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Summar:

A multivariate directed graph consists of a set of g nodes, and
a family of directed arcs (one for each relation) connecting pairs of
nodes. Such multivariate difected graphs provide natural representa-
tions for social networks. In this paper we consider methods to analyse
a network of 73 organizations in a Midwest American community linked
by three types of relations: information, money, and support. The
resulting data set, described by Galaskiewicz and Marsden (1978),
involves 3 x 73 x 72 = 15,768 possible arcs or "observations". We
describe a class of stochastic loglinear models for multivariate directed
graphs, demonstrate how they can be fit to the data using generalized
iterative scaling of Darroch and Ratcliff (1972), and explain the connection
between these models and variants on standard loglinear models for multi-
dimensional contingency tables discussed by Bishop, Fienberg, and
Ho11and.(1975). We also consider a disaggregation of the organizations
into sub-groups, and demonstrate hqw to adapt our models to explore
the intra- and inter-gpoup relationships. These methods generalize
research of Holland and Leinhardt (1980), who develop a model for
dyadic relationships in univariate directed graph data. The paper

includes a detailed analysis of the Galaskiewicz-Marsden data.




1. Introduction

Although this conference is entitled "Looking at Multivariate Data",
most attendees and authors have interpreted this to mean looking dt multi-
variate data "using graphicai methods". Despite the fact that the title
of the present paper contains the words "data", "multivariate", and
"graphs", we shall break step with these other authors and describe a
class of multivariate network problems. We would have 1iked to address
these problems using graphical methods but, for the moment,we have been
forced to settle for a more traditional multivariate model-based approach.
This may seem even more surprising since the network problems we address
begin with data that correspond to a picture or graph.

-- Figure 1 goes about here --

Figure 1 contains an example of a univariate directed graph, a graphi-

cal representation of a network involving g = 6 individuals. There are

g(g-1} = 30 possible arrows or directed arcs linking these 6 individuals
in pairs, only 12 of which are present in Figure 1. The information in a

univariate graph for g individuals can be summarized by means of a g x g

adjacency matrix Xs with elements

1 if 1 relates to J
xij =

0 otherwise,

where, by cpnvention, the diagonal terms, X{ys are set equal to zero.

The adjacengy matrix fpr Figure 1 is:



)

1 o 1 0 1 1 0

2 {1 0 1 0 1 o0

c=3 (00 0 0 1 1

~ 4 [0 1 0 0 0 O

5 [0 1 0 1 0 1

6 [0 0o o 0 o0 o
b -

There are several approaches that we might adopt to model the
data in the pdjacency matrix, X. For example, we might focus on the 6
individuals and assume that individual 1 makes 5 possible independent
choices (corresponding to arrows), with some unknown Bernoulli parameter,
Py (1 =1,2,...,6). Then a suitable data summary would be the row totals
of x, i.e., (3,3,2,1,3,p). The assumption of independence of choices
is not likely to be satisfied in practice, however. Alternatively, we
might focus on the 6 x § = 30 pairs of individuals, and assuﬁe that the
data ;or the pairs are independent and identically distributed. In
effect, then, we would choose to focus on relationships, and would observe

three different types:

(:) (:) Null,
O O S —
(i) (5) Mutual.

Thus the observed data would be summarized in the following 2 x 2 table:




Receive Choice

Yes No
Yes 4 8 |12
Send Choice
: No 8 10 |18
12 18 | 30

Note that each pair has been.counted twice, once for'”sending" and once
for "receiving", thus merging the asymmetric relationships.

The appypoach involwing pairs essentially uses the g(g-1) permutations
of the g 1ndividua15, two at a time, and thus leads to a doublecounting

of each pair, By focussing on the {g) = g(g-1)/2 combinations or dyads,

we can elimipate the doublecounting and obtain the following summary:

No. of Dyads

O ) °
. O—0 8
O=——0 :

In this paper, we consider stochastic models of multivariate directed

graphs, involving several types of arrows or relationships, that treat the
g) dyads as independent random variables. We do this in the full know-
ledge that for most network problems dyads are constructs. We do not
sample them. Rather, if we sample at all, we take a sample of individuals
and we measure information on dyadic relationships. The independence of
dyadic information is an assumption which in practice is in need of some

verification. We do not address this issue in this paper. For population



directed graph data, consisting of the dyad information for all of the
individuals in a network, the use of stochastic models leans for support
on (a) randomization arguments, (b) superpopulation ideas, or (c¢) it
simply provices a convenient framework for exploratory data analysis.

