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We review some of the statistical methods associated with change-point 

models, that is models which incorporate parameter shifts in sequences of 

random measurements. The application of bootstrap techniques is illustrated 

for some numerical examples. A subject-coded bibliography is provided. 

Key Words: Bayesian Methods; Bootstrap; Change-point; CUSUM Techniques; 

Parameter Shift; Sequential Detection; Switching Regression; 

Two-phase Regression. 

* This research was supported by NSF Grant MCS-79-04558. 



• 

... 

.,. 

0. Introduction: Scope and Outline 

Change-point models are used to describe discontinuous behavior in 

stochastic phenomena. During the last twenty years there has developed a 

large body of statistical theory and methods specifically devoted to such 

models, divided between the topics of testing for presence of such dis­

continuities, and estimation of the discontinuity point -- the change-point. 

The subject matter overlaps with that of quality control and of piecewise 

curve fitting. 

The present paper was prepared in conjunction with a presentation at the 

13th European Meeting of Statisticians, which had invited a talk on the 

topic of change-point models. It seemed to be useful and timely to attempt 

a review of this topic, rather than to add to the vast body of theory. 

This review was undertaken with a critical eye for applicability of the 

theory, and focussed to some extent on the real applications of change­

point methodology. The end result is rather unsatisfactory as a review of 

the literature, since the paper is rather selective in the topics discussed. 

However, a very extensive bibliography has been compiled, containing over 

120 entries, coded by topic. 

The paper looks mainly at two models: mean-shift models (Section 1) 

and intersecting two-phase regression models (Section 2). We review tests 

for the 11 no-shift 11 hypothesis in each context, both with and without 

specific change-point models as alternative hypotheses. Then we discuss 

estimation of the parameters in change-point models. In Section 3 we 

introduce the bootstrap techniques, and show by example how they might 

be used to aid statistical analysis of some change-point problems. 



1. DISCONTINUOUS SHIFT PROBLEMS 

1.1 Models and Examples 
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We shall restrict attention to models with at most one parameter 

shift. One wide class of change~point models assumes that xj = x{tj}, 

j = 1,2, ... {t1 ~·t2 ~ .•. )are observations of independent random variables 

X{tj) such that 

I
F{xje0) 

pr(X{t) ~ x) = 

F{xje1) 

t~y 
(1.1) 

t > y 

The form of Fis usually assumed known, but e0 and/or e1 would usually 

be unknown. The parameter y, called the change-point, is often of primary 

interest. In many applications {1.1) is a specific alternative to the 

"no-shift" or homogeneity hypothesis~ 

The most collDJlon special cases of {1.1) are: 

(a) F normal, e0 = mean e0, variance cr6 

e1 = mean e1, variance cr~; 

(a') same as {a) but with cr6 and cr~ eq~al; 

{b) F binomial, with e0 and e1 the Bernoulli probabilities; 

{c) F gamma, with e0 and e1 the scale parameters. 

Particular useful variants of {a) or (a') include {i) serial correlation 

between the Xj and {ii) more general mean functions e0{t), e1{t) such as 

ei{t) =a;+ Bi{t) {i = 0,1) [with a break, e0(y); e1{y)J. Although 

these variants will not be discussed further, they are included in the 

bibliography at the end of the paper. 

• 
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We focus our attention now on (1.la'), the nonnal mean-shift model, 

which seems to be by far the most important in application. Two examples 

that we shall refer to are illustrated in Figures 1.1 and 1.2. The first 

example is annual river discharge data, where estimation of the change­

pointy is of interest. The second example is menstrual cycle basal body 

temperature (BBT) data, where rapid sequential detection of the mean shift 

is of major interest. In each case the normal mean-shift model seems to 

be a good assumption. 

1.2 Tests for Deviation in Mean 

A standard quality-control problem is to detect deviation in mean 

from an initial control level µ0. In this context the problem is sequen­

tial, necessitating a decision procedure which involves some action with 

each new observation. For the normal case, consideration of the mean­

shift model led to the now-standard cumulative sum, or CUSUM, procedure. 

