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SENSITIVITY OF ESTIMATES OF MARKOV 
TRANSITION MATRICES TO 

PERTURBATIONS AND SAMPLING ERROR 

ABSTRACT 

The effect of small perturbations of the elements of a probability 

transition matrix on estimated quantities (such as eigenvalues and Q 

intensity matrices) is studied. The approach taken here utilizes either 

known sampling or measurement error models or when no error model is avail­

able, an exploratory strategy of probing the neighborhood of the transition 

matrix. Dirichlet distributions for the errors are introduced to ascertain 

how much transition matrix roots vary. Concentration ellipsoids are recom­

mended as convenient summaries. of this variability. 

Key words and phrases: Continuous-time Markov chain; Embeddabil1ty; 

Longitudinal data; Eigenvalues; Mover-Stayer Model; Dirichlet dis­
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Estimation of transition and intensity matrices for continuous-time 

Markov chains is an important but neglected area of investigation. Maximum 

likelihood estimates, with their known shortcomings, are extensively used, 

and the problem of multiple solutions to maximum likelihood equations has 

only recently been addressed. Two virtually ignored but significant issues 

recognized by Singer and Spilennan (1976b) and others, are: 

and 

1) Sensitivity analysis of the dependence of estimated 

quantities (such as eigenvalues, and intensity matrices) 

on small perturbations in the data; 

2} Computing confidence limits on estimates to ascertain 

variability. 

The analysis of longitudinal data and exploration of fitted Markov models 

will remain incomplete without an understanding of (1) and some attempt to 

address (2), 

In this note, we offer one approach to those undeveloped research 

areas, using perturbation analysis of transition matrices and associated 

spectral decompositions. The likelihood of sampling or measurement error 

in a set of longitudinal records 1s quite large, and such errors will 

change estimates to some extent, What we would 11ke to know 1s 

how much additional variability 1s introduced. By assuming that these 

errors affect an empirical transition matrix in a specific way, we can 

utilize the perturbation approximations to assess the impact of errors on 

eigenvalues, empirical intensity matrices, and hence, on the embeddab111ty 

of the original data as a Markov chain, 

In the next section, we present the necessary 1ntroductfon to finite~ 

state, cont1nuous~time, stationary Markov chains, and follow this with a 
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brief discussion of perturbation theory. Our postulated chain 1s stationary 

and Markov, and our assumed data are just two-wave observations on N repli­

cates of the basic chain., for the obvious reason that we must understand the 

simplest situation before moving on to more complicated ones, 

After these introductory sections, we present several models for sampling 

errors and show that these models can be put 1nto our linear perturbation 

framework; consequently, the effect of the errors can be studied further, We 

also describe an exploratory sensitivity analysis that can be conducted when 

no specific error model is relevant, In section 4, we introduce a Dirichlet 

probability model for sampling errors 1n order to place a confidence ellipsoid 

around the perturbed eigenvalues, Several examples illustrate the useful~ 

ness of the ellipsoid, We conclude with a discussion of the implication of 

these models and perturbations for the embeddabil1ty of a set of longitudinal 

replications as a Markov chain, and for the identification of all intensity 

matrices that could have generated the observed data, 

1-, Background 

Consider a family of sxs stochastic matrices P(t), t ~ 0, with elements 

P;j(t), that describes the behavior of a stationary, continuous-time, finite­

state Markov chain. The quantity P;j(t) is the transition probability from 

state i at time u to state j at time u+t, for all u ~ 0. 

These transition probabi,liUes obey the following differential equations: 
r 

(1.1) d P(t) = Q P(t), P(O) = I. dt 

The sxs intensity matrix Q = ( qij) has structure 

qij ~ 0, i ., j ; 

(L2) 

qii = - l: qij ~ 0, i=l,2,.· •. ,s. 
j,i 
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As is well known, conditional transition probabilities and mean waiting 

times between transitions are simple functions of the elements of Q. Any 

array with structure (1.2} is a member of the class of intensity matrices~-

Solutions of (1.1} are P(t} = etQ, t > 0, an equation that expresses 

the transition probabilities as a function of Q. Furthermore, given P(t), 

we have the relation Q = t log P(t). If log P(t) £ ~. it is embeddable 

as a continuous-time Markov chain; one then attempts to identify all such 

Q E ~ that obey (1.1}. Much is known about the embeddability problem­

specifically, characterizations of embeddable stochastic matrices (Johansen, 

1973a, 1973b; Goodman, 1970; Kingman, 1962; Frydman and Singer, 1979}, and 

necessary and sufficient conditions for embeddability for s = 2 and 3 

(Johansen and Ramsey, 1979; Frydman, 1980). Singer andSpilerman (1974, 

1976a, 1977) and Singer and Cohen (1980) have extensively researched the 

identification problem, presenting discrimination techniques useful for 

choosing among competing models fitted to the same longitudinal data. 

Assume that we have N replications of the basic continuous-time 

Markov chain, each moving through the s states over time with transitions 

governed by P(t). The simplest observational scheme, and the one used here, 

is a record of state occupied at time u and at time u+t, for each replicate. These 

records are arrayed into a sxs matrix of frequency counts F = (f;j}. 