In the next section we describe a set of network data 1nvoiv1ng
organizations and three types of organizational relations. Then, in
Section 3, we describe a class of models and multivariate methods for the
analysis of such daiﬁ, which treats the organizations as a single group.
After fitting these models to the data.in Section 4, we further develop
the models in Section 5 to allow for disaggregation of the organizations
into subgroups. We conclude by returning to the graphical theme of this

conference.'pnd suggest some extensions of our modelling approach which

might lead tp interesting graphical summaries.

2. A Specific Network: Towertown, U.S.A.

The data that have motivated our work on this topic come from a
study of 109 formal organizations (with more than 20 employees) in a
small midwest United States community of 32,000 persons, referred to by
the pseudonym “"Towertown". Galaskiewicz (1979) described the survey of
Towertown, Galaskiewicz and Marsden (1978) report on the data considered
here, and we have described the data elsewhere in detail (Fienberg and
Wasserman, 1981). For the present, it will suffice to note that we are
concerned with the results of questionnaire data for a subset of 73
organizations, representing the ties between pairs of organizations for
three types of relations: (i) information, (ii) money, and (iii) support.

This data set can then be represented as a multivariate directed graph,

summarized by three adjacency matrices defined for the same 73 organizations,



(51, Xo 53). Each matrix is of dimension 73 x 73 and represents 73(73-1)
= 5256 possible directed arcs using 0's and 1'5.* Given the size of
these matrices, it should not be surprising that graphical representations
of even the univariate 1inks are too complex to comprehend.

Thus, we still need a way to look at and, perhaps more importantly,
summarize the data. Table 1 contains one such summary of the data given
by Galaskiewfjcz and Marsden (1978), in the form of a 2% table of counts of
pairs of organizations. This table gives the direct multivariate generalization )
of the 2 x 2 representation for a single relation given in Section 1. Each pair
of organizations is counted twice, once from the perspective of each
member. Thys,the total of the counts in the table is 5256, twice the
number of pgirs, (é?) = 2628. Henceforth,we refer to Table 1 as the
w-table with entries {wii'jj'kk'}'

-- Table 1 goes about here --

The 26 cells of Table 1 consist of (a) 8 cells whose counts are
doubled, and (b) 28 cells whose counts are duplicated. If we eliminate
the duplication and doubling of counts,we get an arrangement of 36 cells,
whose counts correctly total 2628. In Table 2 we give one
possible representation of these 36 cells in a form resembling a three-
dimensional 4 x 4 x 4 cross-classification, where the three "variables"
correspond to the three relations (1) information, (2) money, and (3) suppoft.

-- Table 2 goes about here --
*Throughout this paper we work with summaries of this data set.

The full data set, consisting of three adjacency matrices and pseudonyms
for the organizations, is available on request from the authors.



When the dyadic structure for a single relation 1s asymmetric, the
"direction“ of the corresponding arc does not matter. We use a single
subscript, A, to denote the relation in such situations. When
the dyadic Tinks for two or more relations are both asymmetric, we need to
distinguish between situations where the arcs for a pair of relations
go in the same or different directions. Thus, for these situations, we
use two different subscripts, A and A, with identical subscripts for
those relations whose asymmetric directed arcs go in the same direction.
We arbitrarily assign the subscript A to the lowest numbered asymmetric
generator. (Note that interchanging the subscripts A and A yields the
same dyadic structural relationship.) We denote the observed counts in
Table 2 by Zabe? for a, b, ¢ = M, A, A, N (for Mutual, Asymmetric,
A;ymmetric, and Null), where the convention for the use of the sub-
scripts A and A is as described above. These observed counts can be

thought of as realizations of a set of random variables, {Zabc}’ whose '

probability structure we wish to model.

