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0. Introduction: Scope and Outline

Change-point models are used to describe discontinuous behavior in
stochastic phenomena. During the last twenty years there has developed a
large body of statistical theory and methods specifically devoted to such
models, divided between the topics of testing for presence of such dis-
continuities, and estimation of the discontinuity point -- the change-point.
The subject matter overlaps with that of quality control and of piecewise
curve fitting.

The present paper was prepared in conjunction with a presentation at the
13th European Meeting of Statisticians, which had invited a talk on the
topic of change-point models. It seemed to be useful and timely to attempt
a review of this topic, rather than to add to the vast body of theory.

This review was undertaken with a critical eye for applicability of the
theory, and focussed to some extent on the real applications of change-
point methodology. The end result is rather unsatisfactory as a review of
the literature, since the paper is rather selective in the topics discussed.
However, a very extensive bibliography has been compiled, containing over
120 entries, coded by topic.

The paper Tooks mainly at two models: mean-shift models (Section 1)
and intersecting two-phase regression models (Section 2). We review tests
for the "no-shift" hypothesis in each context, both with and without
specific change-point models as alternative hypotheses. Then we discuss
estimation of the parameters in change-point models. In Section 3 we
introduce the bootstrap techniques, and show by example how they might

be used to aid statistical analysis of some change-point problems.



1. DISCONTINUQUS SHIFT PROBLEMS

1.1 Models and Examples

We shall restrict attention to models with at most one parameter
shift. One wide class of change-point models assumes that Xy = x(tj),
j=1,2,... (t1 <t < ...) are observations of independent random variables

X(tj) such that

F(xleo) t<y
pr(X(t) < x) = . (1.1)
F(XIG-I) t>y
The form of F is usually assumed known, but eo and/or e] would usually
be unknown. The parameter vy, called the change-point, is often of primary
interest. In many applications (1.1) is a specific alternative to the
"no-shift" or homogeneity hypothesis.

The most common special cases of (1.1) are:

(a) F norma], 6 = mean 6, variance GS
e] = mean 9], variance c%;
(a') same as (a) but with cg and o% equal;
(b) F binomial, with 8, and 6, the Bernoulli probabilities;

(c) F gamma, with Ch and 6, the scale parameters.

Particular useful variants of (a) or (a') include (i) serial correlation
between the Xj and (ii) more general mean functions eo(t), el(t) such as
0;(t) = a; + B;(t) (i = 0,1) [with a break, GO(Y) i 6](Y)]. Although
these variants will not be discussed further, they are included in the

bibliography at the end of the paper.



We focus our attention now on (1.7a'), the normal mean-shift model,
which seems to be by far the most important in application. Two examples
that we shall refer to are illustrated in Figures 1.1 and 1.2. The first
example is annual river discharge data, where estimation of the change-
point y is of interest. The second example is menstrual cycle basal body
temperature (BBT) data, where rapid sequential detection of the mean shift
is of major interest. In each case the normal mean-shift model seems to

be a good assumption.

1.2 Tests for Deviation in Mean

A standard quality-control problem is to detect deviation in mean
from an initial control level Mg In this context the problem is sequen-
tial, necessitating a decision procedure which involves some action with
each new observation. For the normal case, consideration of the mean-
shift model led to the now-standard cumulative sum, or CUSUM, procedure.
The procedure for detection of a positive shift operates as follows:
determine a positive mean shift My = Hg T 8o which it is desired to detect

quickly. Then compute truncated sequential sums

SO =0, Sj = max(0, Sj-] + X5 = Mg - L%80), (1.2)
j=1,2,...

and decide that an upward mean shift has occurred as soon as Sj exceeds
the critical value h. Choice of the critical value h is based on tables
of ARL = average run length = E{inf(J : S, > h)} for various values of (§,h).

Note that a large value of ARL is desirable when no shift occurs, whereas



Figure 1.1 Annual Discharge Volume of the Nile River as Aswan (Source:
Cobb, 1978)
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Figure 1.2 A Basal Body Temperature (BBT) Chart. (Source: Royston &
Abrams, 1980)
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a small value is desirable when a shift does occur -- the quantity of
interest is then ARL - y. The upper part of Figure 1.2 illustrates the CUSUM
procedure in action with the BBT data shown in the lower part of the figure.

A similar, but more complicated procedure operates when g is
unknown. Theoretical properties of CUSUM procedures involve application of
random walk theory, and approximate Brownian motion theory. Among the
standard references are books by van Dobben de Bruyn and Woodward & Gold-
smith; see also the referentes in Section 2.2. Corresponding Bayesian
procedures have been studied, notably by Bather (1967) and Shiryaev (1963,
1965).

A somewhat different testing problem obtains when a complete fixed
sample is available and a retrospective test is required. Here one might
propose model (1.1a') as the specific alternative against which to test
the "no-shift" hypothesis. Proposed tests include backward (reverse time)
CUSUM charts, normal-theory likelihood ratio tests, non-parametric rank
significance tests, and tests based on Bayesian formulations. Particular
mention should be made of the papers by Bhattacharya (1980) and Sen &
Srivastava (1975b), which give partial reviews, comparisons of various
tests and distributions of test statistics; see also Section 2.2.

One of the so-called Bayesian approaches averages out the possible
change-point, giving a simple regression model as the alternative hypothesis,
and thence arrives at the test statistic Zj(xj - i],n)’ where ia,b =
ave(xa,...,xb). Likelihood ratio tests are more complicated. For example,
if 02 and g are known, then the 1ikelihood ratio test statistic for the

positive-shift alternative (u] > “0) is



L -
3 {(n - r)* - Yo, 1.3
]igpm (n = r)*(Xpyq p - Hg)}/o (1.3)

whose approximate null distribution for large n can be related to Browian
motion with shifting drift. Since the distributibna] problems for statis-
tics like (1.3) are so complicated,‘the bootstrap technique discussed in

Section 3.4 may be useful. Statistics such as (1.3) tend to be preferable
to "smooth" statistics such as zj(xj - i],n) when model (1.1a') holds with

yorn-vyquite small.

1.3 Particular Sequential Detection Scheme

For the application illustrated in Figure 1.2, a CUSUM technique has
been advocated for detection of the upward mean shift in BBT. The CUSUM
method is said to give good results, and is obviously very easy to use.
Potential disadvantages are that the decision procedure requires careful
choice of h, and that the actual significénce of the end result is hard
to measure. It is, then, of some interest to consider alternative methods
which are more closely tied to the model and to the available data. There

are several background points to note:

(i) t = 1 corresponds to the last day of a menstrual period;

(i1) the normal mean-shift model (1.1a') is a reasonable assumption,
although the xj are discretized;

(iii) sample size n is approximately 25;
(iv) the change-point y is bounded below by 5;

(v) for a given subject there is cycle-to-cycle variation of
Hgs 1y and possibly v.