The maximum likelihood estimate of P(t) (Anderson and Goodman, 1957} is 

P = o-l F 

where D = diag(f;+>' a diagonal matrix of row sums. We define A and h 
A 

as an eigenvalue and corresponding unit-length (right} eigenvector of P. 
A 

The s eigenvalues of P are usually arrayed as elements of the diagonal 

array A, and the associated s eigenvectors as columns of the array H; thus 



4 

,.. 
is the standard Jordan canonical representation of P, assuming distinct or 

simple eigenvalues. We note that the rows of H-1, which we denote by 
. * ,.. 

{h1}, are left eigenvectors of P; and that the largest (in norm) eigenvalue 
,.. 

of P is unity. The remaining (s-1) eigenvalues may be complex, because of 
,.. 

the non-symmetry of P; if so, they will occur in r ~ (s-1)/2 conjugate 

pairs, and be represented as a.+ ia. , j=l,2, ... ,r. We reason that the 
J - J 

chance of observing multiple roots is quite small, and are confident that 
,.. 

nearly all F's encountered in practice yield P's with simole eigenvalues. 
,.. 

Since P, and consequently all estimates of intensity matrices which are 
,.. 

simply multiples of the matrix function log P, are linear combinations of scalar 
A 

functions of the eigenvalues of P, we concentrate on how sampling and/or 

measurement errors, viewed as perturbations, affect these roots. In the 

concluding section, we study the potential embeddability of observed data, 

which depends on the nature and multiplicity of the roots, and comment on 

possible identification problems caused by errors. 

The remainder of this paper is an attempt to answer the questions: What 
,.. 

happens to A and h if P is changed slightly by a perturbation due to 

sampling or measurement error? And which roots are most sensitive to such 

changes? An error for us is simply a faulty recording of the starting 

state i and/or the ending state j for some subset of replicates. The answers 
,.. 

to these questions have an impact ~n the embeddability of P and the 
,.. 

identification of all QE~compatible with t~is P. The answer to the first 

question is given in the next section, and is provided by Taylor-series ex-
,.. 

pansions of the perturbed eigenvalues and eigenvectors of P. Justification 

of this technique can be found in Wilkinson (1965) or Stewart (1973). We 

address the second question in section 4 by introducing a set of Dirichlet 
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distributions for our errors, and calculating the moments of the vector of 

perturbed eigenvalues under this particular probability model. This allows 

us to place a concentration ellipsoid around the s-dimensional mean vector. We 

first present a very brief introduction to perturbation theory. 

2. Perturbation Theory 
A 

Consider the linear perturbation of P 

( 2 .1) 
A ~ 2 
P(e,G) = P + eG + 0(e) 

and let A(e,G) and h(e,G) be the perturbed values of A and h, where 

2 A(e,G) =A+ eµ + 0(e) 

(2.2) 
2 h(e,G) = h + ek + 0(e) 

where µ may be complex and k may bee ~s, if A is a complex eigenvalue. In 
A 

order to retain the stochastic property for P(e,G), we require that G have 

zero row sums. 

Lemma 1: Given the perturbation (2.1), the effect of this perturbation to 

tenns of order e2 on a simple eigenvalue A and corresponding eigenvector h 

(as specified by 2.2) is 

µ = h*Gh 
(2.3) A 

k = -(P-AI)-Gh 

where ( )- denotes a generalized inverse. 

One proof of the lemma can be found in section 6.4 of Stewart (1973). We 

could have written down all tenns up to order e3, but such an accurate approxi-
A 

mation will not be required. The matrix P(e,G) has (approximate) eigenvalues 

1,A2(e,G), •.• ,As(e,G), and corresponding (approximate) eigenvectors 

h1 ,h2(e,G), ••• ,hs(e,G). (Note that k1 =~, since h1 is proportional to!). We can write 
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the matrix ~f perturbed eigenvectors as 

H(E,G) = (h1,h2(E,G), ..• ,hs(E,G}} 

= H - EH(G) 
,.. 

where H(G} is an sxs array with columns (P-AjlrGhj. 

To find H(E,G)-l, and thus the spectral decomposition of P(E,G), we use 

the following approximation (Stewart, 1973, page 291): 

Consequently 

1 -1 s "' - · * H(E,G)- = H [l+E_E (P-A;I) Ghihi] 
1 =1 

-1 s s -1 * * 
= H [I+tf!l(j!l(Aj-Af) hjhj)G h1h1)] 

j;'i 

with rows 

and one can check that h;(E,G)hj{E,G) = oij + 0{E2). Finally, the spectral 
,.. 

decomposition of P(E,G) is 

{2.4) 

using the fact that 

* - * -1 * * * *} ~1(t,G)h1(t,G) - h1h1 + £ {j~f(A1-Aj) [hf~iGhjhj + hjhjGh1h1] 

Equations (2.1)-(2.4) will be invaluable in our sensitivity analysis. 