The procedure for detection of a positive shift operates as follows: 

detennine a positive mean shift µ1 - µ0 = oo which it is desired to detect 

quickly. Then compute truncated sequential sums 

s0 = 0, Sj = max(O, Sj-l + xj - µO - ½oo), (1.2) 

j=l,2, ..• 

and decide that an upward mean shift has occurred as soon as Sj exceeds 

the critical value h. Choice of the critical value his based on tables 

of ARL = average run length = E{inf(J: SJ~ h)} for various values of (o,h). 

Note that a large value of ARL is desirable when no shift occurs, whereas 
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Figure 1.1 Annual Discharge Volume of the Nile River as Aswan (Source: 
Cobb, 1978) 
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Figure 1.2 A Basal Body Temperature (BBT) Chart. (Source: Royston & 
Abrams, 1980) 
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a small value is desirable when a shift does occur -- the quantity of 

interest is then ARL - y. The upper part of Figure 1.2 illustrates the CUSUM 

procedure in action with the BBT data shown in the lower part of the figure. 

A similar, but more complicated procedure operates when µ0 is 

unknown. Theoretical properties of CUSUM procedures involve application of 

random walk theory, and approximate Brownian motion theory. Among the 

standard references are books by van Dobben de Bruyn and Woodward & Gold­

smith; see also the references in Section 2.2. Corresponding Bayesian 

procedures have been studied, notably by Bather (1967) and Shiryaev (1963, 

1965). 

A somewhat different testing problem obtains when a complete fixed 

sample is available and a retrospective test is required. Here one might 

propose model (l.la 1
) as the specific alternative against which to test 

the 11no-shift 11 hypothesis. Proposed tests include backward (reverse time) 

CUSUM charts, normal-theory likelihood ratio tests, non-parametric rank 

significance tests, and tests based on Bayesian formulations. Particular 

mention should be made of the papers by Bhattacharya (1980) and Sen & 

Srivastava {1975b), which give partial reviews, comparisons of various 

tests and distributions of test statistics; see also Section 2.2. 

One of the so-called Bayesian approaches averages out the possible 

change-point, giving a simple regression model as the alternative hypothesis, 

and thence arrives at the test statistic Ej(xj - x1,n), where xa,b = 

ave(xa, ... ,xb). Likelihood ratio tests are more complicated. For example, 

if o2 and µ0 are known, then the likelihood ratio test statistic for the 

positive-shift alternative {µ1 > µ0) is 
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(1. 3) 

whose approximate null distribution for large n can be related to Browian 

motion with shifting drift. Since the distributional problems for statis­

tics like (1.3) are so complicated, the bootstrap technique discussed in 

Section 3.4 may be useful. Statistics such as (1.3) tend to be preferable 

to "smooth" statistics such as Ej(xj - x1,n) when model (1.la') holds with 

y or n - y quite small. 

1.3 Particular Sequential Detection Scheme 

For the application illustrated in Figure 1.2, a CUSUM technique has 

been advocated for detection of the upward mean shift in BBT. The CUSUM 

method is said to give good results, and is obviously very easy to use. 

Potential disadvantages are that the decision procedure requires careful 

choice of h, and that the actual significance of the end result is hard 

to measure. It is, then, of some interest to conside·r alternative methods 

which are more closely tied to the model and to the available data. There 

are several background points to note: 

(i) t = 1 corresponds to the last day of a menstrual period; 

(ii) the normal mean-shift model (l.la') is a reasonable assumption, 
although the xj are discretized; 

(iii) sample size n is approximately 25; 

(iv) the change-pointy is bounded below by 5; 

(v) for a given subject there is cycle-to-cycle variation of 
µ0, µ1 and possibly y. 