One direct approach to the detection problem involves sequential com-
putations of pr(Y<<t|x],...,xt), using Bayes's Theorem together with
existing empirical priors for Hps My and Y. To see how this might work,
we suppose that 02 is known, that a priori distributions for o and M
are respectively N(gO,Tg) and N(gl,tf), and that a priori pr(y = j) = ™

(j =1,...). Then a rather routine calculation shows that

t-1
j§1 "quo(.], X] ,j° SS] ,j)q] (t-3, xj"'] .t ,Ssj+l ,t)
pr(y<t) = - , (1.4)
numerator + (i nj)qo(t, X1t SS]’t)
where
- 2
k(x - &)
- -
aj(k, %, $5) = (1rkf/oh)™ e | pim——y—+ 23l (1= 0)
_ H+0 o
and
X (b n s : (x; - % )2
X = -a+ I Xs» SS =7 (x. - X .
a,b j=a J a,b a J a,b

The special case 1% = T% = 0 gives the posterior odds ratio formula

8

t

t-1 (& - €
93%145—5% = I m, exp | —mp2- - +
. exp I {x -%(E + &)} ¢
priy > t j=1 3 o2 k=j+1 k™50 " =1 j

which should be a reasonable approximation for small values of TS/OZ and

n o

., (1.5)

t 3

T%/OZ.
By way of illustration, consider the data in Figure 1.2. For this
subject we assume o = .04, 5 = 1% = %o’, £ = 36.2, & = 36.5 The non-

zero prior probabilities for the change-point are
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"

Mo = 0.2. (1.6)

8~ M3 9

These assumptions are loosely based on information in the article by Royston

& Abrams (1980). With t = 1 corresponding to Day 5 of the cycle, formulae

(1.4) and (1.5) then give the values for pr(y < t|X1s---’Xy) in Table 1.1.
Evidently at t = 12 it is nearly certain that t = vy has been passed.

The CUSUM procedure detects the shift at t = 12. In this particular data

set the data and the prior agree quite closely. When a fairly flat prior

is taken for vy, the posterior probabilities do not change appreciably.

Table 1.1 Bayes Sequential Detection Probabilities for BBT Data

t = 6 7 8 9 10 11 12 13 14 15 16 17

exact priy < t]XjeeeesXy)
using (1.4) 1° X = 0.2 0.03 0.09 0.25 0.55 0.73 0.5 0.9 0.99 0.99 1.00 1.00

approximation (1.5} = 0.0l 0.03 0.10 0.26 0.61 0.80 0.97 0.99 1.00 1.00 1.00 1.00
prior probability = 0.03 0.05 0.10 0.30 0.50 0.70 0.90 0.96 0.99 1.00 1.00 1.00

The Bayesian procedure is certainly complicated, but is easily imple-
mented in a calculator-assisted application. What would be of interest
is an empirical comparison with the CUSUM procedure (see Section 3.3).

In this particular application one is not interested in testing the

no-shift hypothesis given the whole cycle data Xq's e e X If one were,

no

n
the statistic = Jj(x; - X1.q)/0 could safely be used since y = kn,
j=1 ’

in which case the complicated likelihood ratio test is not noticeably

superior.



1.4 Estimation of the Change-Point

The simplest case to consider is model (1.1) with 60 and e] both
known: for large values of vy, n - y the approximate distribution theory
discussed below applies also when 90 and e] are efficiently estimated.
Much of the literature arbitrarily proposes maximum likelihood estimation
for y, which turns out to be sensible for a reason mentioned below. The

log likelihood function %(y) of y may be represented as

d
2(y) + -E] 1og{f(xy+j|eo)/f(x
2y +d) = J
-1
2(y) + T log{f(x
j=d
This clearly defines two random walks, so that the distribution of ? -y

vl 0/ F(x y5180))  d < -1

is determined by the results related to times of suprema of random walks
with negative drift; for dense sampling and sma]llleo - 9]“ one can

use wieher process results. See Hinkley (1970, 1972) and Bhattacharya
(1980) for some of the relevant theory.

Unfortunately the distribution theory just described is unconditional
and hence often inappropriate, in the sense that there exists an ancillary
statistic which determines a conditional inference solution. This resolu-
tion was pointed out by Cobb (1978), who showed that the shape of the 1ike-
lihood function is ancillary, and that the conditional distribution of
Y- yis

n
-d)}/ 21 exp{2(c)}, (1.7)
c=

pr(Y -y =d|shape) - exp{a(Y,,

for large values of y and n - y. The 1ikelihood shape and ? are jointly

sufficient. Equation (1.7) corresponds to the posterior distribution for
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§ -y when y has invariant prior,

Although the conditional solution (1.7) is preferable for analysis of
a single data set, the unconditional result would be of use in a situation
such as the BBT application of Section 1.2, where the unconditional varia-
tion of ; - v can be used together with empirical data from several cycles
to approximate a frequency prior for vy.

Cobb (1978) illustrates the unconditional and conditional distributions
of ¥y - v using the data in Figure 1.1. These distributions are given in
Table 3.1; Section 3.2 discusses the application of the bootstrap to this

problem.

1.5 Other Topics

Very little work has been done on sensitivity of change-point inference
to model misspecification (correlation, aberrant data values, etc.). The
bibliography does include some references to non-parametric estimation
and testing.

When there is clear evidence for a mean shift, as in the BBT data of
Figure 1.2, it may not be entirely clear that the shift to a new constant
level is abrupt rather than gradual. In many cases sampling may not be
frequent enough to allow distinction between abrupt and gradual changes,
although the distinction may be resolved on scientific grounds. If the
distinction were of interest it might be difficult to obtain a good
statistical test because the relevant models are not identified and nested.
For example, if we wished to test a simple linear trend model against the
mean-shift model (1.1a'), then the 1ikelihood ratio statistic would have
non-standard sampling properties. In such a situation one can make use of

bootstrap techniques, as outlined in Section 3.
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2. CONTINUOUS SHIFT MODELS: TWO-PHASE REGRESSION

2.1 Models and Examples

The major class of continuous shift models is that of piecewise con-
tinuous regression models. We consider only two-phase regression models

of the form

x(tj) = R (2.1)
a+81(tj-v)+ej, ty >y

where for convenience we assume the e; to be N(O,oz) random errors. Much

of the theoretical Titerature considers more general linear models and

non-linear models, but (2.1) is convenient for discussing the main points

and is the most applicable case.

In many applications (2.1) will be the specific alternative to a simple
linear regression, i.e., "no-shift", hypothesis, although many tests of
the latter hypothesis are more general.

Figures 2.1, 2.2, 2.3, and 2.4 illustrate a few published applications
of model (2.1). In at least one case the model is of dubious relevance.
One of the main reasons for using two-phase regression is that the change-
point y may be easy to interpret, or may be a useful focus for comparison
of data sets, even though a smoother model might be slightly more appro-
priate. This would probably be the case in Figure 2.2. The two-phase

model is particularly prevalent in biological applications, where uncontrolled

variation often precludes careful model definition.
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Figure 2.1 Relation Between Phosphate and Oxygen Concentration in a Nutrient
Redistribution Study (Source: Webb and D'Elia, 1980).
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Figure 2.2 Relationship Between Egg Production and Methionine Intake
(Source: Curnow, 1973)
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Figure 2.3 Relationship Between Alfalfa Plant Yield and Soil pH
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2.2 Tests for Regression Shift

The procedures described briefly in Section 1.2 have their counter-
parts here. A particularly good survey, with examples, is given by Brown,
Durbin & Evans (1975). Various analogs of the CUSUM techniques are based
on standardized recursive residuals, defined as follows. Assume a simple

linear regression model

x(tj) =q + Btj +e j=1,...,n, (2.2)

J”
and denote the least squares estimates of o and B given (t],x]),...,(tr,xr)

by &r and Er' Then the standardized recursive residuals are

y.- (o, ,+B. t)
wr= r r-1 r-1"r (Y‘=3,4,..-),
- 2
Ce Y ) |
Y‘-] - 2
Pty - Y

which have zero mean, constant variance and zero correlation under the no-

shift normal error hypothesis. CUSUM tests based on the forward sums
g wj (r = 3,4,...) and g wg (r = 3,4,...) are then used for one- and two-
sided tests respectively. Distribution theory for ij is based on a

Browian motion approximation, while the distribution of ng is related to

that for the Kolmogorov-Smirnov statistic. In the non-sequential case,
CUSUM schemes can be run backwards from the end of the data, and Schweder
(1976) argues that this is preferable. A useful recent reference to the

theory is Deshayes & Picard (1980).
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For non-squential tests with model (2.1) as the specific alternative,
the 1ikelihood ratio statistic compares the maximum log 1ikelihood
2(;, &, EO’ él) under (2.1) to the maximum log likelihood 20(&, é)
under (2.2). The standard type of Xg approximation does not hold for
the statistic

+ 208(Y, s Bys B)) - %, B} (2.3)

since (2.2) does not define a linear subspace of the model (2.1). An
elegant discussion of the problem may be flound in Feder (1975b), where

we read that "the asymptotic distribution is the distribution of the
maximum of a large number of correlated Xlz and X22 random variables...
presumably different 1imiting distributions would result from different
spacings of the independent variable." See Section 3.4.

