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Sunmary 

A multivari.ate directed graph consists of a set of g nodes, and 

a famfly of directed arcs (one for each relation) connecting pairs of 

nodes. Such multivariate directed graphs provide natural representa-

tions for social networks. In this paper we consider methods to analyse 

a network of 73 organizations in a Midwest American corrmunity linked 

by three types of relations: infonnation, money, and support. The 

resulting data set, described by Galaskiewicz and Marsden (1978}, 

involves 3 x 73 x 72 = 15,768 possible arcs or "observations". We 

describe a class of stochastic loglinear models for multivariate directed 

graphs, demonstrate how they can be fit to the data using generalized 

iterative scali'ng of Darroch and Ratcliff (1972), and explain the connectim 

between the~pe models and variants on standard loglinear models for multi­

dimensional contingenc¥ tables discussed by Bishop, Fienberg, and 

Holland (19:75).. We alfo consider a disaggregation of the organizations . 
into sub-grt)ups, and demonstrate how to adapt our models to explore 

the intra- ,nd inter-group relationships. These methods generalize 

research of Holland and Leinhardt (1980), who develop a model for 

dyadic relationships in univariate directed graph data. The paper 

includes a detailed analysis of the Galaskiewicz-Marsden data. 

- --··-·------·------- --··· -·-·•·---·-·-----------------------..... 
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1. Introduction 

AlthougJ1 this conference is entitled "Looking at Multivariate Data", 

most attende1es and authors have interpreted this to mean looking at multi­

variate data "usi"ng graphical methods". Despite the fact that the title 

of the present paper contains the words "data", "multivariate", and 

11 graphs 11
, we shall break step with these other authors and describe a 

class of multi'varfate network problems. We would have liked to address 

these problems using graphical methods but,for the moment,we have been 

forced to settle for a more traditional multivariate model-based approach. 

Tnis may seem even more surprising since the network problems we address 

begin witn 4ata that correspond to a picture or graph. 

-- Figure 1 goes about here --

Figure 1 contafos an example of a univariate directed graph, a graphi­

cal representation of a network involvi.ng g = 6 individuals. There are 

g(g-1} : 30 possible arrows or directed arcs linking these 6 individuals 

in pairs, only 12 of which are pre~ent in Figure 1. The infonnation in a 

univariate graph for g individuals can be summarized by means of a g x g 

adjacency matrix~· with elements 

if i relates to j 

otherwise, 

where, by c,;,nvention, the diagonal tenns, x11 , are set equal to zero. 

The adjacen,cy · matrix fi?r Figure 1 is: 
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1 2 3 4 5 6 

1 0 1 0 1 1 0 

2 1 0 1 0 1 0 

X = 3 0 · 0 0 0 1 1 
... 4 0 1 0 0 0 0 

5 0 1 0 1 0 1 

6 0 0 0 0 0 0 

There are several approaches that we might adopt to model the 

data in the ~djacency matrix,~- For example, we might focus on the 6 

individuals· ,nd assume that individual 1 makes 5 possible independent 

choices (corresponding to arrows), with some unknown Bernoulli parameter, 

pi (1 = 1,2, .•. ,6}. Th,n a suitable data sumnary would be the row totals 

of~· i.e.,, (3,3,2,1,3,IP}. The assumption of independence of choices 

is not 1ikeli to be satisfied in practice, however. Alternatively, we 

might focus on the 6 x 5 = 30 pairs of individuals, and assume that the 
, 

data for the pai'rs are independent and identically distributed. In 

effect, then, we would choose to focus on relationships, and would observe 

three different types: 

0 <D 
j 

Null, 

Asymmetric, 

Mutual. 

Thus the observed data would be sunmarized in the following 2 x 2 table: 
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Send Chofee 
Yes 

No 

4 

Recefve Choice 

Yes 

4 

8 

12 

No 

8 12 

10 18 

18 I 30 

Note that eac;h pair has been-counted twice, once for "sending" and once 

for "recei·ving", thus merging the asyrrmetric relationships. 