• 
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One direct approach to the detection problem involves sequential com­

putations of pr ( y < t I x1 , •.• , xt), using Bayes• s Theorem together with 

existing empirical priors for µ0 , µ1 and y. To see how this might work, 

we suppose that cr2 is known, that a priori distributions for µ0 and µ1 

are respectively N(~0,t6) and N(~,,ti), and that a priori pr(y = j) = 1rj 

(j = 1, ... ). Then a rather routine calculation shows that 

t-1 
r 1rjq0(j, xl,j' ss1,j)q1(t-j, xj+l,t' ssj+l,t> 

pr(y < t) = ...,j=_l ________________ _ 
00 

(1. 4) 

where 

and 

2 2 l,: [ k ( x - ~i ) 
2 

ss ~ SS) = ( 1 + k 1r ;I a ) - 2 exp -½ 2 2 + 2 
k-r. + cr cr 

1 

b 
x a , b = ( b - a + 1) -

1 
. I: xJ. , 
J=a 

- b - 2 
SSa b - I: (xJ. - xa b) , a , 

(i = 0,1) 

The special case T6 = -r~ = O gives the posterior odds ratio formula 

00 

I: 1r., (1.5) 
j=t J 

which should be a reasonable approximation for small values of T6/cr2 and 

2 2 
t 1/cr • 

By way of illustration, consider the data in Figure 1.2. For this 

subject we assume a2 = .04, tii = T~ = ~cr2, ~O = 36.2, ~, = 36.5 The non­

zero prior probabilities for the change-point are 
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( 1. 6) 

These assumptions are loosely based on information in the article by Royston 

& Abrams (1980). With t = 1 corresponding to Day 5 of the cycle, formulae 

(1.4) and (1.5) then give the values for pr(y < tlx1, ... ,xy) in Table 1.1. 

Evidently at t = 12 it is nearly certain that t = y has been passed. 

The CUSUM procedure detects the shift at t = 12. In this particular data 

set the .data and the prior agree quite closely. When a fairly flat prior 

is taken for y, the posterior probabilities do not change appreciably. 

Table 1. 1 Bayes Sequential Detection Probabilities for BBT Data 

t • 6 7 8 9 10 11 12 13 14 15 16 17 
exact pr(y < tlx1 ••••• "1;). 
using (1.4) 0.02 0.03 0.()IJ 0.25 0.55 0.73 0.95 o.98 0.99 Q.99 1.00 1.00 

approximation (1.5} . 0.01 0.03 0.10 0.26 0.61 0.80 0.97 0.99 1.00 1.00 1.00 1.00 

prior probability • 0.03 o.os 0.10 0.30 0.50 0.70 0.90 0.96 0.99 1.00 1.00 1.00 

The Bayesian procedure is certainly complicated, but is easily imple­

mented in a calculator-assisted application. What would be of interest 

is an empirical comparison with the CUSUM procedure (see Section 3.3). 

In this particular application one is not interested in testing the 

no-shift hypothesis given the whole cycle data Xf,···,xn. If one were, 
n 

the statistic _E j(xJ. - x1 n)/cr could safely be used since y; ½n, 
J=l , 

in which case the complicated likelihood ratio test is not noticeably 

superior. 

., 
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1.4 Estimation of the Change-Point 

The simplest case to consider is model (1.1) with e0 and e1 both 

known: for large values of y, n - y the approximate distribution theory 

discussed below applies also when e0 and e1 are efficiently estimated. 

Much of the literature arbitrarily proposes maximum likelihood estimation 

for y, which turns out to be sensible for a reason mentioned below. The 

log likelihood function i(y) of y may be represented as 

d 
t(y} + j:l log{f(xy+jla0}/f(xy+jla1}l d > 1 

i(y + d) = 
-1 

t(y) + _r log{f(x +J·le1)/f(xy+J·le0)} d < -1. 
J=d y 

" This clearly defines two random walks, so that the distribution of y - y 

is determined by the results related to times of suprema of random walks 

with negative drift; for dense sampling and small !le0 - e1 II one can 

use Wiener process results. See Hinkley (1970, 1972) and Bhattacharya 

(1980) for some of the relevant theory. 

Unfortunately the distribution theory just described is unconditional 

and hence often inappropriate, in the sense that there exists an ancillary 

statistic which determines a conditional inference solution. This resolu­

tion was pointed out by Cobb (1978), who showed that the shape of the like­

lihood function is ancillary, and that the conditional distribution of 
" y - y is 

n 
pr(y-y= dlshape) - exp{i(yobs - d)}/ E exp{i(c)}, 

c=l 
(1. 7) 

" for large values of y and n - y. The likelihood shape and y are jointly 

sufficient. Equation (1.7) corresponds to the posterior distribution for 



10 

A 

y -y when y has invariant prior. 