3. Loglinear Models for Multivariate Directed Graphs

We wish to model the probability Pabe that a randomly selected dyad
would be assigned to cell (a,b,c) in Table 1, where

(3.1) z P..= 1.
all cells abc
Although we might think of using loglinear models directly for the {pabc}’

such an approach leads to difficulties of interpretation (see Fienberg

and Wasserman, 1980, for further details). Instead, we define



log Pabe if a; b, and ¢ are each equal to M or N,

(3- 2) ) Eabc= A
log [;%?é] if one of a, b, and c equals A.

Our plan 1s to develop a class of linear models for the {£_, }, which

abc

for {p_..} yields an affine translation of a class of loglinear models

abc
(see Chapter 9 of both Haberman, 1974 and Haberman, 1979). This approach

(a) treats dyads involving asymmetric ties as having been produced
with an orientation and then pooled. (This also accounts for
the divisor of 2 for counts'involving asymmetric ties.)

(b) 1includes as a special case the model of independent individual
choices (see the discussion of Section 1).

(c¢) 1% directly related to an approach of Holland and Leinhardt
(7980) which allows for parameters associated with the indivi-
duals in the dyad (see also Fienberg and Wasserman, 1981).

We plan to consider models for the {gabc} which are Tinear in parameters
that reflect the 13 distinct types.of dyadic patterns depicted in Figure
2. Note that the patterns have a hierarchical structure. For example,
the six-arrow full symmetry pattern, (xiii), contains all the other
patterns as special cases, and the conditional multiplex mutuality pattern,
(xii), contains patterns (i) through (xi) as special cases. We consider
a class of increasingly complex loglinear models for the {Eabc} with
parameters based on the patterns in Figure 2.
-- Figure 2 goes about here --
(I) The null model corresponding to Figure 2(1) depicts the

probabilities {pabc} as being constant, and could be represented as

Eabc = 0



where 8 = 10g(1/36). This is an individual, independent Bernoulli choice

model. For subsequent models we use 6 as a normalizing constant.

(II) At the next level, we add choice parameters,{91,62,63}«fbr the
relations (Figure 2(ii)), one for each directed arc. For example,
Eman = 8 * 28 * 6,
EMAA=9+29].+62+93
EMAA =0+ 26] + 92 + 63.

(III) Next,we add sets of parameters corresponding to heightened

or diminished effects related to pairs of directed arcs:

(a) P11s Pr2s Pa3 for mutuality effects (see Figure 2(ii1)),
(b) Pi2s Py30 Po3 for exchange effects (see Figure 2(iv)), |
(c) 8120 By3s Bo5 for multiplexity effects (see Figure 2(v}),

For txample:
EMAR = @ * 207 + 8 + B3 % pyy + 01y + g3t ppg + 0y, + 043,

Suam = O+ 20y + By * 203 % pyy * pgg + 0yp + 2013 + 0y
* Oyt 203+ 0y

There yre additional sets of parameters corresponding fo the remaining 4
levels in Figure 2. At level IV, one of these parameters involves only multi-
plexity and thus is denoted by a triple subscripted 6, i.e., 9123. The
remaining parameters involve mixtufes of mutuality, exchange, and multi-
plexity, and are denoted by subscripted (p6)'s. Overbars on subscripts are

used to distinguish asymmetric directed arcs going in opposite directions,



10

e.g., (pe)12§=
The parameters in this class of models are GLIM-1ike in structure

(e.g., see Nelder and Wedderburn, 1972), in that a parameter is included
in the model if and only if the corresponding effect is present. The
entries of the resulting "design matrix" for the parameter structure for
any given model will be 0's, 1's, and 2's. This particular problem could
be handled in GLIM directly only through the explicit construction of
this design matrix, which is a formidable task.

The parameters have a hierarchical structure, i.e., if we set some

parameters equal to zero, all related.higher-order terms are also zero.

For example,
812 = 0= Byp3 = (pB)yyp = (pR)ypy = (P0)3yz
(68)y155 = (00)775 = (981913
= (08)p513 = (p0)1122 = (PO)yq03
, | = (p8)y1332 = (P®)pp33y-
= (p)y12033 = 05
and
Pry = 0= (08)y12 = (p0)gy3 = (pB)yy23 = (pO)1yz3
= (p8)yy22 ™ (06)q133 = (06)qq23

= (00)1y332 = (PO)qy2233 = O-

In the next section we discuss how to fit these models to

social network data.