One relatively simple test is obtained by averaging the model with
respect to a uniform prior for +y and then deriving a locally most
powerful test -- giving essentially a test for presence of an additional
quadratic term in (2.1). This test is 1ikely not to be very good if Yy
is near to either end of the sample range of t.

Various tests have been proposed which have a discontinuous shift
alternative to (2.2). None of these tests seem to have tractable null

distribution properties; see Beckman & Cook (1979) for related discussion.

2.3 Estimation of Change-Point Models

The unusual feature of estimation for the model (2.1) is that the

likelihood (or residual sum of squares) is not a smooth function of y:
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its derivative is discontinuous at y = tj (j =1,...,n). Some algorithms
for computation of the m.1.e. ? start by fitting unconstrained two-phase
models, while other algorithms are efficient non-linear optimization pro-
cedures. See Lerman (1980) for a recent account.

The slight irregularity of the likelihood function causes a technical
problem in verifying that standard asymptotic theory applies, but Feder
(1975a) provides an ingenious proof. It is probable that standard normal
approximations based on the Fisher information are not very accurate for
small samples, and on general grounds one should probably use the 1ikeli-
hood surface to obtain confidence intervals. It therefore seems generally

advisable to plot the marginal log likelihood sup 2(Y,a,80,e1) in
a,BOSB‘I
applications. Since the change-point model is non-linear, it might be

worth studying the relevance of recent work by Bates & Watts (1980).

2.4 Tests of Fit for Two-Phase Regression

In any one of the situations illustrated in Figures 2.1-2.4 one might
question whether the shift from 6ne regression to the other is abrupt.
Watts and Bacon (1974) con§ider more general models with a smooth transi-
tion, model (2.1) being a special (boundary) case. This seems particularly
appfobkiate in low-error industrial experiments where detailed study of
the regression relation is possible. With an additional parameter &,
representing curvature of the regression function at t = y, one can examine
the plausibility of abrupt shift (6 = 0) via a 1ikelihood contour plot in
the (y,d8) plane.
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A formal test of the abrupt-shift hypothesis (8 = 0) requires special
study, since the hypothesis is a boundary point of the parameter space.
An alternative ad hoc method is to split the data into three sections
corresponding to t < ?-d], y - d <t <y + d, and ¥+ d, t, say;
then fit linear regressions to the first and third sections; then test
whether or not the middle section of data fits the predictions from the

first and third sections.

3. BOOTSTRAP TECHNIQUES

3.1 General Remarks

Many of the distributional problems associated with change-point methods
are difficult to solve theoretically, even when special assumptions are
made (such as normality of errors). In more regular statistical estima-
tion problems there are two useful alternatives: (i) use the jackknife
technique to obtain standard errors and bias corrections, (ii) generate
computer simulated properties of estimates using assumed probability models.
A general set of techniques including these two has been discussed by
Efron (1979, 1980) under the name "Bootstrap". The basic idea hefe is
to simulate statistical procedures and their properties using the sample
data to help generate similar samples. In the next three short subsections
we show how bootstrap techniques can be used in connection with some

change-point problems.
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3.2 Estimation of Mean-Shift Change-Point

For the simple mean-shift model (1.1a'), we express the fitted model as

1,..., v
Y+ 1,...mn. (3.1)

x
Ll

[N
n

. = + .
iV e
= U1 + ej J

x
[}

If we are content to assume homogeneity of errors, but make no further
assumption about them, then the obvious estimate of the error distribution

function is the sample c.d.f.

F (e) = nl oz

I(e - g.) R
n Jl J

Next we simulate artificial samples

A e

. Hy + ej* NI
x =

J - * ;
w ot e; j (3.2)

[}

<
+
[y
3

by randomly sampling ej* from ?n(e), that is by sampling with replacement
from {gj}. Each such sample gives estimates ﬁo*,ﬁ1*, Y*, and o*. The
empirical distributions of ?* - ¥, etc. then estimate the sampling distri-
butfons of Y - v, etc. Typically several hundred samples would be used,
with fairly minimal computing cost.

To illustrate the procedure, we have applied it to the Nile data in Figure
1.1. Actually several types of bootstrap were applied, two of which will be
discussed here. The first bootstrap simulation (B1) used m.1. estimation
for v from {xj*} defined by (3.2), assuming Mg = ﬂo and uy = ﬁ]

known. The second bootstrap (B2) used separate pre- and post-shift error
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distributions, and assumed different means and variances all unknown in
the m.1. estimation from generated data. Table 3.1 shows resulting
empirical distributions of Y* - ¥ from 1000 samples, together with asymptotic

normal-theory distributions of Y - v (unconditional and conditional (1.7)).

Table 3.1 Bootstrap* and Theoretical Distributions for ? - v for Nile Data

Theoretical Probabilities Bootstrap Empirical

Probabilities

; - Y Conditional Unconditional Bl B2
2 6+ 0 0.003 0.005 0.012
5 0.000 0.003 0.005 0.006
4 0.000 0.007 0.011 0.015
3 0.001 0.015 0.010 0.021
2 0.045 0.038 0.049 0.042
1 0.109 0.113 0.122 0.108
0 0.808 0.641 0.618 0.598
-1 0.032 0.113 0.102 0.112
-2 0.004 0.038 0.039  0.039
-3 0.001 0.015 0.022 0.014
-4 0.000 0.007 0.008 0.010
-5 0.000 0.003 0.003 0.008
.6 0 0.003 0.006 0.015

*1000 samples.
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The table clearly illustrates the pronounced effect of conditioning,

the similarity of bootstrap to unconditional distributions, and the effect
of having to estimate mean and variance parameters. Of course the condi-
tional distribution is only trustworthy if our original model assumption
of N(O,oz) errors is correct -- which it seems to be here. The bootstrap
analysis clearly approximates an unconditional analysis, as is generally

true.

3.3 Sequential Detection of Mean-Shift

In Section 1.2 we discussed sequential detection of shift in the con-
text of the BBT data illustrated by Figure 1.2. One could boostrap both
the CUSUM procedure and the Bayes procedure in a fairly obvious manner,
for example using (3.2) to generate data. Further, one could incorporate
in the bootstrap various peculiarities of the applications, such as discreti-
zation of measurements. Given a series of cycles for one particular sub-
ject, one could also simulate pre- and post-shift mean levels of BBT from
the empirical distributions of ﬁi‘ Presumably the major characteristics

of interest would include

chance of false (early) detection of shift (3.3)

o
n

3
[}

average value of (decision time - vy). (3.4)

As a preliminary indication of what can be done, we bootstrapped the
Bayes decision procedure, or rather its main ingredient Pt = {pr(y<:t|x1,...,xt),
t =6,7,...}, using only the data plotted in Figure 1.2. Model (3.1) was
fitted to the data and 1000 bootstrap samples were generated according to

(3.2). In addition to simulating the sequence of posterior probabilities,
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Pt’ we simulated the CUSUM procedure outlined in Section 1.2, here with
h=0.35and§o= 0.2, 0.3 (h = 0.35 and &c = 0.2 were recommended by
Royston & Abrams).