Although the conditional solution (1.7) is preferable for analysis of 

a single data set, the unconditional result would be of use in a situation 

such as the BBT application of Section 1.2, where the unconditional varia-
" tion of y - y can be used together with empirical data from several cycles 

to approximate a frequency prior for y. 

Cobb (1978) illustrates the unconditional and conditional distributions 

of y - y using the data in Figure 1.1. These distributions are given in 

Table 3:1; Section 3.2 discusses the application of the bootstrap to this 

problem. 

1.5 Other Topics 

Very little work has been done on sensitivity of change-point inference 

to model misspecification (correlation, aberrant data values, etc.). The 

bibliography does include some references to non-parametric estimation 

and testing. 

When there is clear evidence for a mean shift, as in the BBT data of 

Figure 1.2, it may not be entirely clear that the shift to a new constant 

level is abrupt rather than gradual. In many cases sampling may not be 

frequent enough to allow distinction between abrupt_and gradual changes, 

although the distinction may be resolved on scientific grounds. If the 

distinction were of interest it might be difficult to obtain a good 

statistical test because the relevant models are not identified and nested. 

For example, if we wished to test a simple linear trend model against the 

mean-shift model (l.la 1
), then the likelihood ratio statistic would have 

non-standard sampling properties. In such a situation one can make use of 

bootstrap techniques, as outlined in Section 3. 
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2. CONTINUOUS SHIFT MODELS: TWO-PHASE REGRESSION 

2. 1 Models and Examples 

The major class of continuous shift models is that of piecewise con­

tinuous regression models. We consider only two-phase regression models 

of the form 

t. < y 
J -

a+ s1(tj - y) + ej' tj > y 
(2.1) 

where for convenience we assume the ej to be N(O,a2) random errors. Much 

of the theoretical literature considers more general linear models and 

non-linear models, but (2.1) is convenient for discussing the main points 

and is the most applicable case. 

In many applications (2.1) will be the specific alternative to a simple 

linear regression, i.e., "no-shift", hypothesis, although many tests of 

the latter hypothesis are more general. 

Figures 2.1, 2.2, 2.3, and 2.4 illustrate a few published applications 

of model (2.1}. In at least one case the model is of dubious relevance. 

One of the main reasons for using two-phase regression is that the change­

pointy may be easy to interpret, or may be a useful focus for comparison 

of data sets, even though a smoother model might be slightly more appro­

priate. This would probably be the case in Figure 2.2. The two-phase 

model is particularly prevalent in biological applications, where uncontrolled 

variation often precludes careful model definition. 



12 

Figure 2.1 Relation Between Phosphate and Oxygen Concentration in a Nutrient 
Redistribution Study (Source: Webb and D'Elia, 1980). 
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(Source: Curnow, 1973) 
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Figure 2.3 Relationship Between Alfalfa Plant Yield and Soil pH 
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2.2 Tests for Regression Shift 

The procedures described briefly in Section 1.2 have their counter­

parts here. A particularly good survey, with examples, is given by Brown, 

Durbin & Evans (1975). Various analogs of the CUSUM techniques are based 

on standardized recursive residuals, defined as follows. Assume a simple 

linear regression model 

x(t.) =a+ at.+ e., 
J J J 

j = 1, ... ,n, (2.2) 

and denote the least squares estimates of a and a given (t1,x1), ... ,(tr,xr) 
- ..., 

by ar and Br· Then the standardized recursive residuals are 

(r = 3,4, •.. ), 

which have zero mean, constant variance and zero correlation under the no­

shift normal error hypothesis. CUSUM tests based on the forward sums 
r r 2 L w. (r = 3,4, •.• ) and L wJ. (r = 3,4, ... ) are then used for one- and two-
3 J 3 
sided tests respectively. Distribution theory for LWj is based on a 