It is unfortunate that simple expressions do not exist when eigenvalues have 
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multiplicity greater than one. But realistically, multiple roots should 

occur with a probability near zero. In the following sections, we use these 

approximations of the perturbed quantities to study the dependence of estimates 

of Q on slight fluctuations, and attempt to assess the variability of the 

perturbed roots. 

3. Sampling Error Models 

There are two situations that should be distinguished. The first sampling/ 

measurement error situation arises when a specific model for the errors, recorded 

as entries in an array G, is available. In this case, we propose the follow-
A 

ing structure for errors in P: 

( 3 .1) 
A A 2 
P(E,G) = Po(EG) + 0(€) 

where the symbol 11 0 11 refers to matrix multiplication, Hadamard or element-by­

element multiplication (which we denote by*), or matrix addition. With 

addition, we obtain the standard (linear) perturbation scheme as discussed 

previously. If o=*, then we have 

(3.2) 
A 2 
P(E,G) = EP*G + O(E) 

a model that applies for example when the replicates can be classified as 

"movers 11 ·o!' 11 stayers 11
• If o=x, we obtain 

(3.3) P(E) =PE+ 0(€2) 

where E = EG, a proposal of Singer and Spilerman (1976a). Such an error 
A 

structure can be used when P represents the 11 true11 or "error-free" transition 
A 

matrix, P(E), the observed array, and E, an array containing misclassification 

probabilities. Since an example of this last structure is given by Singer 

and Spilerman (1976a, page 46), we concentrate here just on the additive and 

the Hadamard multiplicative proposals. 

....... 
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The second situation obtains when no specific error structure is known, 
" but the researcher is interested in exploring the "neighborhood" of the P 

array to determine how sensitive the computed Q = ¼: .. log P arrays are to 

slight perturbations int. We show in the last part of this section that 

this sensitivity analysis reduces to a standard perturbation problem, as 

long as the changes int remain small. 

A. Addition of stayers 

In the application of Markov chains to social mobility, many researchers, 

beginning with Blumen, Kogan, and McCarthy (1955), have noted that individuals 

are of two types: those that change states according to a Markov chain (the 

"movers") and those that remain in their starting states (the "stayers"). One 

can estimate the number of stayers by studying the movers--the sxs F array has 

a missing diagonal· {fii} which must be estimated--and hence the probability 

P;;Ct) that a replicate (either a mover or a stayer) does not transit to 

another stated during the period (u,u+t) can be calculated. 
" It may happen that after further study of the population, pi 1(t) is found 

to underestimate Pii(t) since the actual number of stayers in state i exceeds 
" " ,,.. 
fii. Thus, if P(E) represents the actual probability transition matrix, and P 

the matrix computed prior to the additional information on the population, we 

find that 

,,.. " 
p •• (E) > p •• , i=l,2, ••• ,s 

11 - 11 

,,.. " 
Pij(E) ~ Pij i,j • 

* Define f; as the additional number of stayers in state 1. Then 
* ,.. f .. +f. 

( ) 
11 1 

P·· E = f f* 
11 i++ i 

(3.4) 

and 

(3.5) (ilj) 
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so that 
* 

"' (fi+-f;;)f; 
~ i ( E )- P; i = f ( f. +l) 

i+ 1+ 1 
* (f -f .. )fi ,. i+ 11 

P; i - * 
(3.6) 

- f .. ( f i + +f i ) 
11 

*"' = e:. . p . . 
11 11 

must be added to the diagonal transition probability estimates and 
* "' "' f .. f. 

( ) 
_ lJ 1 

r:1 •• E -p .. - - -- - * 
rJJ lJ { ) f.+ f.++f. 1 1 1 

(3. 7) 
* "' = -e:. p .. 
1 lJ 

must be added to the off-diagonal estimates. Because the change in prob-
"' abilities is proportional to P, it is natural to represent this sampling error 

model as the Hadamard multiplicative scheme as in {3.2), with E = e:G, and 

* * 1-e:, ... 1-e:, 

* * * 
E = \ 

1-e:2 ( l +e:22) · ... l-e:2 . . . . . . . . . 
* * * 1-e: 1-e: ... (1 +e:SS.) . s s 

"' "' "' "' "' If we write this model as P{E) = P + (P-kE-P) = P + G, we can use 
"' perturbation theory to evaluate the effect of additional stayers on P. Thus 

,. s * s s * "' "' * 
P(E) ~ _E A;h;h; + _E _E {hi[P*f~P]h.)h1hJ. 

1=1 1=1 J=l J 

* s * *"' * *"' * = h1h1 + I: A.h.h. + I: I: h.P·..Eh.h1h. - I: I: h.Ph.h.h. 
i=2 1 1 1 i j 1 J J i j 1 J 1 J 

(3.8) 

s s *"' * 
= E I: ··h.P*fh.h.h. 

i=l j=l l J l J 
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*" since h;Phj = A;, when i=j, and zero otherwise. This double sum is not difficult 
,.. 

to evaluate and requires only the eigenvectors of P. It is not true, however, 
,.. ,.. 

that log P(E) = log P + log E, since Hadamard matrix multiplication is not 

associative with respect to matrix multiplication; we give an approximate 
" fonnula for log P(E} in section 5. 

