty for choosing an incorrect model. If prediction of a future 

value Y is at issue than one calculates its predictive distribution as 

*Research supported in part by NIH Grant GM 25271. 
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(1.1) 

where D represents the data in hand and Fp(ylD, ~) is the predictive dis-

Con-tribution function conditional on Y having been generated by ~ 

ceptually all predictive inferences and decisions flow from (1.1). For 

example a point predictor that minimizes squared error is 

E(YjD) = ~qk E(YID, ~) . (1.2) 

Other loss functions can bring to the fore the predictive mode or median of Y. 

But either for the investigator or the statistician, the situation 

is seldom so straightforward. As already indicated, the set of statisti­

cal models employed rarely includes an exact representation of the process, 

and even if it did, prior probabilities for either the various models 

or the parameters for any given ~ are rarely specifiable with any 

degree of confidence. Moreover most investigators, if not statis-

ticians, are unsure about their preference for a loss function. 

With this in mind, it appears of some importance to be able to 

devise reasonable and useful model selection procedures that do not depend 

on such tight specifications and evaluate them from more than one stand­

point so as to make the rationale for their use as convincing as possible. 

Former reservations notwithstanding it is still of some interest (of prime 

interest for classical statisticians, certainly) to determine the rate at 

which a model selection procedure yields the true model wrien in fact the 

true model is one of the alternatives considered. A second approach--

which some might consider primary--is to attempt to assess various selec­

tion procedures in terms of their predictive capacity, recognizing again 

the fact that, more than likely, none of the models considered is the true 

one and the best that can be asked of competitive model selection procedures 

is to find that procedure which appears to possess in some sense the best 

predictive capability over a broad spectrum of possibilitie8. 
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In this paper we initiate such a study of four model selection pro­

cedures with comparisons restricted to two common distribution families. 

We determine, by simulation, estimates of the frequency with which each 

chooses a "true" model and by using a prediction rule compare the selection 

procedures for a number of situations on the basis of squared prediction error. 

In making our comparisons, we have restricted ourselves to the situa-

tion where the "true" model is among the alternatives considered in order 

to contrast the comparisons of correct selection rates and squared errors 

of prediction. Also, we decided to employ a fairly simple-minded predic­

tion procedure or rule which was to use only the model selected in contrast 

to what is indicated by (1.1). It is our belief that most investigators 

commonly would use such a."rule" and it is of interest to make our rela­

tive comparisons on this basis. 

2. Selection Criteria 

Suppose we have available a set of data x = (x
1

, ... , xN), pre-

sumably a realization of the random variable X = (X1 , ... , ~). Several 

potential models M1 , ... , Mm are entertained as having possibly generated 

or offered a satisfactory explanation for the data or more directly may 

be useful for predicting future values from the underlying process 

which generated the data. 

We further assume that ~ specifies a joint density f(~l~k' ~) 

where 0 
~k is some set of unknown parameters. 

In such situations several procedures have been put forth for choosing 

the most appropriate of the entertained models. Akaike (1973), using in­

formation theory, devised what has come to be known as the Akaike informa­

tion criterion (AIC) which is equivalent to selecting that model which 

maximizes 

{2.1) 
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A 

where ~k is the maximum likelihood estimator of ~k and pk represents 

the number of unknown parameters. For regression problems this is equiva­

lent to the "C" criterion of Mallows (1973). p 

Schwarz (1978) developed an asymptotic expansion to an exact Bayes 

procedure which for nested situations assigns positive probability to lower 

dimensional subspaces of the parameter space. He employs the two leading 

terms of the expansion as a basis for selecting the model which is a pos­

teriori most probable. His work includes as special cases an earlier effort 

by Jeffreys (1967) and a further development for regression situations by 

Zellner and Siow (1980), for large enough samples. The method is equivalent 

to selecting the model which maximizes 

-pklog/"N ,,.. 
Sk = e Lk ( ~k) . (2. 2) 

This large sample Bayes (LSB) criterion assumes that there is a 

fixed and equal penalty (with possibly minor perturbations) for 

choosing the wrong model. When this latter assumption is made, Schwarz 

points out that Ak.aike's AIC cannot be asymptotically optimal. Indeed AIC is 

not even consistent! Although Ak.aike did not explicitly state what loss or 

penalty he considered or even if he considered one at all, it is easily 

shown and alluded to in Geisser and Eddy (1979) and more precisely in 

Geisser (1980) that AIC, for the same assumptions as Schwarz made, is also 

asymptotically Bayes but with penalties that depend on the sample size and 

the kind of selection error made. This is immediately apparent by comparing 

(2.1) with (2.2) and noting 

(2. 3) 

Hence if ~C~; then, in the light of (2.3), the selection of ~ over 

~; requires that 
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Sk > (IN°/e)dSk~ 

where d = pk~-pk. Hence the relative penalty (the coefficient of Sk~) 

increases rapidly with N for N > 8 • This implies that for Akaike' s 

procedure a severe relative penalty is incurred when a "false" lower dimensional 

model is selected as opposed to selecting a "false" higher dimensional model. 

For many prediction problems involving nested models this often makes good 

sense. 