Figure 3.1 shows histograms of Pg = pr(y < tlx?,...,xg) for t = 8(1)12
for two prior distributions on y, first the one in (1.6) and second the

more diffuse prior

.05,

“-‘6 S eee = '"20 = 0.05, Tr-l-l T eee T “15 = 0-]. (3-5)

From Figure 3.1 we can estimate the performance of any decision procedure
determined by a cut-off value of Pt’ To take a specific example, suppose
Pt = 0.8 is the cut-off: if Py > 0.8, then we decide that y < t. The

bootstrap frequencies of
T = decision time t - v

are given in Table 3.2, which includes for comparison the corresponding
frequencies for the two CUSUM procedures. (Note that T = 0 corresponds
to premature detection.) Evidently the Bayesian procedure can give
slightly lower values of p and m, defined in (3.3) and (3.4), than the
CUSUM procedures. A more thorough practical analysis of this problem
would require also bootstrapping the within-subject cycle-to-cycle varia-

tion and the between-subject variation.
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Figure 3.1(a) Bootstrap Distribution of Py = pr(y < tlx*,...,x%) Using
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Table 3.2 Bootstrap Frequencies for T = Decision Time - y, Based on Data
in Figure 1.2.

T= -2 -1 0 1 2 3 4 5+
CUSUM }h=0.35, 85=0.2 0.013 0.028 0.025 0.662 0.198 0.055 0.014 0.005
Procedure {, _( 35, §=0.3 0.001 0.002 0.004 0.533 0.257 0.105 0.054 0.044
Bayes prior (1.6) 0 0 0.020 0.669 0.268 0.041 0.001 0.001
Procedure ;
Cut-off P, =0.8 (prior (3.5) 0 0 0 0.554 0.298 0.116 0.025 0.007

3.4 Teét of Simple Versus Two-Phase Linear Regression

Suppose that model (2.1) is viewed as a probable model, except that
there may actually be no shift. Then we are interested in testing the

adequacy of the simple model

X; = o + Btj + ey (3 =1,...,n) (3.6)

with (2.1) as alternative. For a particular test statistic T, perhaps
one of those mentioned in Section 2.2, the following simple bootstrap
method would give an approximate level of significance.

First, fit the model (2.1) by least squares and obtain the residuals
é],...,én. Next fit (3.6) by least squares to obtain a and 8. Then

generate bootstrap samples

A

* =g + Bt. + ¥ i=1,...
XJ o] BtJ eJ’ (J ]9 :n)

where the eg are sampled without replacement from {Gj}. For each bootstrap .
sample compute the value T* of the test statistic, and thence obtain the

empirical null hypothesis distribution of T*. The approximate significance

of the observed value TobS is then the proportion of T*'s exceeding Tobs’
assuming large values of T are indicative of (2.1).
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Note that the sample c.d.f. of e is not obtained using residuals from
(2.1), since these would be inflated by systematic effects if (2.1) were
true. Of course the estimation method need not be simple least squares
if a more appropriate method is available.

To illustrate the procedure we have taken part of the data set graphed
in Figure 2.4. There were six observations at each of nine values of t
(the latter being natural logarithms of 10, 20, 30, 50, 100, 150, 200,
300, 500), but because the six were not genuine replicates we simply took
the response x to be the average of the six observations in each group.

The nine averages were
87.83, 86.50, 84.83, 83.50, 80.16, 79.50, 79.16, 78.66, 78.66.

We then generated 1000 bootstrap samples, following the procedure described

above, and took T to be the log likelihood ratio statistic (2.3), which is
T=n 109(33/3%),

where subscripts 0 and A refer to null and alternative models, (3.6) and
(2.1), respectively. The data statistics are §0bs = 5.088, Tobs = 14.74,
Figure 3.2 shows the bootstrap null hypothesis frequencies of T*, from
which we conclude that TobS is significant at about the 2% level.

Notice that the bootstrap distribution of T* is not close to the Xg
distribution which a naive application of standard theory would suggest.
A corresponding bootstrap simulation of the two-phase model (2.1)
yields an estimate of the distribution of ? - vy which is in close agree-

ment with the normal approximation described by Hinkley (1971).
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Table 3.2 Bootstrap Frequencies and Cumulative Frequencies for Log Likeli-
hood Ratio Test of No-Shift Hypothesis in Regression, i.e.,
Model (2.1) Versus Model (3.6), for Subset of Data in Figure 2.4.
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4. CONCLUDING REMARKS

This all-too-brief review of change-point model analysis suggests,
among other things, that much of the related distribution theory is non-
standard and complicated. One practical option that seems to have some
merit is the use of Bootstrap techniques, although these seem to be incapable
of providing conditional distributions in general (since models are required
to define relevant subsets of the sample space).

Change-point models are open to scientific criticism, and more attention
might be paid to comparisons with smoother models. Nevertheless, from a

practical viewpoint the notions of change-point and threshold are undoubtedly

often useful.
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APPENDIX: BIBLIOGRAPHY OF ARTICLES ON CHANGE-POINTS

The following bibliography contains more than 100 entries, yet cannot
be treated as complete. For example, there are substantial literatures
on: spline regression fitting, CUSUM quality control procedures, and
economic switching regression models. Only a few papers from these areas
are included in the bibliography, although hopefully the few are among
the major references.

Nearly all articles have been coded using four classifications: model
specification; statistical objectives; type of theory developed or used;
presence of examples. The categories within each classification, with

codes, are as follows.

MODEL SPECIFICATION

RL Regression, Linear

RLC Regression, Linear Continuous

RLD Regression, Linear Discontinuous

RNC Regression, Nonlinear Continuous

RND ~ Regression, Nonlinear Discontinuous

RLSp Regression, Linear Spline fitting

RNSp Regression, Nonlinear Spline fitting

™I Time series, Mean shift, Independent variables
RVI Time series, Variance shift, Independent variables
TGI Time series, General shift, Independent variables
TMD Time series, Mean shift, Dependent variables

TVD Time series, Variance shift, Dependent variables

TGD Time series, General shift, Dependent variables
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Notes: (a) time series is used to describe processes that are stationary
in mean (and other characteristics) on either side of the
change-point -- as opposed to regression models where the mean
function is nonstationary, depending upon explanatory variables.

(b) TGI includes both general distributions and specific distribu-
tions such as Binomial and Gamma.

(c) TGD includes models with shifting autoregressive parameters.

STATISTICAL OBJECTIVES

TS Test of no-shift hypothesis, Sequential
TN Test of no-shift hypothesis, Non-sequential
E Estimation of change-point and/or other model parameters,

assuming a shift

G Test for Goodness-of-fit of the change-point model

THEORY DEVELOPED OR USED

P Parametric

NP NonParametric

B Bayesian

D Distributions of statistics

0 Optimality of procedures

NU NUmerical analysis

EXAMPLES

A Application to real data set
D Data set given in the paper

G Graph given in the paper
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Notes: (a) artificial data do not count,
(b) relatively few sources for examples are given in the biblio-
graphy, but many may be found by checking references in articles

coded A.