Example 1: 

Consider the hypothetical observed transition array (from Singer and 

Spil erman 1978) 

,.. 
p = 

(

0.0722 0.0347 
o. 0375 o. 0361 
0.9264 0.0014 

0.8931) 
0.9264 
0.0722 

that governs the movement of a heterogeneous population. It is known addition­

ally that this population contains 93.75% movers. If, for simplicity, we take 

* * * all the fi+ = 10000, then the addition of the 6.25% stayers yields f1 = f 2 = f3 = 

( 10000/. 9375) - 10000 = 666j. · Note that the actua 1 transition array for the 
" " entire population is P* = .0625 I+ .9375 P, since the 6.25% stayers move 

with transition matrix I. 

* * * * * * * With these fi, we find £ 11 = £ 33 = .8035, £ 22 = 1.6672 and £1 = £2 = £3 = 

.0625, via equations (3.4} and (3.5). Thus, 

and 

A 

(

1.8035 
E = 0.9375 

0.9375 

0.9375 
2.6672 
0.9375 

o. 9375) 
0.9375 
1.8035 

" " ( o. 0580 -0. 0021 -0. 0559 ) 
G = P~E - P = -0.0023 0.0602 -0.0579 . 

-0. 0579 -0. 0001 o. 0580 

is the change in P due to the addition of stayers. 



Using (3.8), we find that 

" P(E) ~ 

" 

11 

( 

0.13020 
0.03519 
0.86850 

0.03260 

0.09629 
0.00130 

0.83720) 
0.86852 

0.13020 

which is vtrtually identical to P*. Thus, one can study the effect that vari-

* " " able stayer fractions, f 1 or E has on P( E), with only knowledge of P. 

B. Misclassification 

Suppose k > 1 individuals with recorded transitions i + j in· actuality 

moved from state i to state j' ,j'fj. Then P;j decreases by kfi+-l' Pfj' 

increases by kf;+-l, and the other (s-2) entries in the ; th row remain constant. 
" " Since the amount of the change is independent of the magnitudes of '1j and pfj', 

" the effect of these k identical misclassifications on Pis 

" " P(e:) = P + e:G 

-1 where e: = f;+ , gij = -k, gfj' = +k, and the remaining elements of Gare null. 

Any misclassificatfons, regardless of starting state, in which the actual 

transitions are known, can be modeled in this standard way. Since the row·sums 

of Fare likely to differ, a more general model is 

" " P(E) = P + EG 

where E = diag( f i+ -1) and gij = n~t inflow(+ )/outflow(-) f~om i + j 

due to these misclassifications. Such perturbations, with general E, are 

utilized in the next section. 

Example 2: 

The array, with t = 1, 

0.50 0.25 0.20 0.05 

" 0.20 0.60 0.10 0.10 p = 
0.20 0.20 0.50 0.10 
0.05 0.05 0.40 0.50 
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is not embeddable as a continuous-t~me Markov chain since 

-0.8598 0.4308 0.4010 0.0280 
,.. ,.. 0.3796 -0.6033 0.0488 0.1749 
Q = log P = 

0.3796 0.3130 -0.8675 0.1749 

-0.0612 -0.0404 0.8722 -0. 7705 

where q41 and q42 are less than zero. Hence we ask if this non-embeddability 

might be due to some misclassification. 

There are, of course, many possible G arrays to study. For simplicity, 

we take a constant fi+ = 1000; thus e = 0.001. If we let the first three rows 

of G be identically zero, and the last row equal (30,25,-30,-25), then, using 

equation (2.4}, 

,.. 
P{E) = 

0.5000 

0.1999 

0.1999 
0.0800 
,.. 

0.2500 

0.5999 

0. 1999 
0.0751 

0.2000 

0.1001 

0. 5001 
0.3699 

0. 0501 

0.0999 

0.0999 
0. 47 51 

so that only the last row of Pis affected. (This array is trivially easy 
,.. 

to· calculate). What is interesting here, is that now log P(E) e ~; viz., 

,.. 
log P(E) = 

,.. 

-0.8584 

0.3726 

0.3726 

o. 0114 

0.4306 

-0.6069 

0.3094 

0.0054 

0.3986 

0.0555 

-0.8608 

0.0291 

0.1789 

0.1789 

0.8088 -0.8256 

The eigenvalues of P are perturbed from· {J,0.25,0.45,0.4C} to (using equations 

(2.2) and (2.3)' {l ,0.2515,0.4236,0.4000 }. 

,.. 
C. Exploring the neighborhood of P 

When no specific error structure is available, one can study how sensitive 

the computed Q* = {- log P(t) is to slight perturbations int. Compute 

P( k} from the representation P( k) = e< t+k~)Q* where ke K = · {-k1 ,-k,+1 , ••• ,0, 
,.. 