For example asswne that n observations are taken from each of two popu-

lations 

namely 

Ill and n
2 

where II. 
1 

is 
2 

N(µ.,cr) 
1 

Ml: µ1 = µ2 
2 . f. d a unspeci ie 

M
2

: l-1
1 

f l-1
2 

; cr
2 

unspecified 

and two models are entertained, 

Here it can easily be shown that the probabilities of correct selection, when 

M1 
is true, for the criteria ~ and Sk are respectively 

and 

1 

C(A) = Pr[F1 , 2 (n-l) ~ 2(n-l)(en-l)] 

1 
2n 

C(S) = Pr[Fl, 2 (n-l) ~ 2(n-1) [(2n) -1] 

where Fa,b is an F variable with a and b degrees of freedom. 

l t is easily shown that C (A) ~ C (S) for all n ~ 4 and 

lim C(A) 
n-+00 

= Pr [ X 
1
2 2. 2] • . 843 

lim C(S) = 1. 
n-+00 
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On the other hand, it is clear that the power 1-8 of these criteria are 

such that l-8A ~ l-Bs for all n > 4 and that both tend to 1 as n grows. 

Moreover, when M
1 is true but M

2 is chosen by the selection process, 

the squared error of any sensible predictor of future values from JI. will 
1 

tend to 2 
cr as n grows. For prediction purposes consistency of an error of 

the first kind may be largely irrelevant in this nested situation. 

Geisser and Eddy (1979) put forth two model selection criteria based 

on predictive sample reuse (PSR) methods suitable for independently dis­

tributed variates such that Xj has density f(xjl0k, ~). The first, 

termed PSR quasi-likelihood (PSRQL) selects that model which maximizes 

N " 
JI f (x. I 0k ( . ) , M_ ) j=l J ~ J -K 

A 

where 
~k(j) is the MLE of ~k with x. omitted. The second cri-

J 
terion, termed PSR quasi-Bayes, selects that model which 

maximizes . 

N 
Lk· = IT f (x. Ix (.), M. ) j=l p J ~ J -l< 

where denotes that x. 
J 

has been deleted from x and where 

f (·) represents a predictive density. The latter is calculated as p 

follows 

(2.4) 

(2.5) 

(2.6) 

is a posterior distribution of ~k based on ~(j) and 

usually a diffuse prior on ~k. A complete explication of these methods 

appears in Geisser and Eddy (1979). In comparing models in a nested 

situation when a lower dimensional model ~ is assumed to be true, then for 

" a reasonable class of priors, it can be shown• that Ak~, 11<.; and Lk; 

are asymptotically equivalent for any ~, which contains ~. 
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In order to have an idea of how these methods perform in practice 

we shall compare them in two cases. First we shall use the simple ex­

ponential distribution and two models. Under M1 we assume that a 

dichotomously labeled random sample ~ = (~1 , ~2), Xi= (Xi1 , ... XiNi) 

i = 1,2, is a set of N1+N2 
= N iid random variables each with density 

i.e. the sampling distribution does not depend on the label. Under M
2 

we assume that the label is relevant and X .. is a random sample from 
1.J 

with 

where 

-AX 
f(x!A., M2) = A.e i 

1. 1. 

The AIC criterion compares 

N.X. = 
1. 1. 

x .. , NX = 
1.J 

i=l, 2 ; 

for 

j =1, ••• , N. • 
1. 

i=l, 2 

The large sample Bayes procedure as given by Schwarz compares 

with 
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The PSRQL Method compares 

with 

2 Ni 

II II 
i=l j=l 

For the PSRQB method we assume prior densities for 

usual non-informative type namely, 

-1 
g(A.) ex A. 

l. l. 

A. to be of the 
1 

With this formulation [Geisser and Eddy (1979)], we compare 

with 

L = 
2 

2 Ni 

IT II 
i=l j=l 

2 Ni 

rr rr 
i=l j=l 

N-1 (N-1) (Nx-xi.) 
J 

(Nx)N 

N -1 
(N.-l)(N.x.-x .. ) i 

l. l. l. l.] 

For the second case we assume that the data are samples from one 

of two normal populations with density 

f(xlµ 1 ; a!) = (2110//liexp (-
20

~ 2 (x - µi/) , i=l,2 . 

Suppose, however that there are three possible models (nested) 

2 
= 02 

2 
= 02 

(2.7) 

(2.8) 
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Here the AIC criterion selects the model ~ according to the 

largest ~ where 

where 

N+4 
- - -N/2 

A = e 2 (2ns2) 
1 

A = e 
2 

N+6 --2 

N+8 
- -2-

A3 = e (Zn) 

NS
2 

= LE (x .. -x>2 
- i j l.J 

NT
2 

= E r (x .. -x . ) 2 
• . l.J 1 
]. J 

N
1
.si2 = E (x .. -x. / . 

j l.J 1 

The LBS criterion selects ~ according to the largest of 
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For the PSRQL criterion the relevant comparison is among 

where 

2 N. 
-½ [ 

1 2 ,.. 
L = IT IT (21TT (ij)) exp -1 i=l j=l 

N. 2 1 2 -½ [ A 

L = IT IT (21TS (ij)) · exp -2 i=l j=l 

2 N. 
-½ [ 

l. 2 A 

L3 = IT IT (21TS i (j)) exp -
i=l j=l 

(N-l)i(ij) = Ni-xij 

(N-l)T~ij) = 

N. 
l. 2 

- r. (x. -X.(.)) t=l it i J 

t=t=j 

(x .. -x { .. ) ) 
2 l 1] l.J 

2 
2T (ij) 

- >2 l (x .. -x. C) 
l.J l. J 

2 
2S (ij) 

(x .. -x. C )/ l l.J l. J 
2 

2S i (j) 

i=l,2 

For the PSRQB criterion we use the usual improper prior density of the type 

-1 g(µi, cri) ~ cri , and choose the model corresponding to the largest Lk. 