The appiroach involving pairs essentially uses the g(g-1) pennutations 

of the g ind·l"vfduals, two at a time, and thus leads to a doublecounting 

of each pafr, By focussing on the (~} c g(g-1)/2 combinations or dyads, 

we can elimi1:1ate the doublecounting and obtain the following sumnary: 

No. of Dlads 

© (D 5 

, 8 

2 

In this paper, we consider stochastic models of multivariate directed 

graphs, involving several types of arrows or relationships, that treat the 

{~} dyads as independent random variables. We do this in the full know­

ledge that for most network problems dyads are constructs. We do not 

sample them. Rather, if we sample at all, we take a sample of individuals 

and we measure infonnation on dyadic relationships. The independence of 

dyadic information is an assumption which in practice is in need of some 

verification,. We do n~t address this issue in this paper. For population 
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directed graph data, consisting of the dyad 1nfonnat1on for all of tha 

individuals in a network. the use of stochastic models leans for support 

on ta) randar1fzation arg1uments, (b) superpopulation ideas, or (c) it 

simply proviGles a convenient framework for exploratory data analysis. 

In the ~ext section we describe a set of network data involving 

organi'zat1on~ and three types of organizational relations. Then, in 

Secti.on 3, we descri.be a class of models and multivariate methods for the 
\.. 

analysis of such data, which treats the organizations as a single group. 

After fitting these models to the data in Section 4, we further develop 

the models in Section 5 to allow for disaggregation of the organizations 

into subgroups. We conclude by returning to the graphical theme of this 

conference, ·~d suggest some extensions of our modelling approach which 

might lead tp i.nteresting graphical su11111aries.. 

2. A Specifi.c Network: Towertown, U.S.A. 

The data that have motivated our work on this. topi.c come from a 

stud.}> of 109 fonnal organizati.ons (wi.th more than 20 employees)_ fn a 

small midwest United States convnunity of 32,000 persons, referred to by 

the pseudonym 11Towertown 11
• Galaskiewicz (1979) descri.bed the survey of 

Towertown, Q
1
alaskiewicz and Mars.den (1978) report on the data considered 

here, and we have described the data elsewhere in detail (.Fienberg and 

Wassennan. 1981). For the present, it will suffice to note that we are 

concerned with the results of questionnaire data for a subset of 73 

organizations, representing the ties between pairs of organizations for 

three types of relations.: (.i) fofonnati.on. (i.i) money, and (_iii) support. 

This data set can then be represented as a multivariate di.rected graph, 

surrmarized by three adjacency matrices defined for the same 73 organizations, 
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(~1• ~2• ~3). Each matrix is of dimension 73 x 73 and represents 73(73-1) 

= 5256 possible directed arcs using O's and l's.* Given the size of 

these matrices, it should not be surprising that graphical representations 

of even the univariate links are too complex to comprehend. 

Thus, we still need a way to look at and, perhaps more importantly, 

surm1arize the data. Table 1 contains one such surrmary of the data given 

by Galaskiew1cz and Marsden (.1978), in the fonn of a 26 table of counts of 

pairs of organizations. This table gives the direct multivariate generalization 

of the 2 x 2 representation for a single relation given in Section 1. Each pair 

of organizat·lons is counted twice, once fran the perspective of each 

me~ber. Th4s,the total of the counts in the table is 5256, twice the 

number of pijirs, (~3) = 2628. Henceforth,we refer to Table 1 as the 

~-table with entries {wii'jj'kk'}. 

-- Table 1 goes about here --

The 26 cells of Table 1 consist of (a) 8 cells whose counts are 

doubled, and (b) 28 cells whose co~nts are duplicated. If we eliminate 

the auplication and doubling of counts,we get an arrangement of 36 cells, 

whose counts correctly total 2628. In Table 2 we give one 

possible representation of these 36 cells in a fonn resembling a three­

dimensional 4 x 4 x 4 cross-classification, where the three "variables" 

correspond to the three relations (1) infonnation, (2) money, and (3) support. 