•.. ,k2-1,k2}, and k1 and k2 are positive integers chosen so that P(k) is 
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,.. 
"within sampling or measurement error" of P(t). This is a suggestion of 

Singer and Spilennan (1976a, pages 46-8), who also advise a close examina-
,.. 

tion of the set of eigenvalues of each array P(k), keK, to determine the 

stability of Q*. We show how this sensitivity investigation can be viewed 

as a standard perturbation problem. provided k~ remains small. 

We let P = etQ* = eQo be our observed transition matrix, and consider 
A 

P(k) = exp{(t+k~)Q*}, as the perturbation. Let E = ~/t, and note that 
,.. 
P(k) = exp{Q*(t+k6)} 

= exp {tQ*}exp {k~Q*} 
,.. 

= P exp{keQ
0

} 

If we expand ex·p{ke:Q
0

} =I+ kEQ
0 

+ ½(ke) 2
Q~ + ... , then 

"' "' "' 2 k2"' 2 3 P(k) = P + e(kPQ
0

) + € (2 PQ
0

) + 0(e) 
,.. ,.. 

so we have a perturbation of P, with G = kPQ
0

, and the perturbation approxi-
,.. 

mations can be used to simplify the calculation of eigenvalues, and P(k) itself. 
,.. 

Note that PQ
0 

has the necessary zero row-sum property. The equation (2.4) 

will. be computationally easier, since it involves only one set of initial 
,.. 

matrix multiplications (only k varies), than the exact computation P(k) = 

Hdiag{exp(l+k~/t)~;}H-1• 

Example 3: 

The following example illustrates the advantages of using the approximation. 

Consider, with t = 1, 

0.6 0.2 0.1 0.1 
,.. 

I 0.1 0.7 0.1 0.1 p = 
0. 1 0.05 0.8 0.05 
0.02 0.04 0.04 0.9 

which can be represented as eQ* for 
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-0.5469 0.3080 0.1235 0.1154 

Q = Q* = 
0.1462 -0. 3851 0.1235 0.1154 

0 0.1416 0.0459 -0.2360 0.0485 
0.0206 0.0464 0.0432 -0. 1103 

Table 1 gives matrices e(l+O. lk)Qo for ke:{-2,-1,-0.5,0.5,1,2} (the "exact" 

column) and the perturbation approximation, using 

-0.2827 0. 1170 0.0795 0.0862 
,... 0.0639 -0.2296 0.0795 0.0862 

Gk= kPQ0 = k 
0.0669 0.0506 -0.1681 0.0506 

o. 0191 0.0344 0.0369 -0.0904 

(the "approximation" column). As can be seen, there is good agreement. 

4. Analysis 

We now consider the statistical analysis of the effect of sampling/ 

measurement error on the estimation of P using our additive perturbation model 

(2.1). We assume that P and e: are known and that G is a matrix of s2 random 

quantities, subject to the constraints that 9;+=0. For_ simplicity, we treat 

the s rows of Gas independent vectors. The parameter e: is constrained to 

insure that 

0 < p . . + e:g . . < 1 
- lJ lJ -

for all s2 elements of P(e:,G). 

A convenient and plausible model for 9;, the ; th row of G, is the 

Dirichlet, with parameters B1 = (s11 ,s12 , ••• ,Bis)T, and Ki= ~Bij· We let 
*·. * * * T • • J 9ij = gij + 1/s so that g1 = (g11 , ••• ,g1s) is a D1r1chlet random vector, with 

mass function 

( 4.1) 
r(K i) 

s * B 1 s _n (g1J.) ij-
.n r( B;j) J=l 
J=l 
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Table 1 

Comparison of e(t+k8 )Q* with perturbation approximation. 