Here 

2 
L
1 = IT 

i=l 

Ni [ N-1 ]½ r[(N-1)/2) 
j~l 1T(N-2)N r[(N-2)/2]t(ij) 

• [1 + (N-l)(xij~\ij))2] -(N-2)/2 

N(N-2)t(ij) 



where 

where 

and 

2 
(N-2)t(ij) = 

2 Ni 

L2 = II JI 
i=l _j=l 

. 

2 
(N-3) s ( ij) 

2 N. 
1 

L3 = n IT 
i=l j=l 

- 11 -

2 
(N-l)T (ij) 

[ 11 c:~;~N1-] ~ ·rr ~!~~)2~;~! Cii > 

[

- (N -J) ( _- )2]-(N-2)/2 
1 + -- i . Xi j Xi (j) 

2 
N. (N-3)s( .. ) 

1 l.J 

2 
(N-l)S(ij) 

2 
(N . -1) S . ( . ) 

1 1 J 

[

·--·~i ~~-----] ½ r[ (Ni-1) /2] 
n(N.-2)N. i[(N.-2)/2]s.(.) 

l. 1 l. l. J 

• 
[ 

(N.-l)(x .. -x.(.)>2]-(Ni-1)/2 
l + 1 1] 1 J 

2 
Ni(Ni-2)si(j) 

In both the normal and exponential cases discussed, the data are 

differentiated by a binary label and a predicted value is required for 

each label. A full Bayesian treatment follows similar to that in 

Section 1. Here we need to predict a future value for each label. 

Hence, the predictive density of the two values (Y1 , Y2) is 

where q~ is as in Section 1 and 
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All predictive inferences about Y1 , Y
2 

would then flow from fp(y
1

, y
2

1o). 

In the absence of being able to execute this fully we will investigate and 

compare the use of the afor•ementioned model selection procedures with regard 

to correct selection rates and error of prediction when the selection method 

is conjoined with the simple predictive rule set forth in the previous section. 

3. Simple Exponential Models 

A simulation was performed to compare model selection rates and predic­

tive squared error of the four procedures when used in the exponential setting 

described in Section 2. The relative size of the parameters for the two popu-

lations was varied by setting A = 1 
1 

and A
2 

= 1(.5)2.5. For each value of 

A2 a sample of size n was generated for each population1 , the model selec­

tion procedures were applied and the selected model noted. This was repeated 

10,000 times and the proportion of correct selections for each procedure was 

recorded. The results for selected values of n ranging from 4 to 20 

appear in Table 1. Our choices of A
2

, n, and the number of replications were 

aided by a preliminary simulation study by Seber (1979). 

As noted in Table 1, these estimates of the probability of correct model 

selection have standard errors ranging from .004 to .005. When comparing 

different procedures for the same value of A
2 

and n, the standard error of 

a difference of estimated probabilities has been reduced by computing the 

estimates from the same data sets. In the discussion that follows in this 

paper, a difference will be called "significant" if it exceeds twice the stan-· 

dard error of that difference. We intend only to use this as a benchmark for 

making comparisons, and do not imply that a formal test is being made. 

The behavior of the LSB procedure is distinct from the other three proce­

dures. It is the only one of the procedures which is consistent, that is, fts 

1Generated by the inverse cummulative method with uniform pseudorandom 
numbers supplied by the University of Minnesota Computing Center's routine 
RAN2F. 
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correct selection rate goes to 1 as n increases under M
1

• When M
1 

is true, the probability of correct selection for the AIC, PSRQB and 

PSRQL procedures has an asymptotic value of .843 as noted in 

section 2. The first section of Table 1 reflects this asymptotic be-

havior. The LSB procedure makes more correct selections under M
1 

and 

fewer correct selections under M
2 

than the other procedures. 

The other three methods act more similarly with the AIC perhaps pre­

ferred; the AIC is never significantly worse than PSRQB and is signifi­

cantly better than PSRQL in all but a few parameter configurations. Under 

M1 , AIC is significantly better than PSRQL and PSRQB for small sample sizes. 

The PSRQL criterion is clearly the poorest under M
1 

for sample sizes of 4 

and 8, but is best at A
2 

= 1.5 for the same sample sizes. These are 

parameter assignments which are close to M
1 

and thus the superiority of the 

PSRQL criterion there is not surprising in light of its poor performance 

under M1 . To see this, observe that under M
1

, it selects M
2 

more fre­

quently than the other procedures. Not surprisingly, as we move slightly 

away from M1 , it still picks M2 more often, thus doing better than the 

others. However, as we continue to move farther from M
1

, or as we in­

crease the sample size, AIC and the PSRQB method become clearly better. 

Differences between AIC and PSRQB are small under M
2

, although for 

two combinations (A
2 

= 1.5 with n = 20 and A
2 

= 2.5 with n = 8) AIC 

is significantly better than the PSRQB method. In no situation was the 

PSRQB method significantly better than the AIC. 