-- Table 2 goes about here --

*Throughout this paper we work with sunmaries of this data set. 
The full da.ta set, consisting of three adjacency matrices and pseudonyms 
for the orgianfzations. is available on request from the auihors. 
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When the dyadic structure for a single relation 1s asymnetr1c, the 

"direction" of the corresponding arc does not matter. We us.e a single 

subscript, P,. to denote the relation in such situations. When 

the dyadic H.nks for two or more relations are both asyrmretr-1 c. we need to 

distinguish between situations where the arcs for a pair of relations 

go in the sijme or di'fferent directions. Thus. for these situations, we 

use two different subscripts, A and A. with identical subscripts for 

those relations whose asymmetric directed arcs go in the same direction. 

We arbitrari.ly assign the subscript A_ to the lowest numbered asymmetric 

generator. (Note that interchanging the subscripts A and A yields the 

same dyadic structural relationship.) We denote the observed counts in 

Table 2 by zabc' for a, b, c = M, A, A, N {for Mutual. Asymmetric, 

As.Y11111etric, and Null), where the convention for the use of the sub­

scripts A and~ is as described above. These observed counts can be 

thought of ~s realizations of a set of random variables, {Zabc}• whose· 

probability structure we wish to m~del. 

3. Loglinear Models for Multivariate Directed Graphs 

We wts~ to model the probability Pabc that a randanly selected dyad 

would be assigned to cell (a,b,c) in Table 1, where 

(3. 1} t p = 1. 
all cells abc 

Although. we mf.ght think of using loglinear models directly for the {pabc}' 

such an approach leads to difficulties of interpretation (see F1enberg 

and Wassennan, 1980,for further details). Instead, we define 

~-------- ·-·...__ - .. - ·-----
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(3.2) .. l
log Pabc 

tabc C r p abcl 
log t 2 ] 

if a, b, and care each equal to Mor N, 

tf one of a, b, and c equals A. 

Our plan is to develop a class of linear models for the {tabc}' which 

for {pabc} yields an affine translation of a class of log11near models 

(see Chapter 9 of both Habennan, 1974 and Habennan, 1979). This approach 

(a) treats dyads involving asynmetric ties as having been produced 

with an orientation and then pooled. (This also accounts for 

the divisor of 2 for counts involving asyrrmetric ties.) 

(bl ir,cludes as a special case the model of independent individual 

choices {see the dis.cuss ion of Section 1). 

(c) i!~ directly related to an approach of Holland and Leinhardt 

(il980) which allows for parameters associated witlh the indivi­

duals in the dyad (see also Fienberg and Wassennan, 1981). 

We plan to c;onsider models for the {tabc} which are linear in parameters 

tha~ reflecj the 13 distinct types of dyadic patterns depicted in Figure 

2. Note that the patterns have a hierarchical structure. For example, 

the six-arrow full synunetry pattem, (xiii), contains all the other 

pattems as special cases, and the conditional multiplex mutuality pattem, 

(xii}, contains patterns (i) through (xi) as special cases. We consider 

a class of increasingly complex loglinear models for the {tabc} with 

parameters ~ased on the patterns in Figure 2. 

-- Figure 2 goes about here --

(I) The null model correspon_ding to Figure 2(1) depicts the 

probabiliti~s {pabc} as being constant, and could be represented as 

tabc 1:1 e, 
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where 8 = 10:90/36}. This is an individual, independent Be;moulli choice 

model. For subsequent models we use 8 as a nonnalizing con$tant. 

(II) At the next level, we add choice parameters ,{e1 ,e2 ,e3
}---for the 

relations (lr1gure 2(ii)), one for each directed arc. For example, 

tMAN a e + 281 + e2 

tMAA = 8 + 201 + e2 + e3 

tMAA a 8 + 281 + 82 + 83. 

{III) Next,we add sets of parameters corresponding to heightened 

or diminished effects related to pairs of directed arcs: 

(a) 

{b) 

(c) 

For ~xample: 

P11, P12 • p33 for mutuality effects (see Figure 2(111)), 

P12 • P13• p23 for exchange effe·cts (see Figure 2(1v)), 

812' 813' 023 for multiplexity effects {see Figure 2(v)), 

tMAA a 8 + 281 + 82 + 83 + pll + p12 + P13 + P23 + 812 + 813' 

tMAM = 8 + 281 + 82 + 283 + P11 + P33 + P12 + 2P13 + P23 

+ 812 + 2813 + 823· 

There ,~re additional sets of parameters corresponding 1to the remaining 4 

levels in Fi.gure 2. At level IV, one of these parameters 1,wolves only mult1-

plexity and thus is denoted by a triple subscripted 8, i.e., 0123• The 

remaining parameters involve mixtures of mutuality, exchange, and multi­

plexi.ty, and are denoted by subscripted (p8) 1 s. Overbars on subscripts are 

used to di·stingui"sh as,Y1T111etric directed arcs going in opposite directions, 
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e.g., (p8)12!· 