Browian motion approximation, while the distribution of LW~ is related to 

that for the Kolmogorov-Smirnov statistic. In the non-sequential case, 

CUSUM schemes can be run backwards from the end of the data, and Schweder 

(1976) argues that this is preferable. A useful recent reference to the 

theory is Deshayes & Picard (1980). 
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For non-squential tests with model (2.1) as the speaific alternative, 

the likelihood ratio statistic compares the maximum log likelihood 
A A A A A A 

R.(y, a, aO, a1) under (2.1) to the maximum log likelihood 1O(a, 8) 

under (2.2). The standard type of x~ approximation does not hold for 

the statistic 

A A A A A A 

+ 2{R.(.y, a, aO, 81) - R.O(a, a}}, 

since (2~2) does not define a linear subspace of the model (2.1). An 

elegant discussion of the problem may be found in Feder (1975b), where 

(2.3) 

we read that 11 the asymptotic distribution is the distribution of the 

maximum of a large number of correlated x1
2 and x2

2 random variables •.. 

presumably different limiting distributions would result from different 

spacings of the i'ndependent variable. 11 See Section 3.4. 

One relatively simple test is obtained by averaging the model with 

respect to a uniform prior for y and then deriving a locally most 

powerful test -- giving essentially a test for presence of an additional 

quadratic term in (2.1). This test is likely not to be very good if y 

is near to either end of the sample range of t. 

Various tests have been proposed which have a discontinuous shift 

alternative to (2.2). None of these tests seem to have tractable null 

distribution properties; see Beckman & Cook {1979) for related discussion. 

2.3 Estimation of Change-Point Models 

The unusual feature of estimation for the model (2.1) is that the 

likelihood (or residual sum of squares) is not a smooth function of y: 
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its derivative is discontinuous at y = tj (j = 1, ... ,n). Some algorithms 

for computation of the m.1.e. y start by fitting unconstrained two-phase 

models, while other algorithms are efficient non-linear optimization pro­

cedures. See Lerman (1980) for a recent account. 

The slight irregularity of the likelihood function causes a technical 

problem in verifying that standard asymptotic theory applies, but Feder 

(1975a} provides an ingenious proof. It is probable that standard normal 

approximations based on the Fisher information are not very accurate for 

small samples, and on general grounds one should probably use the likeli­

hood surface to obtain confidence intervals. It therefore seems generally 

advisable to plot the marginal log likelihood sup t(y,a,a0,a1) in 
a,So, a, 

applications. Since the change-point model is non-linear, it might be 

worth studying the relevance of recent work by Bates & Watts (1980). 

2.4 Tests of Fit for Two-Phase Regression 

In any one of the situations illustrated in Figures 2.1-2.4 one might 

question whether the shift from one regression to the other is abrupt. 

Watts and Bacon (1974) consider more general models with a smooth transi­

tion, model (2. 1) being a special {boundary) case. This seems particularly 

appropriate in low-error industrial experiments where detailed study of 

the regression relation is possible. With an additional parameter o, 
representing curvature of the regression function at t = y, one can examine 

the plausibility of abrupt shift (o = 0) via a likelihood contour plot in 

the (y,o) plane. 
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A formal test of the abrupt-shift hypothesis (o = 0) requires special 

study, since the hypothesis is a boundary point of the parameter space. 

An alternative ad hoc method is to split the data into three sections 
A A A A 

corresponding to t < y - d1 , y - d1 ~ t ~ y + d2 and y + d2 t, say; 

then fit linear regressions to the first and third sections; then test 

whether or not the middle section of data fits the predictions from the 

first and third sections. 

3. BOOTSTRAP TECHNIQUES 

3.1 General Remarks 

Many of the distributional problems associated with change-point methods 

are difficult to solve theoretically, even when special assumptions are 

made (such as normality of errors). In more regular statistical estima­

tion problems there are two useful alternatives: (i) use the jackknife 

technique to obtain standard errors and bias corrections, (ii) generate 

computer simulated properties of estimates using assumed probability models. 