Various prediction problems could arise in this setting; the one which 

we will consider here was discussed in section 2. The problem supposes a 

need to predict a future observation from each population (under M
1 

they 

are identical populations) with loss measured as the sum of squared predic­

tion errors. Also, we use the outcome of the model selection process to 

determine our predictions. 
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Specifically, the problem examined is to predict future observations 

labeled as Y1 and Y2 with Yi distributed as an observation from the i th 

population. If our predictors are 9
1 

tion error is E[(Y1-91) 2 + (Y2-92)
2
]. 

and 9
2

, then the expected squared predic­

Since E(Y.-y.)
2 = Var Y. + E(y.-EYi) 2 , 

l. l. l. l. . 

we need only estimate the last term in the simulation. Doing so increases the 

accuracy of the estimate and eliminates the need to generate new observations, 

Yi. Following Geisser and Eddy (1979), if M
1 

is. selected then we set 

"' "' the grand mean, the predictors; if Y1 = Y2 = X , as M2 is selected then 

"' for i = 1,2 are used. Table Yi = x. 2 gives the estimates of the expected 
1 

squared error of prediction (SEP) for the cases examined. 

Examination of the table shows the LSB method doing better under Ml 

and usually poorer under M2 • The other three procedures seem indistinguish­

able with regard to prediction error. Surprisingly this is true even in 

those situations when one procedure clearly makes more correct model selec­

tions. Thus, only LSB yields significantly different prediction errors and 

the magnitude of these differences is not consequential. The largest rela­

tive difference in squared error is only 1.5% which occurs when A2 = 2.0 

and n = 20. One might argue that in comparing estimates of SEP that they 

should be expressed in the same units as the original observations. We 

can do so by comparing the square roots of the estimated SEPs. In this case, 

the relative difference of transformed estimates is .8%. This corresponds 

to a 17 percentage point difference in probability of correct selection for 

this parameter assignment. 

Three other columns are included in Table 2 to give some guidance in 

judging how well we are doing or can hope to do. The expected squared error 

of prediction when A. is known (SEPK) represents the unavoidable part of 
l. 

the loss which occurs due to the random variability of the observations to 

be predicted. Consequently, it can be viewed as the asymptotic limit of 
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the prediction error for given values of Al and A2 as n increases. 

The prediction error which would occur if we knew the correct model (SEPC) 

but did not know the actual values of Al and A
2 

represents how well a 

"foolproof" model selection procedure would do. The error incurred if 

we always use the wrong model (SEPI) is also given. In some cases (A2=1.5 

with n = 4,8 or 12 and A
2
=2.0 with n = 4), it is better to be always 

wrong than always right! Of course, it is no easier to be always wrong 

than always right. 

If we look more carefully at one of the cases where SEPI is less than 

SEPC, such as A
2 

= 1.5 and n = 4, the problem is a little clearer. In 

this case all of the model selection procedures have estimated squared 

errors of prediction which are less than SEPC and greater than SEPI. To see 

why this might be the case, consider using a predictor for Y1 of the form 

ax+{l-a)x
1

. One can show that for this parameter assignment the optimal pre-

dictor of this form has 16 
a= 17. This predictor is very close to x, 

which is used under SEP!. These cases emphasize that prediction is not 

coincident with model selection and that optimal squared error predictors 

need not be based on the acceptance of a single model, but on a combination 

of them--this, of course, is well known. 

4. Normal Models 

The correct selection rates and predictive squared error of the four 

selection criteria were also compared using simulated normal data 

(2. 7). We consider a variety of combinations of the parameter 

values which conform to the possible model restrictions (2.8). For 

simplicity, we fix µ1 = 0, cr
1 

= 1, and vary µ
2 

and cr
2

• Tables 3 and 4 

contain the parameter configurations used. 
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Similar to Section 3, for each given parameter assignment a sample of 

size n (=N =N) 1 2 
was generated from each population2 , the model selection cri-

teria were applied, and the selected model was noted. We repeated this process 

2.000 times.3 and noted the proportion of correct model selections by each pro-

cedure. These results for n = 10 and n = 20 appear in Table 3. For 

reasons explained below, we also noted the proportion of selections of M1 ; 

these data also appear in Table 3. 

The estimates in Table 3 have standard errors which lie between .008 

and .012. As in Section 3, the estimates within a given row of Table 3 

are based on the same data sets. This yields estimates which are positively 

correlated, thus reducing the standard error of a difference in estimated 

probabilities. Typical standard errors for a difference range from .002 to 

• 008. 

Generally speaking, the AIC is best in terms of frequency of correct model 

selection, with some interesting exceptions. Under M
1

, (µ
2

,cr
2

) = (0,1), 

LSB criterion is constructed to be consistent, and so it is not surprising 

the 

that it should dominate the other selection criteria when the sample size is 

large. It is perhaps a little surprising that it is clearly better for n as 

small as 20. When n is 10 no other method is significantly better. The 

other instances where the LSB method dominates the remaining methods are when 

and is large (n=l0, µ2 = 2,4 and n = 20, µ
2 

= 1,2,4 ). 

To see why this might be so, note that due to the penalty structure imposed in 

the LSB method it tends to choose lower dimensional models. Thus, when cr
2 

= 1 

and is large, while both the AIC and LSB procedures are fairly successful 

in determining that M1 is incorrect, the AIC tends to pick M
3 

too frequently. 

2using the University of Minnesota Computing Center's pseudorandom 
normal variate generator NORMAL. 

3Except as noted in Table 4, where 10,000 repetitions were used to reduce 
the standard error of the estimates contained therein. 
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This is borne out by computing the proportion of times M3 is chosen by each 

method. (These calculations can be made from the data in Table 3.) On the 

other hand, when M
3 

is the true model, the AIC performs better than the LSB 

criterion. This results because the latter method tends to prefer lower 

dimensional models and thus frequently avoids choosing the correct model, M3. 