The parameters in this class of models are GLIM-like in structure 

(e.g., see Nelder and Wedderburn, 1972), in that a parameter 1s included 

·in the model if and only if the corresponding effect is present. The 

entries of the resulting "design matrix" for the parameter structure for 

. any given model will be O's, l's, and 2's. This particular problem could 

be handled in GLIM directly only through the explicit construction of 

this design matrix, which is a fonnidable task. 

The parameters have a hierarchical structure, i.e., if we set some 

parameters equal to zero, all related higher-order tenns are also zero. 

For e.xamp 1 e , 

• 

and 

812 = Q.., 8123 m (pe}l12 m (pe)221 = (pS)3~ 

a (pe>,123 = (pe>,1n = (pe)2213 

• (pe>22rr· (pe>,122 • (pe>,1223 

• (pe)11332 = (pe)22331 . 

a (pe)112233 = O, 

Pn • O .., (pe>,12 a (pe)113 a (pe)1123 = (pe)nn 

a (pe)1122 II (pe)1133 ::: (pe)11223 

'f 

C (pe),1332·= (p9)112233 = 0• 

In the next section we discuss how to fit these models to 

social network data. 

---.. --------- ... ··-----... ·--·----...,. - , •..- ·- r, -• ------• ,...,.., .,, •--,.......,,_~ ...... -----------------~-..~-~~ 
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4. Fitting ~the Models to Data 

Fitting the loglinear models of the preceding section to 

data in Tabl,~ 2 fol lows, in principle, directly from the general results 

for loglinear models in Habennan (1974) or Appendix II of Fienberg (1980). 

The minimal sufficient statistics {MSS 1 s) take the fonn of linear combina­

tions of the {zabc}' 

(4. 1) l: a z 
all cells abc abc' 

. where for a MSS corresponding to "generic" parameter, S, 

(4.2) aabc = multiple of Sin tabc· 

The multiples of all parameters are either O, 1, or 2, and thus all of the 

a's are either 0, 1, or 2. 

If we let the expected value for the (a,b,c) cell be mabc = N•pabc 

where N = (~J, then the likelihood equations are found by setting the 

MSS 1 s equal to their estimated expected values, 1.e., for a generic 

parameter the likelihood equation is: 

,.. 
(4.3} t a b m b = t a z . 

all cells a c a c all cells abc abc 

We can solvrr a set of likelihood equations, each of the form (4.3), by 

using a ve~ion of the generalized iterative scaling algorithm due to 

Darrocl\ and Ratcliff (.1972), with starting values as follows: 

(4.4) {

1 
""(O) = 
mabc ~ 

if a, b, and care each equal to Mor N 

if one or more of a, b, and c equals A. 
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There are twp drawbacks to this approach. First, one needs to work with 

data arrays of the irregular shape of Table 2. Second, the convergence 

of generalized iterative scaling can be excruciatingly slow. 

All, however, is not lost. Two results, one simple and one relatively 

complex, lead us to a very straightforward altemative approach for 
~ 

computing the {mabc}. 

Result 1: For the class of affine translations of hierarchical 

loglinear models described in Section 3, each set of MSS's is 

equivalent to a set of marginal totals for the 26 table (1.e., 

thew-table) with doubled and duplicated counts. -
For example, the simple model with only a choice parameter, e1, a~d a 

mutuality pq1rameter, pll' for the first relation has MSS's {zM++, zA++' · 

zN++},and 

(4.5) ZM++ a~ Wll++++' 

zA++ = w10++++ = w01++++' 

ZN++=~ WOO++++• 

Result 2: For each affine translation of a loglinear model 

for the ~-table, there is a corresponding loglinear model 

for the ~-table, with equivalent estimated expected values, 

once we take account of the duplication and doubling. 