T AmmAeswnmar w s wm .ty e ve by me e w m o o s e
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4, Fitting ¢he Models to Data

Fitting the loglinear models of the preceding section to
data in Table 2 follows, in principle, directly from the general results
for loglinear models in Haberman (1974) or Appendix II of Fienberg (1980).
The minimal sufficient statistics (MSS's) take the form of linear combina-

tions of the {zabc}’
(4.1) b G Zos
all cells abc “abe

. where for a MSS corresponding to "gengric" parameter, g8,

(4.2) Gope ° multiple of B8 in Eabee

The multiples of all parameters are either 0, 1, or 2, and thus all of the
a's are either 0, 1, or 2.

If we let the expected value for the (a,b,c) cell be Mabe = N*Pape
where N = (%). then the 1ikelihood equations are found by setting the
MSS's equal to their estimated expgcted values, 1.e., for a generic
parameter the likelihood equation is:

A

(4.3) )X Q.. M, = T a 2., ..
all cells 2PC "aC 47 capqg abC abe

We can solvg a set of 1ikelihood equations, each of the form (4.3), by
using a version of the generalized iterative scaling algorithm due to
Darroch and Ratcliff (1972), with starting values as follows:

{l if a, b, and ¢ are each equal to Mor N

(4.4) nld)
3 1if one or more of a, b, and ¢ equals A.
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There are twp drawbacks to this approach. First, one needs to work with
data arrays of the irregular shape of Table 2. Second, the convergence
of generalized iterative scaling can be excruciatingly slow.

A11, however, is not lost. Two results, one simple and one relatively

complex, lead us to a very straightforward alternative approach for

computing the {&abc}.

Result 1: For the class of affine translations of hierarchical
Toglinear models described in Section 3, each set of MSS's is
equivalent to a set of marginal totals for the 20 table (i.e.,
the w-table) with doubled and duplicated counts.

For example, the simple model with only a choice parameter, e], and a

mutuality parameter, f1e for the first relation has MSS's {ZM++' 2A++"

zn++},and
(4.5) Zit = % Wy paie
‘ Zprr = W04ttt T Y0Ta4aet

Zypr = % Wooreee

Result 2: For each affine translation of a loglinear model
for the g-table, there is a corresponding loglinear model
for the g-table, with equivalent estimated expected values,

once we take account of the duplication and doubling.
For example, for the model with choice and mutuality parameters, i.e.,

(4-5) {9’91’92’93’911'022’933}’
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tne cbrrequpding Toglinear model for the w-table that yields
equivalent MLE's is, in GLIM-like notation: '

(4.7) log Megrgsokk = LRI S
+ A26j + AZ‘GJ'
* A8 + A3i8p.
+ )‘11616'1‘ + )‘226j6:j'
+ A338 80

Here Mege350kk® is the expected value for the (1,1',3,3',k,k') cell,

and each &-term equals 1 if the subscript takes the value 1, and is zero

otherwise.
To understand Result 2 we need to note the following correspondences

between the g-table and the E-table:

w-table - z-table
* Cell: (1,1',3,3",k,k") (a,b,c)
Symmetiric flows: i=i,j=j§,k=k a,b,c=MorN

Because of the doubling of the counts in Table 1, we have:

log (2 mabc) for symmetric flows,

(4.8) log miiujjlkkl =
log (mabc) for asymmetric flows.
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= |9
Substituting expression (3.2) into (4.8) and noting that Mabe (2, Pabe?

we get

(4.9) 109 Mygog50pke = [2 (‘2’)] * Eaber

Thus the models for log mii'jj'kk‘ and Eabe differ by only a constant.

A direct consequence of these two results is that we can compute
MLE's for the expectéd values under the models of Section 3 using standard
iterative mgthods for contingency tables. (This is in fact what Galaskiewicz
and Marsden (1978) did in their original analyses of Table 1!). For
example, for the model with parameters given by (4.6), the MSS's are

equivalently given by the two-way marginal totals of the w-table:

{U.” '++++} '{W'H'jj ‘++}’{"'++++kk' }

These marginals can be fit to the 26 table using the standard iterative
proportional fitting procedure (or some other program such as GLIM).