The situation becomes more difficult when one attempts to rank all four 

selection criteria in terms of their ability to select the correct model. 

Generally we see that the PSRQL and PSRQB methods have correct selection rates 

which lie between those of the AIC and LSB method. Some exceptions to this 

arise when cr
2 

= 1 and µ
2 

is intermediate in size. This is not surprising, 

for in this region dominance passes from the AIC to the LSB criterion. Other 

exceptions arise when cr
2 

= 2, n = 10, and µ
1 

= 1,2 or 4; cases where the 

PSRQL procedure performs quite poorly. We also observe that when M2 is cor-

rect then the PSRQL procedure dominates the PSRQB method; this is generally 

reversed when M
2 

is false (exceptions are cr2 = 1.5, n = 20, µ2 = .25,.50). 

It is also evident from Table 3 that, while the PSRQB, PSRQL, and AIC are 

asymptotically equivalent, for small samples there can be large differences be­

tween their correct selection rates. 

A somewhat different situation arises when we compare the four methods 

with respect to prediction error. As in Section 3, our interest here is in the 

expected squared error of prediction (SEP) where the predictors are based on 

model selection. If, for a given data set, a model selection procedure picks M
1

, 

then we set the predictors y
1

=y
2

=x, the grand mean. On the other hand, if the 

selection procedure picks M
2 

or M
3

, then we set y1=x
1 

and y2=x2 , the 

individual sample means. Also, as in Section 3, we estimate the SEP by esti­

Table 4 contains the esti-

mates of the SEP for each parameter combination and model selection criterion. 

The table also contains the standard error of each estimated SEP. Note that if, 

for a given parameter configuration, the selection criteria always agree to 
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reject Ml, then <91,Y2) = (xl,x2) always, and so the estimate of the SEP will 

be the same. This occurs, for example, when µ
2
=4, o

2
=2, and n=20 (see 

Tables 3 and 4). 

In any case, the four procedures behave quite similarly in terms of pre­

diction error. In particular, even though the standard errors of their estimates 

of SEP are small, it is difficult to determine a unique best procedure for a 

given parameter specification. With this difficulty in mind, we note that for 

the most part the AIC procedure either yields the smallest point estimate of 

the SEP, or that estimate is not significantly different from the smallest 

point estimate of the SEP for a given assignment of parameter values. In the 

case where this fails (µ
2
=0, cr

2
= 1; µ

2
=.25, o

2
=1, n=lO; and µ2=.25, o

2
=1.5) 

the AIC is in fact the worst performing procedure, and one might prefer one 

of the PSRQB, PSRQL, or LSB procedures. Indeed, in the cases noted, these 

three perform similarly, and except when µ
2

=0, o2=1, and n=20, they do not 

differ significantly from each other. (When µ
2
=0, o

2
=1, nc20, the PSRQL 

method performs significantly worse than the PSRQB and LSB methods.) On the 

other hand, when the AIC is the best performing procedure, then the other 

three methods tend to differ for small values of µ2 (where the PSRQL method 

performs better than the LSB or PSRQB methods) and for moderate values of µ
2 

(where the LSB procedure dominates the PSRQL and PSRQB methods). 

large, all four methods yield essentially the same results. 

When is 

When comparing the criteria in terms of SEP it is important to note that 

even in those cases where the selection procedures do yield significantly dif­

ferent SEP estimates, the relative difference is small. For example, if 

µ2=1, cr2=1, n=lO, then the smallest point estimate of the SEP is 2.242 pro­

vided by the AIC and the largest is 2.303 provided by the PSRQB method; 

a relative difference of 2.7%. Examination of Table 4 shows that this 

is an extreme case; the largest relative difference for a given parameter 
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configuration in all other cases is less than 2.0%. If we compare the 

square roots of estimates of the SEP thus transforming them to the same 

units as the original observations we find that the largest relative dif­

ference for a given parameter configuration is less than 1.4%. 

Since the predictive proc:C'HH depends only on whether M
1 

is or is nol 

chosen, it is appropriate to compare the corresponding relative difference in 

selection rates of M
1 

for the selection criteria. For example, when 

µ
2 

= 1, o
2 

= 1, n = 10, the PSRQB method picks M
1 

most frequently (30.5% 

of the time) and the AIC picks M1 least frequently (16.9% of the time). As in the 

exponential sampling situation we see here that while the selection criteria 

might differ considerably in their rates of selection of M1 , from a practical 

point of view they yield essentially the same estimates of the SEP. 

The similar behavior of the selection criteria in terms of prediction 

seems to be a consequence of the following phenomenon. Suppose one were faced 

with predicting Y
1 

and Y
2

, and suppose one thought M1 were correct. 