A general set of techniques including these two has been discussed by 

Efron (1979, 1980) under the name "Bootstrap". The basic idea here is 

to simulate statistical procedures and their properties using the sample 

data to help generate similar samples. In the next three short subsections 

we show how bootstrap techniques can be used in connection with some 

change-point problems. 
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3.2 Estimation of Mean-Shift Change-Point 

For the simple mean-shift model (1.la'), we express the fitted model as 

A A 

X- = µo + ej j = 1, ... , y 
J 

A A 

x. 
J = µ1 + ej j = y + 1, . .. , n . (3.1) 

If we are content to assume homogeneity of errors, but make no further 

assumption about them, then the obvious estimate of the error distribution 

function· is the sample c.d.f. 

A 1 n A 

Fn(e) = n- r I(e - e.) , 
j=l J 

Next we simulate artificial samples 

A A 

X * -j -
µo + ej* 
A 

µ1 + ej* 

j = 1, ... , y 
A 

j = y + 1, ... , n (3.2) 

by randomly sampling ej* from Fn{e), that is by sampling with replacement 

from {;j}. Each such sample gives estimates µ0*,µ1*, y*, and cr*. The 
A A 

empirical distributions of y* - y, etc. then estimate the sampling distri-

butions of y - y, etc. Typically several hundred samples would be used, 

with fairly minimal computing cost. 

To illustrate the procedure, we have applied it to the Nile data in Figure 

1.1. Actually several types of bootstrap were applied, two of which will be 

discussed here. The first bootstrap simulation (Bl) used m.1. estimation 

for y from {xj*} defined by (3.2}, assuming µ0 = µ0 and µ1 = µ1 
known. The second bootstrap (82) used separate pre- and post-shift error 

• 
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distributions, and assumed different means and variances all unknown in 

the m.1. estimation from generated data. Table 3.1 shows resulting 

empirical distributions of y* - y from 1000 samples, together with asymptotic 

normal-theory distributions of y - y (unconditional and conditional (1.7)). 

Table 3.1 Bootstrap* and Theoretical Distributions for y - y for Nile Data 

Theoretical Probabilities Bootstrap Empirical 
Probabilities 

,.. 
y:.. y Conditional Unconditional Bl B2 

~ 6+ 0 0.003 0.005 0.012 

5 0.000 0.003 0.005 0.006 

4 0.000 0.007 0.011 0.015 

3 0.001 0.015 0.010 0.021 

2 0.045 0.038 0.049 0.042 

1 0.109 0.113 0.122 0.108 

0 0.808 0.641 0.618 0.598 

-1 0.032 0.113 0.102 0.112 

-2 0.004 0.038 0.039 0.039 

-3· 0.001 0.015 0.022 0.014 

-4 0.000 0.007 0.008 0.010 

-5 0.000 0 .. 003 0.003 0.008 

< - -6 0 0.003 0.006 0.015 

* 1000 samples. 
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The table clearly illustrates the pronounced effect of conditioning, 

the similarity of bootstrap to unconditional distributions, and the effect 

of having to estimate mean and variance parameters. Of course the condi­

tional distribution is only trustworthy if our original model assumption 

of N(O,o2) errors is correct -- which it seems to be here. The bootstrap 

analysis clearly approximates an unconditional analysis, as is generally 

true. 

3.3 Sequential Detection of Mean-Shift 

In Section 1.2 we discussed sequential detection of shift in the con­

text of the BBT data illustrated by Figure 1.2. One could boostrap both 

the CUSUM procedure and the Bayes procedure in a fairly obvious manner, 

for example using (3.2) to generate data. Further, one could incorporate 

in the bootstrap various peculiarities of the applications, such as discreti­

zation of measurements. Given a series of cycles for one particular sub­

ject, one could also simulate pre- and post-shift mean levels of BBT from 
A 

the empirical distributions of µi. Presumably the major characteristics 

of interest would include 

p = chance of false (early) detection of shift (3.3) 

m = average value of (decision time - y). (3.4) 

As a preliminary indication of what can be done, we bootstrapped the 

Bayes decision procedure, or rather its main ingredient Pt= {pr(y<tlx1, ... ,xt), 

t = 6,7, ... }, using only the data plotted in Figure 1.2. Model (3.1) was 

fitted to the data and 1000 bootstrap samples were generated according to 

(3.2). In addition to simulating the sequence of posterior probabilities, 
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Pt, we simulated the CUSUM procedure outlined in Section 1.2, here with 

h = 0.35 andoa= 0.2, 0.3 (h = 0.35 and oa = 0.2 were recommended by 

Royston & Abrams). 