Because of $ymmetries in marginal totals, e.qg.,

= Wol+++4?

L)

Y1 0++++

Wer10++ = Yer0) 4+

=W

w H+401°

++++10

the resulting parameter estimates are such that

~

A]gllgg AZBAZO’ 13=A3.o
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The estimated parameters for the models for £ can be computed directly

abc
from these parameters:

b-3-10 [z [1]]
B = A 1=1,2,3
i=1,2,3.

We note that the d.f. for any model must be calculated using the model
for the E-table, not the one for the y-tab1e. and the value of any standard
goodness-of-fit statistic computed difectly on the fitted g-tab1e must
be divided by 2.

5. Initial Analyses of the Towertown Data

In Table 3 we 1ist a set of seven loglinear models thai we have fit
to the Galaskiewicz-Marsden data of Table 1 (some of these models correspond
to ones fit by Galaskiewicz and Marsden). The first six models are of
increasing complexity, and only thé most complex of these models, (6), pro-
vides a fit which it not significant at the 0.05 or even 0.01 level.
Model (7) is a compromise between models (5) and (6) that drops one of the
conditional mutuality and two of the multiplex mutuality effects but still
provides an acceptable fit to the data. Its parameter estimates are listed
in Table 4.

-- Tables 3 and 4 go about here --
The most substantial estimated effects (in terms of magnitude) are

those assocjated with choice (gi's), mutuality (Sii.s)’ conditional

o —— o————————

mutuality (96)331 = -2.15 and multiplex mutuality (65)]]33 = 2.88. Inter-

preting these effects is complicated. For all hierarchical models, with
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nonorthogonal designs, the parameters that are easiest to interpret are
those associated with the highest-order effects. Here the multiplex mutuality
parmaeter estimate implies a heightened 1ikelihood of simultaneous recipro-
cation of both information and support, relative to what we would expect in
a model withgut the multiplex mutuality parameter.

One of the major difficulties with the models of Section 3 is that
dyads are considered to be homogeneous and thus do not allow for the inherent
differences agmong the organizations. Without some allowance for this hetero-
geneity, furfher interpretation of fit;ed models makes 1ittle sense. In
Table 5 we 1ist pseudonyms for each of the 73 organizationé, and provide a

partition of them into four sub-groups:

Business gy =16,

Political =24,

92
Nonprofit voluntary associations g3 ® 21,

) w N el
. Y . .

Nonprofit service associations gy = 12.

We postulate that the sociological factors affecting interaction should be
relaéive]y homogeneous within these groups. Thus, we can categbrize the
original ‘g) = (gﬂ = 2628 dyads into the cells of an upper triangular

4 x 4 array:

,120 B4 (3% |192] 6
276 | 504 | 288 | G,
210 [ 252 | g,
6 | G,

No. of Dyads:

For each cell in this array there is a 26 table.
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-- Table 5 goes about here --

Within each of the four groups we can analyze flows using a 26 table
and the models from Section 3. These 26 tables have the same doublings
and duplications as the aggregated 26 table. The flows between groups
(in pairs) now have an orientation and there are corresponding 26 tables
describing these flows which contain no doubling and no duplication. We
can analyze each of these tables with standard loglinear models that
parallel those models for within group flows. The total number of cells
in the full table is (4 x 36) + (6 x 64) = 528,

In Table 6, we report the result_of fitting separate multiplex mutuality
models (model (6) of Table 3) to each of the 10 26 arrays. While this model
fits extremely well (Gz is less than the d.f.), this is in large part the
result of fitting 352 parameters. An alternative modelling approach links
the within and between group models. For example, we might take a common
"interaction structure" for all 10 26 tables, but allow only the choice
parameters (the ei's) to depend on groups. The result is model (2) in Table
6, whose fit is not horrid but is still significant at the 0.005 level. A
compromise tetween models (1) and ('2) of Table 3 would have a common model
for Qithin-group flows and a separate variant on model (2) for between-
group flows. We report the fit of two such models in Table 6. Model (3b)
fits extremely well, and provides a convenient starting point for further
analyses of the data.

-- Table 6 goes about here --

6. A Possible Graphical Display for Multivariate Directed Graphs

The second set of analyses of the preceding section leads quite
naturally to analyses involving a further disaggregation of organizations.