o
2 

is known, then the expected prediction error is 

If 

- 2 - 2 2 2 
E(YJ-x) + E(Y2-x) = (o2 +.1.) (1+1/(2n))+ ii

2 
/2 = PE(M

1
), say. If one thought 

~1i were incorrect, then the pair (y1,Y2) = (xl,x2) would be used, and the 

expected prediction error would be 

- 2 - 2 2 -E(Y1-x1 ) + E(Y2-x2) = (o2 +1)(1+1/n) = PE(M1), say. It is apparent 

that PE(M1) can exceed PE(M
1

) by a large amount, and so if µ
2 

is 

large, the prediction error can be large if the predicting pair (y
1

,y
2

) = (x,x) 

is inappropriately used. However, we see from Table 3 that in the cases whe~e 

µ 2 is large, and hence where a potentially large prediction error could be made, 

the selection procedures rarely, if ever, choose M
1

. That is, in the case 

where a potentially large error could arise, the selection procedures are able 

to discriminate well enough between M
1 

and the other models to avoid such 

an error. On the other hand, when µ
2 

is close to but not equal to zero, the 

selection procedures generally err in picking M
1 

frequently. This does not 

appreciably increase the prediction error, for if µ
2 

is small then PE(M
1

) and 
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are close in value. In fact, such incorrect choices of 

sinee if is close enough to zero, 2 2 
( µ

2 
"(o

2 
+1)/n ) , then 

larger than PE(M
1

)_ 

M
1 

can be helpful, 

PE(t\) is 

That is, there is a smaller predictive error incurred if (y1,Y2) = (x,x) 

is used, even though M1 is known not to be the correct model. Such a situa-

. tion arises in the cases studi·ed when µ - 25 ith 1 - . ' w (cr2 ,n) = (1,10), 

(1.5,10) or (1.5,20), and so in these cases one prefers a procedure which 

picks M1 frequently. (A similar situation was noted in Section 3.) This 

explains why the LSB, PSRQL, and PSRQB procedures dominate the AIC for those 

parameter assignments. Outside of these cases, however, when µ
2 

~ O then the 

AIC dominates the others in terms of picking M
1 

less frequently, and 

accordingly weakly dominates them in terms of estimated SEP. 

5. Remarks 

One of the principal reasons for building models of statistical data 

is to enable one to predict new observations thought to arise from the same 

source. Frequently such predictions are made by first choosing a model 

according to some criterion, and then basing the predictions upon the chosen 

model. We have seen, for the models and model selection criteria examined 

in this study, that a particular measure of predictive capacity, namely 

squared error, appears to be fairly stable when predictions are made in 

such a manner. Under the same circumstances, the correct selection rates 

for those model selection procedures can vary appreciably. As a consequence, 

it would seem that, for predictive purposes, efforts to find "optimal" 

model selection procedures based on error rates may be mi~guided. Instead, 

it is more pertinent and sensible to devote one's time to constructing 

models for data and assessing the predictive adequacy of such models. 

This precept makes even more sense when it is realized that the models 

typically considered are recognized to be artifacts, and the "true" model 

is not likely to be included among the model alternatives considered. In 
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that case it seems pointless to evaluate model selection criteria on the 

basis of fictional error rates. Nonetheless, it is still meaningful to 

compare the predictive capability of various models, even if none is true. 

It would therefore be of interest to see if the model selection cri­

teria examined herein exhibit the same stability with regard to prediction 

error when the data are generated by a process which is not among the model 

alternatives considered. This would indicate how "robust" the prediction 

procedure used in this study is to variation in both the source of the data 

and the model selection procedure used. If one is going to base predictions 

on model selection, then it would be desirable to have a model selection 

procedure whose predi~tive ability did not depend critically on the source 

of the data. 

One such possibility is a sample reuse procedure for low structure 

situations which was proposed by Geisser and Eddy (1979) and was devised 

to have good predictive squared error properties for the prediction rule 

used here. 

Suppose the data is with and 

M1 asserts that the label i=l,2 is irrelevant for prediction and M
2 

asserts that it is. The low s.tructure rule is to calculate 

Dl 
-1 E E (x .. - 2 = N - x(ij)) 

i j l.J 

(5 .1) 

D2 
-1 

E E (x .. - 2 = N - xi {j)) 
i j l.J 

and predict (Y
1

, Y
2

) as (x, x) if D
1 

< D
2 

and (x
1

, x
2

) if D
2 

< D
1 

. 

It is of interest to note for the normal models n
1 

and n
2 

discussed 

in section 2, that this low structure procedure yields probability of cor­

rect selection under M
1 

as 

Pr[Fl,2(n-l) 
1 

< 2 + 2 (n-1) ] 
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where This correct selection probability is always 

larger than that for the AIC procedure although it tends to the same limit. 

In addition to possibly being more robust, this procedure directly faces 

the predictive aspect of model selection. For the most part, this predic­

tive aspect has been neglected in the development and evaluation of model 

selection procedures. 

In summary, we would feel secure in conjecturing that if the "true 

or approximately true model" is included amongst the alternatives con­

sidered, all reasonable model selection procedures will possess rather 

similar predictiv~ capabilities. Although it is considerably more useful 

to devise more appropriate models for data than to devise trivially more 

efficient selection procedures, we also believe that the area of robust 

model selection approaches is still in need of further development and 

investigation. 
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Table 1. Estimated Probability of Correct Selection Between Populations 

Specified by f
1 

= e-x and f
2 

= A
2
e-A 2x for Four Selection 

Criteria. 4 

Selection Criterion 

Size of 

A2 each Sample PSRQL PSRQB AIC LSB 

1.0 4 .799(.794)* .827(.821)* .832 .841 

8 .816(.830)* . 827 (. 837)* .830 . 894 

12 .834 .827 .835 .920 

20 .837 .837 .840 .942 

1.5 4 .262 .237 .232 .223 

8 .291 .284 .282 .201 

12 .343 .346 .345 .214 

20 .446 .451 .456 .260 

2.0 4· .342 .334 .339 .327 

8 .479 .489 .489 .385 

12 .590 .600 .599 .455 

20 .763 .770 • 771 .602 

2.5 4 .440 , .445 .444 .430 

8 .633 .654 .661 .560 

12 .768 .784 .787 .664 

20 .918 .926 .928 .833 

4Based on 10,000 samples of each sample size and standard error of tabu­
lar entries estimated to be between .004 and .005 . 