For a particular classification, especially the last one, a blank (---)
indicates "not in the article", whereas a question mark (?) indicates un-
certainty about the category.

Corrections and additions to the bibliography are welcome.



A4

EIBLIOGRAFHY

Abrahams B.  (19280)

Intervention anaslusis and multirle time series.
RBiometriksr v.67y #.73-78.

CTMO/E/P/A$G

Andersony R. L. and Nelsomne L. A, (1975)

A familwy of models involving straidght limes and concomitant exweri-

mental designs useful in evaluabting resrornse Lo Ffertilirer
nutrients.
Riomebricsy v.31ly =,303-318.,

Andersons T. W, (1978)
Rerested meagsurements on autloresressive Processng.
Je Amer. Statist. Ass.y v.73y p 371378,

Aroiany L. A. and Robisony 0. E. (19646)

Seauential life tests for the exronentiasl distributiorn with
changing rarameter.

Technomelricsy veBy », 21727,

Bacorny e We and Wattsy O G, (19710
Estimating the transition between Ltwo intersechting ateaidht lines.
Biometrikay v.58y p.525-534.,

CRLC/EYG/FyR/7A9G1

Badgshawy M. and Johnsonsys Re &, (L1974

The effect of serisl corrvelation om thne rerformance of cusum Leshs.
Techrnometricsy velbdy #e103-112,

LTMO/TS/Fe 1/ ]

Bagshawy M. andg Johnsons Re A.  (19735)

The effect of serisl correlation on the servformance of cusum
tests II1.

Techrnometricsy vel7?y r.73-80,

CTML/TS/Py i/ ]

RBadgshawy M. and Johnsons R. A, (1975

Seauential detection of 3 drift chende in a8 Wiener srocess.
Comm. Stalt.sr vidy #.787-7%6.

CTHL/TS/Fy DN/ )

“h



A5

Bagehawy M. and Johnsorny Re A. (L9772

Seauential rrocedures for deteclting rarameter chsnges in & Lime
series model.

Je Amer. Statist. Ass.y ve72y #,593-597,

CTMDs TUD/TS/FPeD/AG

EBalmery Ds We (1976

On a8 auickest detection sroblem with varisble monitoring,
J. Arrlied Prob.y vo13y #760-767,

CTGR/TS/F0/ -1

Barmardy G: A, (1959
Control charts and stochsstic rrocesses.
Je Row. Statist. Socey By w21y Ba X273,

EBathery Js A (1967)

On 8 euickest detection srobilem.

Arme Maths. Statist.y v.3B8y =.711-724,
LTMI/TS/By P/ ]

Bauerys . and Hackly F. (1980
An extension of the MOSUM techriaue for eualilw control.
no

Techrnometricsy ve22y #.1-7,
LTMI s TUL/TS/FeDI/ATD

Rauers P+ and Hackls P, (1978)

The use of MOSUM‘s for auslite contiol.
Techronetricsy v.20y #.431-236.
LTMI/TS/Pe /0]

Reckmarny R. Je and Cooky R. Do (16879
Testing for two-rhase refgressions.
Technometricsy v.2ley #0569,
CRLOYRLC/TN/F s /A 11D

EBellmary R, and Rothy K. 119692

Curve Titting by sedmented straight lines.
Je Amer. Statist. Ass.y v.&64y 2 10791084,
CRLC/E/NU/ = ]

Bhattachargwary G, K. and Johmsonr R. A (1968)
Nom—-rasrametric tests for shifts at an unknown time soint.
Arne Math. Statist.r v.39y =.1731-1743.
LTML/TN/NF Dy 0/ 1]

Bhattacharwasy Pe K. (19812

Estimation of change-roint in the distribution of random variasbles.
Arme Stat.y VeDy -

LTGILAZE/F y L e 1



A6

Bhattacharway P. Ko and Brockwells F. J.  (1976)

The minimum of an additive rrocess with aeslications to sidnal
estimation and storasge theorw.

Ze Wabhr., und verw, Gebieteyr v.37y »,51-7%,

CTMI/ZE/Fe DN/ ]

Bhattacharuay Pe Kes arnd Friersons . (1981

A nor-rarametric conbtrol chart for detecting small disorders.
Anm. Statey VePy -,

CTGI/TH/NP N/ ]

Booksteiny Fo L+  (1979)

On a3 form of riecewise linear regression.
American Statisticiamy ve29y r#.116~117,
LRLC/E/NU/ =1

Boxy G. Es Fy and Tiaoy G, C. (1965)
A chandge in level of & nonstationars Lime series.
Biometrikay v.52y =.181~192,

Broemelings L. 0, (1972)

Bawesiasn rrocedure fTor detecting a change in 8 seauence of random
variables.

Metronmy XXX-N=1-4y 31-XIIvy #=.1-14,

LTG/?/B/7]

EBroemelingy L. I, (1974)

Bawesian inference about a8 chansging secuence of random veariables.
Comms. States ve3y F.243-255,

LTGIsRL?/E/F s B/ =]

Broemeling: L. D. (1977)

Forecasting future values of chendging sequerces.
Comme. Stat.y v.Abdy . 87-102.

CTGI/E/F e B/ -]

Browrnes R. L and Durtins J. (1968)

Methods of investigating whether a redrecsion relabingshisr is
constant over Lime.

Selected Statistical Parersy 1. Amsterdam! Mathewmstisoh Coantrums
Eurorean Meetingy r. 3745, ’

CRLATS/FyDI/7]

EBrowrny Re Loy Durbimy Jo and Evarnses Jo Me (1978

Techrmiaues Tor tesltling the conslasncy of vedression relstionehiss
over time (with discussion).

Jeo Rows Statist, Soc.y By v, 37y », 149192,

LRL/ZTS/FDI/A]

«



A7

Cartery Re Lo and Rlights Be Jeo No €1281)

A Bavesisn chandge roint eroblem with an arrlication to the
srediction and detection of ovulation in WOmEr.

Fiometricsy =

CTMIZTSsE/FyR/AG]

Chernotty He and Zaksy 8. (1964)

Eestimating the current mean of & normal distribution which R
subJected to chandes i bime.

ﬁﬁnﬁ‘Matho Statiﬁtoy velXSy Po999~1018;

[TMI/ZE s TN/R/ =]

Chin Chougs J. and Broemelimgy L+ I (1960)

Some Ragesian inferences Ffor & changing Linean model .
Techriometricss v.22y e 7178,

[RLO/ZE/By /AT

Cobbhy G, We €1978)

The srobhlem of the Nile: conditionsl solubion to & onande godird
rroblem.

Riometrikar v.60y 2483251,

LTGIZE/Fy D/ 0]

Comxy Me Go 1971
Curve fitting with riecewise roluromials.

Wt

Je Inst. Mathe. Arpl ey Vofly o b,

Curnows Re No (1973

A smoolth Fopulation TesFOnsSe CUTVE
arnd rlatesu model for imdividuals.

Riometricss v.29s #.1-10.

[RLCZEsG/F /A 1G]

Gasod on an sbhrust threshold

Narkhovshky Be G. (1976)

A non-egarametric method for the a sosteriori detecticr of e
sdig-order® time of 8 seQuEnee of indesandent randomn varizsnlies.

Theory Frob. Asrel.y veRl Mosle

CTGLZE /NS e -7

Neshavesy Js and Ficardy s (1980
Tests de rusture de regressiont comperaison asymrboticue.
Tech. rerorte Universite’ de Pavie-Duds Nerasrtement e Mathemahlon.