Indeed we could carry the disaggregation to the limit, with each organiza-



18

tion forming its own group of one. We could postulate models with
different choice parameters‘for each organization and a common higher-
order paramegric structure. Actually, we would end up with individual
sending and jeceiving parameters for each organization and each relation.
The resulting model is in the same spirit as the bivariate models sug-
gested by Holland and Leinhardt (1980).

The attractive feature of this fu11y-disaggregated approach is that
we can examipe the estimated higher order structure in a tabular form
similar to that of Table 4, and look separately at the estimated individual
parameters. The latter can be displayed in a set of three overlayed
"correspondence-1ike" plots of the 73 organizations. The sending and
receiving parameter estimates for an organization could be used as the
abscissa and ordinate for a corresponding point, and the three points for
different relations. could be Tlinked to form a triangle. This plot should
show not only the clustering of organizations but also the similarities
of their behavior with regard to the three different relations being
considered. We have stopped short Qf producing the plot for the Towertown
data.for computational reasons. The iterative methods used here, and in
Fienberg and Wasserman (1981) for the univariate version of the disaggre-
gated model, when applied to the Towertown data simply take up too much
computing storage. We hope, however, that alternative computational methods
currently under development might make possible some graphical displays

for multivapiate directed graphs in the not-too-distant future.
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Figure 1: Examp1e'of a Univariate Directed Graph Involving g = 6 Individuals
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FIGURE 2. PATTERNS OF FLOW DEPENDENCY IN DYADIC PATTERNS
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FIGURE 2 (CONTINUED)
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TABLE 1. OBSERVED DISTRIBUTION OF INTERORGANIZATIONAL TRANSACTIONS INVOLVING THREE RELATIONS AND 73 ORGANIZATIONSA. .

1. INFORMATION SENT | - >
1’. INFORMATION RECEIVED S . R
2'. MONEY PECEIVED S O O S
3, SUPPORT 3'. SUPPORT :
SENT RECEIVED .
' | 1 T T T T I
- - 3012 100 1100 20 1185 15 '11 74145 11115 71322 47447 16
+ 111 18:12,3!20 913 4,32 2012 1! 77 38,15 25
[\ S i )
‘- - W 12,18 3'3% 2,20 1,20 3,9 4 77 15,38 25
+ 16 ' 4'15 4'6 0'15 6.4 0,100 50150 28

TABLE TOTAL = 5256

A"4" INDICATES THAT A DIRECTED FLOW IS PRESENT, "-" INDICATES THAT A DIRECTED FLOW IS ABSENT,
A SOMEWHAT DIFFERENT VERSION OF THESE DATA APPEARED IN GALASKIEWICZ AND MARSDEN (1978),



TABLE 2. STRUCTURE FOR ACTUAL TABLE OF 36 COUNTS

M Money

Information A  Money

N Money

Support
M A N
ZymM ZvMA Zyvn
14 25 8
Zyam | ZMAA | ZMAR | ZMAN
50 38 15 47
Z\NM ZMNA ZvNN
50 77 161
Zamm | ZamMA | ZAMA | ZaMN
0 4 1 i
Zaam | Zaan | ZaAR | Zaan
4 9 | 2 15
Zafm | ZARA | ZARA | ZABN
6 3 | 20 1
Zanm | ZANA | ZANR | ZANN
15 20 32 | 145
ZNMM ZNMA ZARN
2 3 10
ZnaM | ZNAA | PNAR | ZNAN
14 18 12 10
ZNNM ZNNA ZNNN
58 11 1521_|




TABLE 3. VARIQUS LOGLINEAR MODELS FITTED TO DATA IN TABLE 1

Mode . sF. . gk
(1) 6,81,0,,05 ° 32 2528.5

(2) 8,07:05,03,071:P001P33 29 895.0

(3)  ©,0,08,.03,0¢, .022.033.012,913,023' 26 224

(4)  0,01185,63.013P50P33sP12sP135Pp310122073:023 23 122.15

(5) (03)112,(96)]]3,(99)221,(00)223.(p6)331,(p6)332. :
plus all implied lower-order terms 17 40.315

(6) (pe)]]22,(pe)1]33,(pe)2233, plus all implied .
lower-order terms 14 20.73

(7)  parameters from model (4) plus (06)yy32(p8)337s
(00)112,(09)223,(09)332, and (09)1133 17 22.24

2

*G is the log-likelihoodratio chi-square goodness-of-fit statistics.