* Values in parentheses are estimates from Geisser and Eddy (1979) using 
same procedure. 

PSRQL; Predictive sample reuse quasi-likelihood. 

PSRQB; Predictive sample reuse quasi-Bayes. 

AIC; Akaike information criterion. 

LSB; Large sample Bayes. 
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Table 2. Estimates of Expected Squared Error of Prediction (SEP) and Their 

Standard Error Based on Use of Four Selection Criteria. 5 

Selection Criterion 
Size of 

>i.2 each Sample PSRQL PSRQB AIC LSB 
--

1 4 2.376(.005) 2.383(.005) 2. 380 (. 006) 2. 3 7 5 (. 005) 

8 2.195(.004) 2 .196 (. 004) 2 . 196 ( . 004) 2 .177 ( . 004) 

12 2.131(.002) 2 .133 (. 002) 2.133(.002) 2 .115(.002) 

20 2.078(.001) 2.079(.001) 2.079(.001) 2. 065 (. 001) 

1.5 4 1. 763 ( .005) 1. 768 (. 005) 1. 770(.005) 1. 768( .005) 

8 1. 620(. 002) 1.622(.002) 1.623(.002) 1. 620 (. 002) 

12 1.573(.001) 1.573(.001) 1.574(.001) 1. 575 ( .002) 

20 1.529(.001) 1. 529 (. 001) 1.529(.001) 1. 537 ( .001) 

2.0 4 1. 576 ( .004) 1.583(.005) 1.585(.005) 1. 585 (. 005) 

8 1.438(.002) 1. 438 (. 002) 1.438( .002) 1.449(.002) 

12 1.384(.002) 1. 383( .002) 1.382(.002) 1.399(.002) 

20 1.329(.001) 1.329(.001) 1.328(.001) 1.348(.001) 

2.5 4 1.492(.005) 1.496(.005) 1. 498 (. 005) 1. 500( .005) 

8 1. 346 (. 002) 1.342(.002) 1.341(. 002) 1.358(.002) 

12 1.283(.002) 1. 281 (. 002) 1.280(.002) 1. 300( .002) 

20 1. 226 ( .001) 1.225(.001) 1. 225 ( .001) 1.239(.001) 

5 Based on samples used in Table 1. 

6 
Expected squared error of prediction (SEPC) when all selections are 
correct. 

7 . 
Expected squared error of prediction (SEPI) when all selections are 
incorrect. 

8 
Expected squared error of prediction when Ai is known (SEPK). 

SEPC6 

2.250 

2.125 

2.083 

2.050 

1.806 

1.625 

1.565 

1.517 

1.563 

1.406 

1.354 

1.313 · 

1.450 

1.305 

1.257 

1.218 

SEPI7 
SEPK8 

2.500 2.00 

2.250 

2.167 

2.100 

1 f:i81 1.44 

1.590 

1.560 

1.536 

1.531 1.25 

1.453 

1.427 

1.406 

1.485 1.16 

1.413 

1.388 

1.369 
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Table 3. Estimated Probability of Correct Selection (First Value) and that 

M1 will be Selected (Second Value) for Populations Specified 
1 2 1 1 2 

by f
1 

= -- exp[-½x ] and f
2 

= ~ exp[- - 2 (x-:µ
2

) ] 
~ cr2v.rn 2cr2 

assuming that if µ2 = 0, then cr; = 1, for Four Selection Criteria.9 

Size of 
(µ

2
,cr2) each Sample PSRQL 

(0,1) 10 .824;.824 
20 .812;.812 

(.25,1) 10 .154;. 773 
20 . 215; . 701 

(.50,1) 10 .265;.650 
20 . 436; . 448 

(.75,1) 10 .417;.464 
20 . 684; .193 

(1.00,1) 10 .598;.284 
20 .795;.050 

(2.00,1) 10 .843;.000 
20 .851;.000 

(4.00,1) 10 .854;.000 

(. 25,1. 5) 

(.50,1.5) 

(. 75,1.5) 

(1. 00, 1. 5) 

(2.00, 1. 5) 

(4. 00, 1. 5) 

(1.00,2) 

(2.00,2) 

(4.00,2) 