For example, for the model with choice and mutuality parameters, i.e., 

{4.6) {e,e1,e2,e3,P11•P22•P33l, 

..... ~-·-- - - --- .... --- .. ~._--_, 
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tne corresp<>i·~ding logli.near model for the ~-table that yields 

equivalent MLE's is, in GLIM-like notation: 

(4.7) log mii'jj'kk' =A+ A1o1 + A1,o1, 

+ "2oj + ¼•oj• 

+ A3ok + A3,ok' 

+ All6ioi' + A22oj6j• 

+ A33°k0k1 • 

Here mii'jj'kk• is the expected value for the (1,1 1 ,j,j' ,k,k') cell, 

and eacn 6-tenn equals 1 if the subscript takes the value 1, and is zero 

otherwise. 

To understand Result 2 we need to note the following correspondences 

between thew-table and the z-table: - -
w-table z-table ... -

' Cell: (.1 t 1 I ,j ,j I t kt k I ) (.a ,b,c) 

Symmet,rfc flows: i=i 1 ,j=j 1 ,k=k' a,b,c = M or N 

Because of the doubling of the counts in Table 1, we have: 

log (2 mabc) for symmetric flows, 

(4.8) log ~ii'jj'kk' -

log (mabc) for asymmetric flows • 

.,, 
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Substituting expression (3.2) f.nto (4.8) and noting that mabC = (f} Pabc' 

we get 

(4.9) log mii'jj'kk' .. [2 (~}] + tabc· 

Thus the models for log mii'jj'kk' and tabc differ by only a constant. 

A direct consequence of these two results is that we can compute 

MLE's for t~e expected values under the models of Section 3 using standard 

iterative me1thods for contingency tables. (This is in fact what Ga1ask1ew1cz 

and Marsden (1978) did in their origi~al analyses of Table 1!). For 

example, for the model with parameters given by (4.6), the IMSS's are 

equivalentll( given by the two-way marginal totals of the ~-table: 

{wi1'++++},{w++jj'++l.{w++++kk'} 

These marginals can be fit to the 26 table using the standard iterative 

proportiona'I fitting procedure (or some other program such as GLIM). 

Because of $,Yll11letries in marginal totals, e.g., 

wlO++++ = wOl++++' 

w++lO++ = w++Ol++' 

w++++lO = w++++Ol' 

the resulting parameter estimates are such that 

A A A ~ A A 

Al c Al'' A2 a¼•• A3 a A31• 

~ 
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The estimated pa~ameters for the models for tabc can be computed directly 

from these parameters: 

8 = ~ - log ~ (~}] 

,.. ,.. 
e1 = Ai 1 = 1,2,3 

,.. ,.. 
P11 = Aii 1 C 1,2,3. 

We note that the d.f. for any model must be calculated using the model 

for the z-table, not the one for thew-table, and the value of any standard 
~ ~ 

goodness-of-fit statistic computed directly on the fitted ~-table must 

be divided by 2. 

5. Initial Analyses of the Towertown Data 

In Table 3 we list a set of seven loglinear models that we have fit 

to the Galaskiewicz-Marsden data of Table 1 (some of these models correspond 

to ones fit by Galaskiewicz and Marsden). The first six models are of 

fncreasing complexi.ty, and only the most complex of these models, (6), pro­

vides a fit whi.ch it not significant at the 0.05 or even 0.01 level. 

Model (7) is a compromise between models (.5) and (6) that drops one of the 

conditional mutuality and two of the multiplex mutuality effects but still 

provides an acceptable fit to the data. Its parameter estimates are listed 

fn Table 4. 

-- Tables 3 and 4 go about here --

The mo$t substantial estimated effects (in tenns of magnitude) are 
,.. ,.. 

those assoctated with choice (.e1
1s), mutuality (p11

1 s), conditional 
,.. ,.. 

mutuality (pe}331 = -2. 15 and multiplex mutuality (pe)
1133 

~ 2.88. Inter-

preting the~e effects i.s complicated. For all hierarchical models, with 
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nonorthogonal designs, the parameters that are easiest to interpret are 

those associated with the highest-order effects. Here the multiplex mutuality 

pannaeter es~imate implies a heightened likelihood of simultaneous recipro­

cation of botrh infonnation and support, relative to what we would expect in 

a model withc,ut the multiplex mutuality parameter. 