TABLE 4. PARAMETER ESTIMATES FOR MODEL (7) FITTED TO THE DATA FROM

TABLE 1
Parameter Estimate
3 -0.55 - Normalization Constant
-~ i . \
9] "3.02
5, 3.3 ) Choice
8, -3.28 |
-~ \
- 1.52 ) Mutuality
933 3.28 )
~ )
p] 2 1.01
P13 | 1.73 ) Exchange
A \
912 0.78
913 1.34 } MuTt‘lp‘lex
853 1.57 )
(99 ) 12 -0.52 \
(pA9)1-|3 "1030
(;;a) 223 -0.70 Conditional Mutuality
(08) 333 -2.15

(66),]33 2.88 Multiplex Mutuality




~TABLE 5.
G

PARTITION OF

1

Business

Farm Equipment Co.
Clothing Mfg. Co.
Farm Supply Co.
Mechanical Co.
Electrical Equip.
Co.

Metal Products Co.
Music Equip. Co.

. 1st Towertown Bank
. Towertown Savings
& Loan

Bank of Towertown
2nd Towertown Bank
Brinkman Law Firm
Cater Law Firm
Knapp Law Firm
Towertown News:
WTWR Radio

16)

— o~ OB WN
L ] L ] [ ] [ [ ]

QU~NOOTEW N ede o
.

e o o o o .

) et e ad wmd b

(9] =

1}
73 ORGANIZATIONS INTO 4 GROUPS N -
o
]
GZ G3 64 °
Nonprofit Voluntary Nonprofit Service
Political Associations Organizations
25. City Council 1. Farm Bureau 46. Health Services Center
26. City Manager 9. Chamber of Commerce 52. United Fund
27. County Board 10. Banker's Association 60. St. Hilary's Catholic
28. Fire Department 18. Bar Association Church
29. Human Relations 19. Board of Realtors 61. 1st Baptist Chuvrch
Dept. 20. Small Business Assoc.62. 1st Church of the
30. Mayor's Office 21. Music Employee Light
31. Police Dept. Union #1 63. 1st Congregational
32. Sanation Dept. 22. Music Employee Church
33. Streets and Union #2 64. 1st Methodist Church
Sanitation 23. Teacher's Union 65. Unity Lutheran Church
34. Park District 24. Central Labor Union 66. University Methodist
35. Zoning Board 36. Democratic Committee " Church
41. Hospital Board 37. Republican Committee 69. Family Services
42. Public Hospital 38. League of Women 71. YMCA
44, Board of Mental Voters 72. Towertown Mental
Health 43. Medical Society Health Center
45. County Board of 48. 1st Kiwanis Club
Health 49, 2nd Kiwanis Club (g4 = 12)
47. Highway Authority 50. Rotary Club
53. School Board 51. Lions Club
54. High School 55. Parent-Teacher Assc.
56. Community College 58. 1st Assoc. of
57. State University Churches
67. Dept. of Public Aid 59. 2nd Assoc. of
68. Housing Authority Churches
70. Employment Services
73. Youth Services (93 = 21)

'(92.3 24)



TABLE 6. MODELS FIT TO THE 10 25 TABLES FORMED BY THE PARTITION OF THE
73 ORGANIZATIONS INTO THE 4 GROUPS GIVEN IN TABLE 8 (528 CELLS)

Mode 62 D.F.

(1) Separate models for each 26 table, each
based on all multiplex mutuality and
implied lower-order terms 136.0 176

(2) A common interaction structure for all 26
tabTes,, based on all multiplex mutuality
and implied lower-order terms, but one-
factor choice parameters (ei's)'HEbending
on the groups 629.0 482

(3a) A common multiplex mutuality model for
within group flows plus a between group
model similar to model 2 409.0 -+ 352

(3b) Model (3a) plus a set of "information"
multiplex parameters (611) for between

groups that depend on the groups 355.7 343