20 .854;.000 

10 
20 

10 
20 

10 
20 

10 
20 

10 
20 

10 
20 

10 
20 

10 
20 

10 
20 

.217;.685 

. 457;. 440 

.231;.603 

.494;.348 

. 253;. 484 

.530;.204 

• 282;. 371 
.549;.091 

.354;.044 

.571;.000 

.352;.001 

. 578;. 000 

.535;.294 

.891;.047 

.598;.074 

.907;.002 

• 635;. 006 
.923;.000 

Selection Criterion 

PSRQB 

.872; .872 

.873;.873 

.102;.833 

.152;. 775 

.211;. 703 

.355; .538 

. 364;. 510 

.609;.262 

.550;.305 

.754;.077 

.820; .ooo 

.838;.000 

• 818;. 000 
• 840;. 000 

.220;.708 

.431;.510 

.238;.630 

.483;.398 

.282;.503 

.539;.249 

.320;.382 

.580;.129 

. 412;. 038 

.614; .000 

.413; .000 

. 624;. 000 

.602;.282 

.902;.053 

.686;.059 

.937;.002 

. 728;. 000 

. 944;. 000 

AIC 

.737;.~37 

.767;.767 

.197;.684 

.245;.649 

.317;.547 

.463;.402 

.480;.343 

.697;.146 

.654;.169 

.782;.034 

.803;.000 

.831;.000 

.802;.000 
• 834;. 000 

.321;.550 

.521;.378 

.344; .461 

.568;.268 

.363;.341 

.602;.149 

.399;.234 

.629;.057 

.452;.009 

.633;.000 

.452;.000 

.639;.000 

.699;.165 
• 931;. 026 

. 736;. 022 

.942;.001 

• 7 57;. 000 
.949; .000 

LSB 

.871; .871 

.. 917;.917 

.133;.818 

.136; .841 

.252;.692 

.359;.602 

.429;.486 

.638;.315 

.636; .272 

.833;.103 

• 885;. 000 
.943;.000 

.877;.000 

.942; .000 

.183;. 724 

.258; .677 

.190;.641 

.307;.547 

.228; .499 

.366;.361 

.256;.365 

.393;.202 

.312;.027 
• 424;. 000 

.319;.000 

.439;.000 

.552; .289 

. 811; .108 

.618;.060 

.870;.003 

• 660; .000 
.874; .000 

9 Based on 2,000 samples of each sample size and standard error of 
tabular entries estimated to be between .008 and .012. 
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Table 4. Estimates of Expected Squared Error of Prediction (SEP) and Their 

Standard Error Based on Use of Four Selection Criteria. 
10 

Selection Criterion 

Size 
of each 

(µ.Z,cr2) Sample PSRQL PSRQB AIC LSB SEPC 

(0, 1) 10 2.140(.004) 2 .132 (. 004) 2.156(.004) 2.135(.004) 2.100 
20 2.076(.002) 2 . 0 7 0 ( • 00 2) 2.080(.002) 2.066(.002) 2.050 

(.25,1) 10 2.176(.004) 2 .17 2 (. 004) 2.185(.004) 2 .17 6 (. 004) 2.200 
20 2.101(.002) 2 .100(. 002) 2.102(.002) 2.098(.002) 2.100 

(.50,1) 10 2. 231 (. 004) 2.236(.004) 2.223(.004) 2.236(.004) 2.200 
20 2.130(.002) 2.141(.002) 2.125(.002) 2.148(.002) 2.100 

(. 75,1) 10 2. 290 (. 005) 2.303(.005) 2.260(.005) 2.296(.005) 2.200 
20 2.132(.003) 2 .150 (. 003) 2.121(.003) 2.163(.003) 2.100 

(1,1) 10 2.295(.006) 2. 303 (. 006) 2. 242 (.005) 2. 28 7 (. 006) 2.200 
20 2.116(.003) 2.126(.003) 2 .110 (. 003) 2.136(.004) 2.100 

(2,1) 10 2. 210 (. 006) 2.200(.005) 2.198(.005) 2.201(.005) 2.200 
20 2 .101 (. 002) 2.101 (.002) 2.101(.002) 2.101(.002) 2.100 

(4,1) 10 2.202(.005) 2.202(.005) 2.202(.005) 2.202(.005) 2.200 
20 2. 100 (. 002) 2.100(.002) 2.100(.002) 2.100(.002) 2.100 

(. 25, 1. 5) 10 3.528(.007) 3.526(.007) 3.550(.008) 3.528(.007) 3.575 
20 3. 408 (. 004) 3.404(.004) 3.410(.004) 3.398(.004) 3.413 

(. 50, 1. 5) 10 3.581(.007) 3.584(.007) 3.582(.007) 3. 584 ( .007) 3.575 
20 3.432(.004) 3.436(.004) 3.426(.004) 3.447(.004) 3.413 

(. 75,1.5) 10 3. 650 (. 007) 3. 657 ( .007) 3.622(.008) 3.655(.007) 3.575 
20 3.445(.004) 3.455(.004) 3.433(.004) 3. 480 (. 004) 3.413 

(1, 1. 5) 10 3.693(.008) 3.700(.008) 3.636(.008) 3.690(.008) 3.575 
20 3.437(.005) 3.452(.005) 3. 424 (. 004) 3.480(.005) 3.413 

(2,1.5) 10* 3.645(.005) 3.617(.005) 3.581(.004) 3. 604 (. 004) 3.575 
20 3.412(.004) 3.412(.004) 3.412(.004) 3.412(.004) 3.413 

(4,1.5) 10* 3. 583 (. 004) 3.573(.003) 3.573(.003) 3.573(. 003) 3.575 
20 3.415(.004) 3.415(.004) 3. 415 (. 004) 3.415(.004) 3.413 

(1,2) 10* 5.575(.005) 5. 5 71 ( . 00 5) 5.530(.006) 5. 5 71 (. 005) 5.500 
20 5.272(.007) 5.274(.007) 5.265(.007) 5. 291 (. 007) 5.250 

(2,2) 10,'( 5. 615 (. 007) 5. 570 (. 007) 5.516(.006) 5 .559 ( .007) 5.500 
20 5. 249 (. 007) 5. 249(.007) 5.248(.007) 5.251(.007) 5.250 

(4, 2) 10* 5.548(.008) 5.506(.006) 5. 506 ( . 006) 5.506(.006) 5.500 
20 5.260(.007) 5.260(.007) 5.260(.007) 5.260(.007) 5.250 

lOBased on samples in Table 3, except rows marked with an asterisk, which are 
based on 10,000 replications. 