One of 1;he major difficulties with the models of Sectioin 3 1s that 

dyads are considered to be homogeneous and thus do not allow for the inherent 

differences ~~mong the organizations. Without some allowance for this hetero­

geneity, furtrher interpretation of fit~ed models makes little sense. In 

Table 5 we list pseudonyms for each of· the 73 organizations, and provide a 

partition of them into four sub-groups: 

l. Business 91 = 16 , 

2. Political 92 = 24 , 

3. Nonprofit voluntary associations 93 a 21 , 

4. Nonprofit service associations 94 = 12 • 

We postulate that the sociological factors affecting interaction should be 

relatively homogeneous within these groups. Thus, we can categorize the 

original{~}= (~3) = 2628 dyads into the cells of an upper triangular 

4 x 4 array: 

61 62 

120 384 

276 
No. of Dyad~: 

63 

336 

504 

210. 

64 

192 

288 

252 

66 

Gl 

G2 

G3 

64 

For each cell in this array there is a 26 table. 
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--- Table 5 goe~ about here --

Within •~ach of the four groups we can analyze flows using a 26 table 

and the mode'ls from Section 3. These 26 tables have the same doublings 

and duplications as the aggregated 26 table. The flows between groups 

(in pairs) npw have an orientation and there are corresponding 26 tables 

describing these flows which contain no doubling and no duplication. We 

can analyze each of these tables with standard loglinear models that 

parallel those models for within group flows. The total number of cells 

in the full table is (4 x 36) + (6 x 64) = 528. 

In Table 6, we report the result of fitting separate multiplex mutuality 

models (model {6) of Table 3) to each of the 10 26 arrays. While this model 

fits extremely well (G2 is less than the d.f.), this is in large part the 

result of fitting 352 parameters. An alternative modelling approach links 

the within and between group models. For example, we might take a comnon 

"interactfon structure" for all 10 26 tables, but allow only the choice 

parameters (the e1
1 s) to depend on groups. The result is model (2) in Table 

6, whose fit i.s not horrid but is still significant at the 0.005 level. A 

compromise t,etween models O) and (2) of Table 3 would have a conrnon model 
' for within-~1roup flows and a separate variant on model (2) :for between-

group flows. We report the fit of two such models in Table 6. Model (3b) 

fits extremely well, and provides a convenient starting point for further 

analyies of the data. 

-- Table 6 goes about here --

6. A Possi.b.le Graphfcal Display for Multi.va~iate Di.rected Graphs 

The second set of analyses of.the preceding section leads quite 

naturally to analyses involving a further disaggregati"on of organizations. 

Indeed we could carry the disaggregation to the limit, with each organiza-



' 18 

tion fonning its own group of one. We could postulate models with 
.. 

different choice parameters for each organization and a conmon higher-

order parametric structure. Actually, we would end up with individual 

sending and receiving parameters for each organization and each relation. 

The resultin,~ model is in the same spirit as the bivariate models sug­

gested by Ho'lland and Leinhardt (1980) • 

The attractive feature of this fully-disaggregated approach is that 

we can examt~e the estimated higher order structure in a tabular fonn 

similar to that of Table 4, and look separately at the estimated individual 

parameters. The latter can be displayed in a set of three overlayed 

"correspondence-like" plots of the 73 organizations. The sending and 

receiving parameter estimates for an organization could be used as the 

absci.ssa and ordinate for a corresponding point, and the three points for 

different relati.ons. could be li.nked to fonn a triangle. This plot should 

show not only the clustering of organizations but also the similarities 

of their behavior with regard to the three different relations being 

considered. We haves.topped short of producing the plot for the Towertown 
' data for computational reasons. The iterative methods used here, and in 