[RL/TS s TN/F y [/ o]

Orarers No For Gutltmans T, and Lirowr Fe (L9772
All-bias desisns for arlime functions: dgoined st bthe sxes.
J. Amer. Statist. Ass.y Ve PRy 1 ARA-A27.



A8

El-Sawuady G, Me (1975)

A Bauvesian analusis of the change-roint sroblem.
Edurt, Statist,. Jss v.19¢ 901”130

LTGI/ZE/R/7?]

Ertelsy J. E+ and Fowlkesy E. B, (1979)
Methods for fittimg lirnesr srline and riecewise multirle linesr

redression.
Froceedings of Comruter Science and Statistics! 8th Anmual Sumeo-
sium or the Interfacey Health Sciences Comruting Facilitwey UCLA.

Ertels J¢ E. and Fowlkesy E. Bs¢ (19786

Some aldgorithms for linear srline and riecewise multirle
redression.

Je Amer. Statist. Ass.y vi71ly ».640-648,

CRLSFsRLDO/ZEy TN/NUyF/A D]

Faithy Rs (1980)

Fercertion of short duration sounds.

Riostatistics Casebooks v.3y #1943, Stanford Universitw Division
of Biostatistics.

CRLC/ZEy TN/FyNFyDI/As 19 G

Farlewr Jso Us and Hinichy M. J.¢ (1969)

Analusis of a discrete shift in the mean of 3 time series.

Rerrint mo. 6y School of Urban and Fublic Affairss Carnedie-Mellon .
Univ.

CTMD/E/F e B/ =1

Farlewy Js U: and Hinichy M. Jo (1970)

A test for a shiflting slore coefficient im a linesar model.
Je Amer, Statist. Asssy VS 213201329,
CRLC/TN/FyQe D/ -]

Farlewy Jo U, and Hinichy M. (1970)
Ietecting "small® mesrn shifts in time series.
Management Sciencery ve1l7y #,189-200.
CLTMI/TNSE/F s R/ =]

Farlewy Js Uey Hinmdchy M. and McGuires T. We (1973

Some comrarisons of tests for & shift in the slores of & multivariate
linear time series model.

Je of Ecornomeltricsy ve3y » 297318, ;

CRLATN/FPsQ/ =]

Federys Fo I, (19758)

On aswymrtobic distribution theorw in sedgmented redgression sroblems--
identified case.

Anrie Stat.sy vo3r 2. 4983,

LRNCyRLC/E/P s IV/ ==~



!

A9

Federy F. I. (1973b)

The log likelihood ratio in qe%mﬁnted regression.

Anre Stat.ey Vedy #.84-97.
ERLCyRNC/TN/Fe 1/ -]

Federy F. I. and Swlwestery I. L. (1L968)
On the asumptotic theorw of least sceuares estimation in segmernted

regression! identified case (asbhstrasct).
Anrie Math. Statist.y v.39» =.1362.
CRL/ZTNsE/F s/ ==1]

Ferveiray F. E. (1973)
A Bavesisn anaslusis of a switching regrESbJon model?! krnowrn roanbher

of regimes.
J. Amer. Statist. Ass.y v.70ry »,370-374.

Gallanty A, K. (1977)

Testing a8 nonlinear regression srecification? & nonresular Csse.
J. Amer. Statist. Ass.y v.72y =.523-330.

CRNCsRNI/TN/F»B/A DG

Gallarnty A+ R. and Fullers W. (1973
Fitting segmented rolwynomizl redression models whose Joint roints

have to be estimated
J. Amer. Statist. Ass.r» v.68y =.144-147,

[RLCZE/FsNUsD/GyAd

Garbader Ke (1977)
Two methods for examining the stability of redgression coefficients.

J. Amer. Statist. Ass.y v.72y PP SN A
CRLECPRLIO/TN TS/F e I/A]

Gardrnery Ls Ae Jrs  (1969)

On detecting chandes in the mean of mormal variastes.,
Arn. Math. Statist.y v.40y rellb—~126.

CTMI/TN/Bs 1]

Goldfelds S. M. and Quandts R. E. {1973)
A Markov model for switching redressions.
J. Econometricsy vely #e3-16.

Goldfeldy 8. M. and Quandbts R, E. (1973
The estimastion of structural shifls hy switoching redressions.
Arrs Econ. Soc. Messuremenbty vedy e A75-85,

Goldfeldy 5. M. and Quandty R K. (19763

Technigues for estimating switching PEETESSIONS .

Gtudies in Nonlinear Estimations ».3-36. Rallinger Fublishinsg
Comransy Camb.s Mass.



A10

Feders F. I, (1975h)
The lodg likelihood ratio in sedgmented redressiare.

Arnne. Stat.y ve3y =.84-97,
CRLCyRNC/TN/FPy DN/ ===1

Feders Fo I+ and Sulwestery D L. (19468)

On the asumrtotic theorwy of least scuares estimation in sedmented

redression! identified case (ahstract).
Arne. Math. Statist.yr v.39y ».1362,
LRLZTNSE/Fs 1/ weT]

Ferreiray F. E+ (1978
A BRavesian asnalusis of 8 switching regressiorn model!

of redgimes.
Je Amer. Statists: Ass.y v.70y ».370-374,

Gallants A. Re (1977)

kmown numbher

Testing 8 nonlinear redression srecification! a8 nonredular case.

J. Amer. Statist, Ass.y v.72y ».523~530.
CRNCsRNI/TN/P /A5 DG

Gallants A. R+ and Fullery W. (1973)
Fitting sedmented rolunomial redression models whose

have to be estimated
Js Amer. Statist,. Ass.y v.68y r.144-147,

CRLC/E/FPsNUsTI/GrAd

Garbadey K. (1977) :
Two methods for exsmining the stahility of redression

Je Amer. Statist. Ass.y vi72y #5463,
CRLCYRLO/TNsTS/FyN/A]

Gardrnery L. A, Jre (1969)

On detecting chandges in the mean of normal varistes.
Arme Math. Statist.y v.40y ».116-126.

LTMI/TN/B 1]

Goldfeldy S. M. and Quandty R E. (1973)
A Markov model for switchins regressions.
Je Ecorometricsy vely »e3-16.

Goldfelds S¢ Me and Quandty R. F. (1973)

Joinmt roints

coefficients.

The estimation of structural shifts by suwitchinsg redressions.

anre Econ. Soc. Measurementy v.2y »,475-85,

Goldfeldy S. M. and Quandty Re Es (1976)
Technicues for estimating switching redgressions.

Studies in Nomlimear Estimationy ».3-386. Hallinger Mahlighindg

Comeanyy Camb.y Mass.

Il



AN

Griffithsy . A. and Millery A. J. (1973)

Huyrerhbolic redgression——a model hased on two-rhree riecewise linear
redression with 8 smooth tramsition hetween redimes,

Comm. Stabt.r vy #=,561-569,

CRILCZE/F/A» Ty (G

Griffithsy e A, and Millery A, Js  (1975)
Letter to the Editor.

Technomelricsy ve17y ».281.
CRLC/ETG/F/———1

Gutherdys S, B, (1974)

Fartition redgression.

J. Amer. Statist. Ass.y v.69y 945947,
CRND/ZE/NU/ZAT

Gutsteins He S. and Cohernsy S, R (1978)

Seinal Fluid differences in exrerimental allerdic encerhalomuelitis
arnd multirle sclerosis.

Sciencey vel99y #3013

CRLCy TMI/ ==/~ /TIy (]

Hackly F. (1980)
Testing the Constancy of Redression Relationshirs over Time,
Golttingen: Vandenhoeck and Rusrecht.