Figure 3.1 shows histograms of Pi= pr(y < tlx;, ... ,xt) fort= 8(1)12 

for two prior distributions on y, first the one in (1.6) and second the 

more diffuse prior 

n, = ••• = ns = 0, n6 = ••• = w10 = .05, 

nl6 = ••• = W20 = 0.05, nll = ••• = Wl5 = 0.1. (3.5) 

From Figure 3.1 we can estimate the performance of any decision procedure 

determined by a cut-off value of Pt. To take a specific example, suppose 

Pt= 0.8 is the cut-off: if Pt~ 0.8, then we decide that y < t. The 

bootstrap frequencies of 

T = decision time t - y 

are given in Table 3.2, which includes for comparison the corresponding 

frequencies for the two CUSUM procedures. (Note that T = O corresponds 

to premature detection.) Evidently the Bayesian procedure can give 

slightly lower values of p and m, defined in (3.3) and (3.4), than the 

CUSUM procedures. A more thorough practical analysis of this problem 

would require also bootstrapping the within-subject cycle-to-cycle varia­

tion and the between-subject variation. 
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Figure 3.l(a) Bootstrap Distribution o~ Pt= pr{y < tlx;, .•. ,xt) Using 

Prior of Example in Section 1.2. 1000 Samples. 
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Figure 3.l(b) As in (a) But With Flatter Prior (3.5) Instead of (1.6) 
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Table 3.2 Bootstrap Frequencies for T = Decision Time - y, Based on Data 
in Figure 1.2. 

T = -2 -1 0 1 2 3 4 5+ 

CUSUM 
Procedure 

t: 0. 35, Ila: O. 2 

h - 0. 35 , 00' - 0. 3 

0.013 0.028 0.025 0.662 0.198 0.055 0.014 0.005 

0.001 0.002 0.004 0.533 0.257 0.105 0.054 0.044 

Bayes lprior {1.6) 
Procedure 
Cut-off Pt= 0. 8 prior { 3. 5) 

0 

0 

0 0.020 0.669 0.268 0.041 0.001 0.001 

0 0 0.554 0.298 0.116 0.025 0.007 

3.4 Test of Simple Versus Two-Phase Linear Regression 

Suppose that model (2.1) is viewed as a probable model, except that 

there may actually be no shift. Then we are interested in testing the 

adequacy of the simple model 

x. =a+ et.+ e., 
J J J 

{j = 1, ... ,n) (3.6) 

with {2.1) as alternative. For a particular test statistic T, perhaps 

one of those mentioned in Section 2.2, the following simple bootstrap 

method would give an approximate level of significance. 

First, fit the model {2.1) by least squares and obtain the residuals 
A A A A 

e1, ... ,en. Next fit {3.6) by least squares to obtain a and e. Then 

generate bootstrap samples 

A A 

xt =a+ et.+ e~, 
J J J 

(j = 1, ... ,n) 

where the eJ are sampled without replacement from {ej}. For each bootstrap 

sample compute the value T* of the test statistic, and thence obtain the 

empirical null hypothesis distribution of T*. The approximate significance 

of the observed value Tobs is then the proportion of T* 1 s exceeding Tobs' 

assuming large values of Tare indicative of {2.1). 
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Note that the sample c.d.f. of e is not obtained using residuals from 

(2.1), since these would be inflated by systematic effects if (2.1) were 

true. Of course the estimation method need not be simple least squares 

if a more appropriate method is available. 

To illustrate the procedure we have taken part of the data set graphed 

in Figure 2.4. There were six observations at each of nine values oft 

(the latter being natural logarithms of 10, 20, 30, 50, 100, 150, 200, 

300, 500), but because the six were not genuine replicates we simply took 

the response x to be the average of the six observations in each group. 

The nine averages were 

87.83, 86.50, 84.83, 83.50, 80.16, 79.50, 79.16, 78.66, 78.66. 