Fien6erg and Wassennan (1981) for the univariate version of the disaggre­

gated model, when applied to the Towertown data simply take up too much 

computing storage. We hope, however, that alternative computational methods 

currently under development might make possible some graphical displays 

for multi.vaJri.ate directed graphs in the not-too-distant future. 
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Figure 1: Example of a Univariate Directed Graph Involving g a 6 Individuals 
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FIGURE 2. PATTERNS OF FLOW. DEPENDENCY IN DYADIC PATTERNS 
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FIGURE 2 (CONTINUED). 
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TABLE 1. OBSERVED DISTRIBUTION OF INTERORGANIZATIONAL TRANSACTIONS INVOLVING THREE RELATIONS AND 73 ORGANIZATIONSA.; 

1. INFORMATION SENT - + 

l'. INFORMATION RECEIVED - . + ............ ....... 
2. MONEY SEHT - + - +. . .. . .. + . ... ~ .... + 

2'. MONEY RECEIVED - + ..... + . ~ .+ - . + -- +. ~ .+ - ... + .. - + 

3. SUPPORT 3'. SUPPORT 
SENT RECEIVED ' . . . ....... . . - . . . ' . . . . . . .. 

I I ' I 

- - 3042 100 1100 20 1145 15 111 7 I 145 11 115 7 1 322. 47 I q] 16 
I I I I I 

+ lll 18 I 12 3 I 20 9 I 3 4 : 32 20 I 2 } I n 38 : 15 25 
1 I I I I 

12: 18 3 I 32 I I I I I 

+ - 111 2 120 1 t 20 3 I 9 4 I 77 15 I 38 25 I 
+ 116 14 I 14 4 I 15 4 1 6 0 1 1s 6 : 4 0 : 100 50 : 50 28 

I I I I I ' I 
. 
TABLE TOTAL = 5256 . 

An+• INDICATES THAT A DIRECTED FLOW IS PRESENT~•-• INDICATES THAT A DIRECTED FLOW IS ABSENT, 
A SOMEWHAT DIFFERENT VERSION OF THESE DATA APPEARED IN ~ALASKIEWICZ AND MARSDEN (1978), 
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TABLE 2. ST~UCTURE FOR ACTUAL TABLE OF 36 COUNTS 

M 

M ZMMM 
14 

M Money A ZMAM 
50 

N zMNM 
50 

M zAMM 
0 

ZP»1 
Infonnation A Money A 4 

ZAru.1 
6 

N ZANM 
15 

M ZNMM 
2 

N Money A zNAM 
14 

N 2NNM • 58 

Support 

A 

ZMMA 
25 

ZMAA ZMAA 
38 15 

zMNA 
77 

ZAMA ZAMA 
4 1 

ZAAA ZAA'A 
9 2 

ZA'AA ZAM 
3 20 

ZANA ZANA 
20 32 

ZNMA 
3 

ZNAA ZNAJ\ 
18 12 

2NNA 
111 

N 

ZMMN 
8 

ZMAN 
47 

zMNN 
161 

ZAMN 
7 

ZAAN 
15 

ZAAN 
11 

2 ANN 
145 

ZA'AN 
10 

zNAN 
10 

2NNN 
1521 
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TABLE 3. VARIOUS LOGLINEAR MODELS FITTED TO DATA IN TABLE 1 . \ 
..... . ... 

. . . . . 

* 
Model c.f>.=f. . · .. :.s~·-·. · .... ·· ... · ... 
-• 
(1) 8,81,82,83 - 32 2528.5 

(2) 8•81•82•83,Pll'P22•P33 29 895.0 

(3) 8•81•82•83,P11•P22,P33,P12,P13,P23 26 224.1 

(4) e,e,,e2,83•P11,P22•P33,P12•P13;P23•812'813'823 23 122.15 

{5) (pe >112 '(pe), 13' (pe)221 '(.pe >223' (pe >331 '(pe l332, 
plus all implied lower-order tenns 17 40.315 

(6) (p8)1122'(.pe)1133,{pe)2233 , plus all implied 
lower-order tenrJS 14 20.73 

{7) parameters from mode 1 ( 4) p 1 us (pa) 113 , {p8) 33p 

{p9l112•(pe)223'(.pe)332' and (pe)ll33 17 22.24 

*G2 is the log-likelihood ratio chi-square goodness-of-fit statistics. 
..-
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TABLE 4. PAIW1ETER ESTIMATES FOR MODEL (7) FITTED TO THE DATA FROM 
TAl)LE 1 

Parameter 

,.. 
8 

,.. 