k=-2 

0.6604 
o. 0861 
0.0855 
0. 0161 

0.6292 
0.0933 

k = -l 0.0930 
0.0181 

0. 6144 
k = -% 0.0967 

0.0966 

k = \ 

k = 1 

k = 2 

0. 0190 

0. 5861 
0.1031 
0.1033 
o. 0210 

0.5726 
0. 1061 
0.1064 
0.0219 

0.5470 
0.1117 
0. 1124 
0.0238 

EXACT 

0.1740 
0.7483 
0.0398 
0.0329 

0.1876 
0.7235 
0.0449 
0.0365 

0.1940 
o. 7116 
0.0475 
0.0383 

0.2057 
0.6887 
0.0525 
0.0417 

0. 2111 
0.6776 
0.0550 
0.0434 

o. 2210 
0.6563 
0.0600 
0.0467 

0.0834 
0.0834 
0.8348 
0.0325 

o. 0919 
0.0919 
0. 8171 
0.0363 

0.0960 
0.0960 
0.8085 
0.0382 

0.1039 
0.1039 
0. 7917 
0.0418 

0.1078 
0.1078 
0.7835 
0.0437 

0.1152 
0.1152 
0.7675 
0.0473 

0.0823 
0.0823 
0.0399 
0.9184 

0. 0913 
0.0913 
0.0449 
0. 9091 

0.0957 
0.0957 
0.0475 
0.9045 

0.1043 
0.1043 
0.0525 
0.8955 

0.1085 
0.1085 
0. 0551 
0.8910 

0.1168 
0.1168 
0. 0601 
0.8823 

APPROXIMATION 

0.6565 
0.0872 
0.0866 
0.0162 

0.6283 
0.0936 
0.0933 
0. 0181 

0. 6141 
0.0968 
0.0966 
0. 0190 

0.5859 
0.1032 
0.1033 
0. 0210 

0.5717 
0.1064 
0.1067 
0. 0219 

0.5435 
0.1128 
0.1134 
0.0238 

0.1766 
0.7459 
0.0399 
0. 0331 

0.1883 
0.7229 
0.0449 
0.0366 

0 .1941 
0. 7115 
0.0475 
0.0383 

0.2058 
0.6885 
0.0525 
0.0417 

0. 2117 
o. 6770 
0.0550 
0.0434 

0.2234 
0. 6541 
o. 0601 
0.0469 

0. 0841 
0. 0841 
0.8336 
0.0326 

0.0920 
0.0920 
0.8168 
0.0363 

0.0960 
0.0960 
0.8084 
0.0382 

0.1040 
0.1040 
0. 7916 
0.0419 

0.1080 
0.1080 
0.7832 
0.0437 

0.1159 
0.1159 
0. 7664 
0.0474 

0.0828 
0.0828 
0.0399 
0. 9181 

o. 0914 
0.0914 
0.0449 
0.9090 

0.0957 
0.0957 
0.0474 
0.9045 

0.1043 
0.1043 
0.0525 
0.8955 

0.1086 
0.1086 
0. 0551 
0.8910 

0.1172 
0.1172 
0. 0601 
0.8819 
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* * where O ·< g
1 
•• < 1 and 

- J - 9;+ = 1, so that -1/s ~ gij ~ 1-1/s and 9;+ = O. 

We note that with (4.1), 

(4.2) 

(4.3) 

and 

{4.4) 

E {9 • . } = K-1 l ( B • • - K • / s ) 
lJ lJ 1 

Var· {91j} = [K~(Ki+l)r
1 B1lK1-a1j) 

Co v · {91 j , 91 , j , } = l
o if iii' 

a .. a .. , 
- lJ lJ 
- 2 

K-.(K.+l) 
1 1 

if i = i', jjj'. 

We define r1 as covariance matrix of 9;· It will be convenient 

to let E. {tenns of order E2} = O. 

We first consider the moments of the random vector A{E) = (l,A2(E), •.• ,As(E))1 . 

Since A{t) E<l:s, we express A(t) as a(t) + iB{E), where a{t) and B(E) are 

real s-dimensional vectors, and define 

E{A(E)} = uA(E) = E{a(E)} + i E{B{t)} 

CoVU.1(£),Aj(E)} = o1j(£) = E{(A1(£)-uA
1
(£)) (Aj(E)-uAj(e)) } 

where A;{t) and Aj(E) are elements of A(£). Note that a1j(£) I aj1{£) (they 

are complex conjugates, however) so that in general, t(£) = {a1j{E)) is an 

sxs Hennitian matrix (see Goodman, 1963). 

Theorem 1 

* * 
E{Af{E)} = Ai + E I: I: hik Bid h.e,1 

k .e, 
{ 4. 5) 

* * =A·+£ h. B h. 
1 1 - 1 

( i I 1) 

where h~ k is the k th el enent of the 1th left eigenvector, and h R.i, the 

.e. th element of the 1th right eigenvector, corresponding to A1, and~*= {B~) = 

{ BkR. /Kk). 
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The proof ofthe theorem follows directly from (4.2) and the fact that 

* since the first right eigenvector h1 a!, rhik must be zero (for 1;1), so 
k 

Thus the "bias" of li(E) * * is£ hi~ h1 . This leads to 

Coro 11 ary 1 : 

If Bkt = ak or akR. = B.e, (same parameters for each 9;, or a constant 

parameter for every gi), then the bias of li(E) is zero. 

Consequently, if errors are equally likely to occur in the s cells of gi, 

or if the average error for the j th cell is the same for every g1, there is no 

bias. 

Coro 11 a ry 2 : 

* * * If~ = a!+B~, where J is a sxs matrix of ones, then h1~ h1 = a(i;l) 

and E {A1 ( E)} = li + Ea. 

* The proof is based on the fact that hiJhi = 0 (i;l). Thus, if 

E{gii} - E{gij} is constant, the bias is constant for all roots. This situation 

is likely to occur with the addition of stayers as sampling error. 

Theorem 2: 

Considering i, the variance-covariance matrix of l(E), note that 

a1j(E) = aj1(E) = 0, for all j, since 11 = 11(E) = 1. The remaining (s-1) 2 

elements are 

( 4. 6) 

As before, the "bar" indicates complex conjugate, and rk is defined as the 

variance-covariance matrix of gk, with elements given by (4.3) and (4.4). 
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Proof 

* First consider aii(£) = Var (£hiGhi). Since the rows of Gare 

independent, 

The expression for aij(£) follows, using similar reasoning 

To study the affect of varying the Dirichlet parameters on i, we can write 
s 

hl Ek hj = 1:1hii hij[K~(Kk+l)]-1 aki(Kk-aki1 

Coro 11 ary 3: 

If BkR. = Bk, then I:k = sak ! - ak ~ where ak = [s2(sBk+l)r1. 