We then generated 1000 bootstrap samples, following the procedure described 

above, and took T to be the log likelihood ratio statistic (2.3), which is 

where subscripts O and A refer to null and alternative models, (3.6} and 
A 

(2.1), respectively. The data statistics are Yobs= 5.088, Tobs = 14.74. 

Figure 3.2 shows the bootstrap null hypothesis frequencies of T*, from 

which we conclude that Tobs is significant at about the 2% level. 

Notice that the bootstrap distribution of T* is not close to the x~ 

distribution which a naive application of standard theory would suggest. 

A corresponding bootstrap simulation of the two-phase model (2.1) 
A 

yields an estimate of the distribution of y - y which is in close agree-

ment with the normal approximation described by Hinkley (1971). 
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Table 3.2 Bootstrap Frequencies and Cumulative Frequencies for Log Likeli­
hood Ratio Test of No-Shift Hypothesis in Regression, i.e., 
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4. CONCLUDING REMARKS 

This all-too-brief review of change-point model analysis suggests, 

among other things, that much of the related distribution theory is non­

standard and complicated. One practical option that seems to have some 

merit is the use of Bootstrap techniques, although these seem to be incapable 

of providing conditional distributions in general (since models are required 

to define relevant subsets of the sample space). 

Change-point models are open to scientific criticism, and more attention 

might be paid to comparisons with smoother models. Nevertheless, from a 

practical viewpoint the notions of change-point and threshold are undoubtedly 

often useful. 
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APPENDIX: BIBLIOGRAPHY OF ARTICLES ON CHANGE-POINTS 

The following bibliography contains more than 100 entries, yet cannot 

be treated as complete. For example, there are substantial literatures 

on: spline regression fitting, CUSUM quality control procedures, and 

economic switching regression models. Only a few papers from these areas 

are included in the bibliography, although hopefully the few are among 

the major references. 

Nearly all articles have been coded using four classifications: model 

specification; statistical objectives; type of theory developed or used; 

presence of examples. The categories within each classification, with 

codes, are as follows. 

MODEL SPECIFICATION 

RL 

RLC 

RLD 

RNC 

RND 

RLSp 

RNSp 

TMI 

RVI 

TGI 

TMD 

TVD 

TGD 

.B_egression, _hinear 

B_egression, _hinear fontinuous 

B_egression, _hinear Qiscontinuous 

B_egression, J:!onlinear Continuous 

B_egression, !!_onlinear Qiscontinuous 

.B_egression, linear £line fitting 

.B_egression, !!_onlinear ~line fitting 

Time series, Mean shift, .!_ndependent variables 

Time series, Y,ariance shift, Independent variables 

lime series, §.eneral shift, Independent variables 

Iime series, ~ean shift, Qependent variables 

!ime series, Iariance shift, Dependent variables 

Time series, .§_eneral shift, _Q_ependent variables 
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Notes: (a) time series is used to describe processes that are stationary 

in mean (and other characteristics) on either side of the 

change-point -- as opposed to regression models where the mean 

function is nonstationary, depending upon explanatory variables. 

(b) TGI includes both general distributions and specific distribu­

tions such as Binomial and Ganuna. 

(c) TGD includes models with shifting autoregressive parameters. 

STATISTICAL OBJECTIVES 

TS 

TN 

E 

G 

rest of no.-shift hypothesis, iequential 

Test of no-shift hypothesis, Non-sequential 

Estimation of change-point and/or other model parameters, 

assuming a shift 

Test for Goodness-of-fit of the change-point model 

THEORY DEVELOPED OR USED 

p 

NP 

B 

D 

0 

NU 

EXAMPLES 

A 

D 

G 

Parametric 

NonParametric 

_!!ayesian 

Distributions of statistics 

Qptimality of procedures 

NUmerical analysis 

~plication to real data set 

Qata set given in the paper 

Graph given in the paper 
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Notes: (a) artificial data do not count, 

(b) relatively few sources for examples are given in the biblio­

graphy, but many may be found by checking references in articles 

coded A. 

For a particular classification, especially the last one, a blank(---) 

indicates ''not in the article'', whereas a question mark(?) indicates un­

certainty about the category. 

Corrections and additions to the bibliography are welcome. 
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