,.. 

A 

A 

(pe)331 
A 

,~e)332 

Estimate 

-0.55 

-3.02 

-3.35 

-3.28 

3.82 

1.52 

3.28 

1 .01 

1.73 

0.60 

0.78 

1.34 

1.57 

-0.52 

-1.30 

-0.70 

-2.15 

-0.83 

2.88 

Nonnalization Constant 

Choice 

Mutuality 

Exch~nge 

Mult1p1ex 

Conditional Mutuality 

Multiplex Mutuality 

·- ------~----- -------=-'-'------~--
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TABLE 5. PARTITION OF 73 ORGANIZATIONS INTO 4 GROUPS 

Business 
2. Farm Equipment Co. 
3. Clothing Mfg. Co. 
4. Farm Supply Co. 
5. Meehan i ca 1 Co. 
6. Electrical Equip. 

Co. 
7. Metal Products Co. 
8. Music Equip. Co. 
11. 1st Towertown Bank 
12. Towertown Savings 

& Loan 
13. Bank of Towertown 
14. 2nd Towertown Bank 
15. Brinkman Law Firm 
16. Cater Law Firm 
17. Knapp Law Firm 
39. Towertown News-
40. WTWR Radio 

(gl = 16) 

Political 
25. City Council 
26. City Manager 
27. County Board 
28. Fire Department 
29. Human Relations 

Dept. 
30. Mayor's Office 
31. Police Dept. 
32. Sanation Dept. 
33. Streets and 

Sanitation 
34. Park District 
35. Zoning Board 
41. Hospital Board 
42. Public·Hospital 
44. Board -0f Mental 

Health 
45. County Board of 

Health 
47. Highway Authority 
53. School Board 
54. High School 
56. Community College 
57. State University 
67. Dept. of Public Aid 
68. Housing Authority 
70. Employment Services 
73. Youth Services 

63 
Nonprofit Voluntary 

Associations 

64 
Nonprofit Service 

Organizations 

' 0 

1. Farm Bureau 
9. Chamber of Commerce 
10. Banker's Association 
18. Bar Association 

46. Health Services Center 
52. United Fund 
60. St. Hilary's Catholic 

7~. ~oard of Realtors 61. 
20. Small Business Assoc.62. 

Church 
1st ·Bapti'S~ -Ctlureh 
1st Church of the 
Light 21. Music Employee 

Union #1 63. 1st Congregational 
22. Music Employee 

Union #2 64. 
23. Teacher's Union 65. 
24. Central Labor Union 66. 
36. Democratic Committee 
3 7 • Rep u b 1 i can Co mm i t tee 6 9 • 
38. League of Women 71. 

Voters 72. 
43. Medical Society 
48. 1st Kiwanis Club 
49. 2nd Kiwanis Club 
50. Rotary Club 
51. Lions Club 
55. Parent-Teacher Assc. 
58. 1st Assoc. of 

Churches 
59. 2nd Assoc. of 

Churches 

Church 
1st Methodist Church 
Unity Lutheran Church 
University Methodist 
Church 
Family Services 
YMCA 
Towertown Mental 
Health Center 

12) 
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TABLE 6. MODELS FIT TO THE 10 26 TABLES FORMED BY THE PARTITION OF THE 
73 .ORGANIZATIONS INTO THE 4 GROUPS GIVEN IN TABLE 8 (528 CELLS) 

Model 62 D.F. 

(1) Separat•!. models for each 26 table, each 
based on all multiplex mutuality and 
implied lower-order tenns 136.0 176 

(2) A conmon foteractfon structure for all 26 
tables, based on all multiplex mutuality 
and implied lower-order tenns, but one-
factor choice parameters (e1•s)depend1ng 

629.0 482 on the groups 

(3a) A common multiplex mutuality model for 
within group flows~ a between group 
model similar to mo e 2 409.0 · · 352 

(31>) Model {3a) pl us a set of "information" 
multiplex parameters (e11 ) for between 
groups that depend on the groups 355.7 343 

• 

- ----~-- ~io, .... ~ • • , .... u 