Unfortunately, the expressions for aij(£) do not simplify. 

The distribution of Ai(E) is quite complicated. The standard result on 

symmetric matrix roots (Muirhead, 1978) do not apply. If we just consider the 

quantities h;Ghi = j;lh;j(gihi)' gj + 1/s - Dirichlet (a), for real Ai' we 

see that we have a linear combination of translated Dirichlet random variables, 

which unfortunately, does not follow a standard distribution, with closed form 

density function. Consequently, we simply construct concentration ellipsoids 

for some c ~ O, where ;- is a generalized inverse of I:, in order to study the 

dispersion of A(e) in more detail. We are not able to assign a probability 

content to the ellipsoids, however. 
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Example 4 

Consider the array, given by Singer and Spilerman (1976a), 

"' p = 
( 

0. 600 
0.302 
0.380 

0.330 
0.560 
0.040 

0.070 ) 
0.138 
0.580 

which has eigenvalues ~ = {l ,0.370+0.01095i ,0.370-0.010951)1 and eigenvectors, 

the columns of 

H = 

This array has logarithm 

! 
-0.6998 11.176-l.337i 11.176+1.337i 
-0.6998 -3.587+1.049i -3.587-l.049i 
-0.6998 -19.602+1.1977i -19.602-1.19771 

"'' Q = 

( 

-0.692 
0.496 
o. 707 

0.639 
-0 . .733 
-0.144 

0.053) 
0.257 

-0.563 

"' "' 

) . 

. so that it is not embeddable, since q23 < 0. However, this P is within 

"error-distance" of the array 

p = 

which is embeddable: 

-Q = log P = 

( 

0.598 
0.298 
0.349 

(

-0. 692 
0.496 
0.635 

0.334 
0.568 
0.104 

0.639 
-0~733 

0 

o. 068 ) 
0.134 
0.547 

0. 053 ) 
0.237 

-0.635 

"' - 2 In fact, P is the "closest" array, in the sense of minimizing I IP-Pl I = 

"' - 2 "' -
_I:_(P;j-pij). To characterize other arrays that are as close to Pas P, we 
1J 

"' consider Pas a perturbation of P: 
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- ,,.. 
p = p + EG + 0(I IEI 12) 

where E = diag(ei). To find a suitable~, we match E{Eigij} to the difference 
- ,,.. 
P;j-Pij· If we choose e1 = 0.01, e2 = 0.05, e3 = 0.40, then we obtain 

* a = -

and 

- ,.. 
E {P-P} = 

(

1/7 
1/4 
1/4 

(-0.0019 
-0.0042 
-0.033 

5/7 
1/2 
1/2 

,,.. 

1/7) 1/4 
1/4 

0.0038 
0.0084 
0.066 

-0.0019) ... ,,.. 
-0.0084 - P-P. -
-0.033 

Since E now depends on the row of P, equations (4.5) and (4.6) must be altered 

slightly. 

We find that uA(E) = (1 ,0.3566+0.01564i,0.3566-0.01564i)T resulting 

in a bias for A2 or A3 of -~.0~34 + 0.004691. We note that u:\
2

(E) is quite 

close to the second root of P, :\2 = 0.3565+0.013181, so that our "mean-matching" 

ha·s been successful. 

* Further calculations using this a matrix yield 

* = (: 0 

0.1761 
-0.1730+0.0259i 

0 

-0.1730-0. 02591 
0.1761 

and we obtain the concentration ellipse (in the second and third dimension of 

:\(E)) -
. {(a,a):1767.48[a-0.3566]2-262.72[a-0.3566][S-0.01564] 

+ 15.480[8-0.01564]2 ~ c} 

where :\ = a±,iS is a possible second or third root. This ellipse, with 

c = 1, is given in Figure 1. Note how thin it is, indicating a very narrow 

range for a, but a large range for the imaginary part a. Note that the real 
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Figure 1. Concentration Ellipse for Example 4. 
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numbers 0.3318 and 0.3785 lie on the perimeter so that any root in the real 

interval [0.3318,0.3785] is possible. If so, we would have 2 equal real 

eigenvalues. Apparently, there is quite a range for transition arrays 

that are of distance I IP-Pl 12 from P. 

Example 5 

Reconsider the array studied in example 3, which has eigenvalues 

A= (1 ,0.5,0.675,0.824)T. If we stay within the space R4, and let e = 1 

and a1j = 1 for all (i,j), then uA(l) = (l,0.5,0.675,0.825)T,_ and 

0 

* = 

0 

0.06275 
0 

-0.0128 
0.06425 

0 

0.0000 
-0.0015 
0.0514 

The concentration ellipsoid in R3 (ignoring the non-varying first dimension) has 

an orientation given by the last 3 eigenvectors of i 

e2 = (0.684,-0.728,0.0437)T 

e3 = (0.446,0.370,-0.815) T 

e4 = (0.577,0.577,0.578)T 

which are represented in Figure 2. The associated eigenvalues are 0.0764, 

0.0520, and 0.05, indicating that e2 is relatively more important than e3 and 

e4, which are roughly of equal importance. 