Mawkings 0. Mse (1976)

Foint estimation of the rarsmeters nf riecewise redression models.
Arrlied Statisticsy ve28y #5157,

CR/ZE/ZF s NU/A]

Hawkinsy M. M. (1977)

Testing 8 seauence of observabtiors for s shift in location.
Jo Amer. Statist, Ass.y v.72y =, 180184,

CTMLI/TN/FPeI/ATD

Hinesy We G+ 8o (1976)
A simele monitor of & sustem with sudden earameter chansges.

TEEE Trans. Inf,s Theorwy ITe 2210216,
CTMIZTS/0s Qe /70

Himichy M. and Farlewy J: Us  (1968)

Theory and arelicalion of z2n estimation wodel for tLime series (RE R Ay
nonstationary means.

Manadgement Sciencey v.12y #.648-658.

CTMIZE/F Qe B/~



A12

Hirmklews D V. (1969) z
Inference about the intersection in two-rhase redressior.

Biometrikay vi96y ».495-504.
CRLC/ZEs TN/F s 1/ o] ]

Hirklewy . Ve (1970

Inference about the chandgde roint in a2 seauence of random variables.
Riometrikay v.37s ».1-17.,

ETGI/E/FPyD/—-~-1

Hinklewy Ds V. (1971

Inferernce in two-rhase redression.

Je Amer. Statist. Ass.y Vebby 736743,
CRLCZEyTN/FyIL/Av D]

Hinlklewy D V. (1971)

Inference about the chande-roint from cumulative sum tests.
Biometrilkay v.38y r.509-23,

LTMI/ZE/FsD/~~~1

Hirnklewy D. V. (1972)

Time ordered classification.
Biometrikay ve99y = 509523,
CTGI/ZE/F oD/~

Hinklews D. V., and Hinklewy E. A, (1970) i
Inference ahout the chande-roint in & seauence of bhirnomial variables.
Biometrikay v.37y ».477-488.

CTRIZE/FyD/~~~1

Holberty D. and Broemeling L. (1977)

RBavesian inference relsted to shifting secuences and two-rhase
redression.

Comme. Stat.s vV.Ady = 265275,

CTMIsRL/E/FyRB/A D]

Heuwy e A, (19772

Tests for varisnce shift al an urknown time soicdh,
Arerls Slal.ey Ve2by 279284,

CTVI/TR/FRs /B9 G1

Hsuy . Ae (1979
Detecting shifts of raremeter in Gamma seauenres wilth srelications

to stock srices and sir flow analusis.
Jeo Amer. Statist. Ass.y ve74y »,31-40. .
CTVIyTHI/TN/FPsl/Av DG

A\

MHudsoriy e Joe (1966
Fitting sedmented curves whose Jdoin woimts bhave Lo he eslbimated.

Je Amer, Slatist. Ass.r v .61y =.0097-1129.
CRLC/E/ZF s NU/ =]



A

A13

Inselmanny E. H. (1968

Tests for several redgression ecuations (abstract).
Anne Math. Statist.y v.39y ».1362.

LRL /= RS ]

Kaminskasy V. A. and Sirenitey D. A, (1975)
Detection of 8 rarameter change of amn avltoredgressinm
TAON Citove vedy »,143-148,

LTG/T/7 /7]

BTV E R .

Randery Z. arnd Zacksy 8, (1966)

Test srocedures for rossible chandges in rarameters of
distributions occurring at unbkrown time sninte,

Anre Math., Statist.y ve37y 2, 1196-1210.

CTMI/TN/FsReD1/ el

statistical

Nastenbaumv M. A, (1959)
A cornfidence interval on the shecisss of the soint of intersection
of two fTitted linear rezdressions.

Biomebtricesy v.15y 2323324,

Rieferes N« Mo  (1978)

Niscrele rarameter variastion?
regression model .

Econometricay v.46r #.427-434,

efficient estimation of a switching

Rligieney N. (1973
O the estimation of the chande-soint in Lhe suto-redressive

SERLUENCE s )
Froceedindgs of the 2nd semimnsr on Exrerimental Simulatinsg and

Solving of Frobahility sroblems. Liblice-Frasgues w8293,
LTG/ZE/?/7]

Kumary Ko Dey Nicklimes E. H. snd Paulsorny &, S. {1979)

Comment on ‘Fstimasting mixtures of normal distributions and
switehing redressions’.

Je Amer. Statist. Ass.y v.74y p,52-55.

Leesy Ae Fo S and Helthiniasmy 8. Mo (19727)

A shiTt of the mean level in 8 seauence of indesendent mormal rancdom
variables-~a Bavesian arsrosch.

Technomeltricsy v. 1%y 2 . 303~504,

CTMI/ZE/Py BRG]

Lermany Pe M (1780)
Fitting sedgmented redgression modelas by dgrind aeareh.
trr. Stal.y v 29y #7784,

CRLT RN/ TNAF o NU DI/A 2 G



A4

McCabes B. P M. and Harrisoms M. Je (1980

Testing the constancy of redression relationshirs over time =
weing least seuares residuals,

Arre, Stat.y v.29y 142148,

CRL/ZTS/FyTi/A9 G M

MeGeey Vo E. and Carleltony W. T, (1970)

Fiecewise redression.

Js Amer. Statist, Ass.r v.65r 11091124,

CRLC/E»G/F s NUZA ]

MeGilchristy Co A and Wooduweres K. O. (1975)

Note om 8 distribution-Ffree cusum techrniaue.

Techrnometricss v.17y =, 321325,

CTMI/TS/NFyDI/AG]

MacNeilly I. B, (1978

Frorerties of seauences of rartial sums of rolunomial redressinn
residusls with arelications to tests Tor chandge of redressinn al
wknowr times.

Arire Stat.y viby 2. 422-433X,

LRLCsRLIO/TN/F s I/ i)

MscNeills I. RB. (1974)

Tests for chande of rarameter at unkrnowrn Lime amd disthrihutions of
some related functionasls on Browrnian motion, .

Arims. Stat.r vy #.950~962,

LTMI/TN/F s D/ ]

Maddalay G. S and Nelsons F. D. (1975)
Switching redression models with exosernous and endodernous switebhinsg,
ASA FProceedings of the Busiress and Ecornnmice Sectiorn.

Marornnay R. and Yohaisr V. Js (1978)

A bhivariste test for the detection of a8 swshtemaltic chansge in mean.
Je Amer. Statist. Ass.y V7R 640645,

LRy TMI/TN/Pe DN/ =—]]

Mustafir» LT, K. (1968)
Inference sroblems about rarameters which are sublected Lo chandes
over time.
fnrne. Math. Statist.y v.39y ».840-0854. <
ETMI/TNsE/Bo Do 0/ 1

L

Nadlers Jo and Robbinsy N. BE. (1971

Some characteristics of Fade’s two-sided srocedure for detechins
a8 chandge in location rarametor.

Arm. Math. Statist.r v.42¢y »,. 538551,

CTMI/ZTS/Fe 1/ 1]



“*

Al15

Nashe J. G and Friceyr K. (1o

Fitting two straight lines.

Froceedings of the Comeruter Science and Stetictics 126h Arrael
Sumrosium on the Interfacey Waterloo.

[RILC/E/FyNU/ASG]

Fagey E. 8. (1954)

Comtinuous insrection schemes.
Biometrikay v.4ly 7100116,
CTMI/TS/P eI

Fages E. S, (1953)

A test for a8 change in & rarameter occurring a2t an unknown eroint.