Cross-sectional views of a unity (c=l) concentration ellipsoid taken with 

A4 = 0.824,0.90,0.95, and 0.99, are shown in Figure 3 as projections onto the 

(A2,A3) plane. With c=l, A4 varies from 0.597 to 1.00, and the constancy of 

the e4 vector indicates that the ellipsoid is parallel to the A4 axis. 
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Figure 3. Concentration ellipsoid for Example 5, with c=l. 
Cross-sectional slices, from center outward, for 

A4 = 0.99,0.95,0.90,0.824. 
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5. Discussion: Embeddability and Identification 

Our purpose here has been to investigate the sensitivity of solutions 

to (1.1) to perturbations or slight changes in P(t). To best study this, 
I\ 

we should find an expression for log P(E,G) using the spectral decomposition 

(2.4). We have 

s * * s s * * 2 
= _E log(Ai+EhiGh;)hihi + E_E _E (hiGhJ.)h.hJ. + O(E ). 

17.1 1=1 J=2 1 
I\ 

1 og P( E ,G) 

i;j 

Using the approximation log(l+o) = 0-%02 + O(o3), we can expand 

( * ) -1 * log Ai+Eh;Ghi = log Ai+ log(l+Ai Eh;Gh;) 

-1 * 2) = log A.+ A. Eh.Gh. + O(E 
1 1 1 1 

so that 

( 5 .1) 
,.. s * s -1 * * s s * * 

log P(E,G) ~ E (log Ai)hihi + E_E Ai h;Ghihihi +EE E h;Ghjh;h· • 
1=2 1=2 1=1 j=2 J 

1,j 

Table 2 gives a brief view of the accuracy of the approximation (5.1), which 

* apparently can be quite good when the ratio of A to Eh Gh is large. 

We noted in section 3 that with the Hadamard multiplication error model, 
,.. ,.. I\ 

log P(E); log P + log E. However, only the eigenvectors of Pare needed 
,.. 

to calculate P(E) so that 

,.. s * s * s s l *" * 
(5.2) log P(E) ~ E (log A-)h.h. + {- E h.h. + E E [h- - l)o .. +l]h.P*Eh.h.h.}. 

i=2 l l l i=2 l l i=l j=2 Ai lJ l J l J 
,.. 

The term in brackets gives the effect of the addition of stayers on Q. 
,.. 

Throughout the previous sections, we have assumed that P(t) had distinct 
,.. 

eigenvalues, so that if a specific P(t) is embeddable (i.e., set of all solu-

tions to (1.1) C~), there is at worst, a finite number of solutions, and at 
,.. ,.. 

best, an unique Q. Given the sets of roots of P and its perturbations, one 
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b 

Table 2 

Accuracy of logar1ttunic eigenvalue approximation 

Ai I .8 .8 .5 .5 .2 .2 .05 .05 

* I . 05 e:h1Gh1 • 01 .05 . 01 .05 • 01 .05 • 01 

* log(A1+e:h1Gh1) 1-.1625 - • 2107 -.5978 -.6733 -1.386 -1.561 -2. 303 -2.813 

-1 * log A; ~h.Gh. 
1 1 

I - .1606 -.2106 -.5931 - . 6731 -1. 359 -1.559 -1.996 -2.796 

' 
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can identify all possible solutions. The relationship between the roots 

and the identification problem is nicely summarized in Table 3, reproduced 

from Singer and Spilerman (1976a). We hope that the approximations given 

here (especially 5.1 and 5.2) can be used in conjugation with the necessary 

conditions for embeddability (in particular those of Runnenberg given in 

Singer and Spilerman, 1976, page 11) so that further insights into the 

identification problem are gained. 
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Table 3 

Eigenvalues of P(t) and the number of matrices Q £ ~ 

Eigenvalue Characteristics Embeddable? How Many Q's? 

1. Positive, distinct .....•..•.....••••... Possibly One 

2. Positive, repeated, distinct ele-
mentary divisors ......•..•..•........ Possibly One 

3. Positive, repeated, nondistinct 
elementary divisors .•.•..........••.. Possibly 

4. Negative, distinct ..............•.....• Never 

5. Negative, repeated, odd multiplicity ... Never 

6. Negative, repeated, even multiplicity Possibly 

7. Complex, distinct, member of a 
conjugate pair . . . . . . . . . . . . . . . . . . . • . . . Possibly 

8. Complex conjugate, repeated Possibly 

9. Mixture of the types above •..•.•••••... Possibly 

One or continuum 

Continuum 

One or multiple 

One, multiple, or 
continuum 

The most extreme form 
of nonuniqueness 
present in any com­
ponent of the mixture 
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