Fiometrikasy v.42y = 523527,

CTMIZB/TS/F D]

Fadey Ee S (19572

On sroblems in which 2 chandge of saramelers occurs 3t an unknown
rint.

Riomeltrikay v.44s 5, 248-252.

LTGI/TN/F y T/ =]

Farks 8¢ He (1978)

Tueperimentasl desidgns for fitting sedmernted Foluynomizl redgrassinn
models.

Technometricsy v.20y » 151154,

CRLSE/E/F yNU/« ]

Febttitty A+ No (1979

A non-esrametric areroach hto the change-soint wroblem.
Arr.y Stal.r v.28y ».126~135.

CTGI/ZTN/NPsDI/AD]

FPettitty AN, (1280)

A simele cumulative sum twee shtatistic for the
change-roint srablem with rero-aone observations.

Riometrilkay veb7y P 7984,

CTGI/E s TN/F o1/ e

Foiriers L. Je (1973)
Fierewise redression using cubic srlines.
Jo Amer. Statist. Ass.r v.68e p, 510024,
RS /FEs TN/PsNU/A G

Foiriers D. J. (1976)
The Econometrics of Structural Chandge.
dmsterdand North-Holland Fublishing Co.



Al6

Quandts R. E. (19%58) -
The estimation of the rarameters of a8 limear redression sustem

obewind two serzrate redimes.
Je Amer. Statist. Ass.y v.53 =.873-880. .

CRLID/E» TN/F D/ ~==1

RQuandts R,s E. (1960)
Tests of the hurothesis that a2 lirear sustem ohews twn sesrarate

regimes.
Js Amer. Statist. Ass.y v.55¢y »,324-330,
CRLOD/TN/Fs U/ ===1

Quandts Re E. (1972)
A new arrroach to estimating switching redressions.

Jo Amer. Staltist. ASs.y V. 67y 306310,

Quandts R, E. and Ramsawe J. Be (1978)
Estimating mixtures of normal distributions and switching redressions.,
Je Amer. Statist,. Ass.y v.73¢v », 73073,

Raosy Fe. 8 E. 8, (1972)

On two shase redression estimators.
Samkhuay ve34y F.473-476,
LRLC/E/P/7]

Robisarny D E.  (1964)

Estimates for the soints of intersechtiorn of ftwo solurnomizl redrea- =
S1L0ONS .

Jeo Amer. Statist,. Ass.y V.59 »,214-224,

CRLC/E/Fs 11/ -m1

Rovstony Je FPo angd Abramssy Re. M. (1980
An obJdective method for detecting shift im basal hode ftemrerstures

irn womer .
Biometricsy v.36r r.217-224.
CTMI/TS/Fe /A9 G

Schwedery T. (1976)
Some "ortimal® methods Lo detert structural shift or oulliers in

Tesression.

Jo Amer. Statist. AsS.y ve7lr B, 491501, ¢
CRL/TNs TSy E/FyD/A»G

Sebery G, A, F. (1977)
Linear Redression Analuysisy Wiley



A17

Serny v Ko (1977
Tied-dowrn Wiener srocess arerroximations for alidgned rarmb orrdder

rrocesses and some arrlications.
Anne. Stat.r veSs », 11071123,
CTMI/ZTN/NF L/ 1]

Serny A+, Ko andg Srivastavar M. S, (1973

On multivariate tests for detecting chande in mean.
Sankhya Ay v.33y . 173-1864.

CTMI/TN/F: /7]

Sery A+ and Srivastavay M. S, (1975a)
On tests for detecting chandgdes in mean.
Arre Statey vo3y #e98-108,
CTMI/TN/FPsRBeDy O/ ~-~1

Seny A, and Srivashavas M5, (19750}
Some one-sided tests for chande in level.
Techrnometricss ve17y .61 -64.
CTMIZTN/FyBRey /AN

Shabany 8. A, (192800

Chande roint sroblem and two-rhase redression?  an annotated
bibliograrhu, :

Reve L1+ 64 Loy vi+d4B8y 5 .83-94,

Shirvaevy A¢ No  (1963)

Orn ostimum methods in auickest detectiomn sroblems.
Theor. Prob. Arsl.r v 8y #2246,

CTG/E/BeQF ]

Shirvaevy As N (196%)

Some exsct Tormulss in 3 "disorder” rroblem.

Theor. Frob. Arrl.y v,10y ».348-3354.

LETGI

Singdgrurwallay N. D. (1974)

Estimation of the dJdoim soint in 8 heteroscedastic redressinn
model srising in accelerated life tests.

Comm. Stat.s v.3(9)y ». 853863

LRI.C/E/PyNU/T]

Smiths A Fo Me (192728

A Ravesian arrrosch to inference ahout 2 chanse-woint in =2
seauence of rarndom varizbhles.

Biomebtriksy v.62y . 407-4156.

ETGIL/ZE/P e B 1



A18

Smithy A+ F¢e Me a8rnd Cooks . G. (1980)

Straidht lines with 3 chande~roint?! 3 Rawesian
some renal transrlant data.

Arr, Statsy v.29y =.180-189.

CRLC/E/FyR/A»G1

Serenty Pe  (1961)
Some hurotheses concerning two-rhase regression

Biometricssy v.17y =.8634~-645.

Srivaestavasr T. N. (1967)
A rroblem in life testing with changing failure
Defernse Science Journal (India)y vel1?y 1638,

Srivastavar T. N (1975)

Life tests with reriodic chsange in failure rate-

observations.
Je Amer. Statist,. Ass.y v.70y ».394,

Swamuy Fe Ae Vo Be and Mebtar J. S, (197%)

Bavesian and non-Bavesisn aralusis of switching resressiorns and

random coefficient redression models.
Jo Amer. Statist,: Ass.y v.70¢ 2, 5935602,

Tishlery A, and Zansgy 1. (1979)

analusis of

lirmeg,

rate.

- roLFed

A switching redressiomn methnd using imecuality cormditions.

Je Econometricsy velly =.259-274

Teurumis H. (1977)

A ERauwesian test of a3 rarameter shift and an arrlication.

Je 0F Ecornometricsy viby 237180,
CRL/TN/FsB/7A]

Van Dobbern de Bruurs C. 8§, (1968
Cumulative Sum Tests! Theorw and Fractice.
Londont Griffin.

Wainery Hse (1971
Fiecewise redgression! 2 simelified srocedure.
Er. Js¢ Math, Stast. Fsuchol.y ve24y 8392,

%)

@



A19

Wattsy D G. and Racony . W. (1974)
Usimg an hyrerhbola as a8 Lransition model +to fit two-redime

straight line data.
Techrnometricssy v.1é6y 369373,
LRLC/ZEsTG/Fy /Ay De5]

Webbs Keloo and D'Eliay C.F.  (1980)

Nutriernt and oxusgen redistribution during a8 serind ness
tidal cuwele in 8 temreratuve estuary

Sciencey v.207y 983985

LRLC/E/F/7A82G

Wicherriy e Wer Millery We Be and Hsuy D A (1976)

Changes of varisnce in first-order autnredressive time series models
with an aerrlication,.

Arrlied Stat.y v.25y ».248-256.

CTVUD/TN/FPsyD/AG

Woodwardys Rs H. and Goldsmithes Fo L. (19464)

Cumulative Sum Techninues.
Morograrh rno.3y ICT series on Mathemalical and Statistical Tech-

niaues for Industrw. Fdinhorgh! 0Oliver and Rowd.

Worslewy Ko Jo (1979

On the likelihood ratio test for a shift in location of normal
rarameters.

Je Amer. Statist. Ass.r v.74y #.345-367.

CTMI/ZTN/F e/



