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1. Introduction 

To a l~rge extent the present paper gives only a brief personal 

overview of some recent and o_ngoi _ng research into l i k.e 1 i. hood and its 

role in statistical inference. Certainly there is no attempt to present 

a comprehensive review. For the most part the details of particular 

results are omitted, si'nce such details are available in the very recent 

1 i terature. 

Some bac_kground is presented briefly in the next two sections, 

dealing respectively with models and inferential purpose (Section 2) and 

basic likelihood theory including information recovery (Section 3). Sec­

tion 4 describes very recent research on large-sample likelihood inference 

for single parameter models, and the effect of goodness-of-fit tests is 

discussed in Section 5. An incomplete view of multiparameter problems 

(Section 6) is followed by some general remarks and brief references to 

important aspects of likelihood inference not treated in the main discussion. 

2. Statistical Models and Likelihood Inference 

2.1 On Models 

A common starting point formaoy statistical analyses is the speci­

fication of a statistical model, that is a probability model with relevant 

physical characteristics imbedded as parameters. In some cases one may 

make the model 1 arger that is tho_ught necessary for purposes of testing 

a physical theory. The specification of the probability model is not a 

trivia 1 step, even though common us.age of the phrase '' 1 et X 1 , ••. , Xn be 

i. i .d. with p.d. f .•.. 11 su_ggests otherwise. 

The most ta_ngible forms of statistical models are those involving a 

real act of random sampl i_ng - either i'n selection of observation units 

• 
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from an extant finite population, or in selection of a design layout 

determining treatment allocations to experimental units in a comparative 

experiment. In the former case well-defined parameters exist which are, 

in principle, determinate; whereas in the comparative design problem 

this is not generally so. In both cases probability is a well-defined 

consequence of randomization. Measurement-error problems are perhaps 

next-most tangible, in that we believe indefinite repetition of the 

measuring process is possible, in principle, and that the measured quan­

tity is essentially determinate. But at this point we begin to face the 

fact that many statistical models involve hypothetical random sampling. 

It is then more difficult, yet equally necessary, to define precisely 

what is meant by saying that "data x1, ••• ,xn is as a random sample from 

a population wherein x has probability distribution F(x,8). 11 I would 

contend that in some instances this statement involves an abstraction not 

unlike that involved in stating a prior distribution for a. It would 

then seem to me to be important to recognize that the notion of long-run 

repeated sampling is a fiction of convenience, unless it is a physical 

fact. 

Thi:s latter view mi1.ght seem more valid when our modelling is a 

consequence of preliminary data-screening, which is often the case ... 

Statistical analysis is, after all, adaptive because model analysis is 

contingent on the correctness of the model. 

Debates over the various meani_ngs of statistical probability have, 

of course, helped to make statistics a lively subject for centuries. 

One parti_cularly instructive debate was that between Fisher and Jeffreys 

(see Lane, 1980). Recent evidence that the old issues never die may be 

found in Basu (1980) and discussion thereof. 
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2.2 Ukeli.hood and Inferential Purpose 

Once a statistical model has been formulated, various statistical 

operati.ons can be performed - tests of fit, tests of special-case hypo­

theses, estimations, predicitons, etc. The majority of these involve 

likelihood, which may be defined loosely as the relative probability with 

respect to the parameter of an outcome arbitrarily close it the observa­

tion. If our model specifies the necessary series of probability densities 

(continuous, discrete or both) for successive individual observations 

x
1

,x
2
, ••• , and if we observe x1, ••• ,xn:' then we say that the likelihood 

at . e given x 1 , x2, ••• , xn , denoted by Li k ( a I x1 , ••• , xn) , is 

n 
f 1 ( x1 ~ ~) ~ II fJ. ( xJ. I x1 , ••• , xJ. _ 1 , a) • 

- .--·J=2 

We shall ignore inessential, though interesting, technical difficulties 

associated with Likelihood definition .. For the majority of the discussion 

we will assume that x
1

, ••. ,xn are independent outcomes, so that with 

~n = ( x, , ••• , xn) 

n 
Lik(elx) = II f.(x.je) (2.1) 

-n j=l J J 

whose logarithm is denoted by tn(e) or i(el~n) .. The special case fj = f 
will also be· assumed here, ·thi.s involvi._n·g no appreci.able loss of_ generali.ty 

in terms of what follows. 

Ou~ general purpose is two-fold: first, to reduce ~n to one or a 

few stati.sti.cs that are essenttally equivalent to ~n for all practical 

purposes. Second, to construct a meani_ngful probabi 1 ity statement i.n­

vol vi ng e and an estimate thereof without unavoidable sacrifice of 

• 
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11 information. 11 These steps would be accomplished by.computing a statistic 

s(x1 , •.. ,xn), which may be an ~stimator, and then findi_ng a quantity 

Q{s(x1, .•• ,xn);e} with known·probability distributton in an appropriate 

reference set of sample outcomes. 

My own view of this may be phrased somewhat differently as follows. 

We desire a fully informative probability statement that is capable of 

combination with a prior distribution p(8) when such is specified, but 

which is also capable of generating confidence intervals when no p(e) 

is specified. The first capability is possessed by Lik(elx) without ... n 

reference to its repeated sampling properties, but this is not enough for 

the second capability. (A theorem of A. Birnbaum (1962) claims that two 

familiar principles of repeated-sampling inference imply that Lik(elx) ... n 

contains all the 11 evidence 11
, but this does not tell us what the inferen-

tial method is.) 

The evident lack of precision in our formulation of purpose is, 

regrettably, unavoidable because approximations are involved. I have 

phrased the formulation is this way because it seems to me entirely 

legitimate to ask how much, and what, the data tell us before we apply 

Bayes's Theorem, even for a rigid Bayesian. 

3. Some Basic Likelihood Theory 

At this juncture three severe restrictions will be placed on our 

model so as to simplify the discussi.on: (i) e is one-di.mensional, (.ii) n 

is (treated as) fixed, and (iii) the likelihood is regular. Both (i) and 

(ii) will be removed later, and (iii) is regarded as practically unimpor­

tant. 

0 

• 
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The Likelihood function .(2.1) defines the minimal sufficient statistic 

~ for e. Unfortunately, unless · {f(xle)} is a complete exponential 

family, ~ has larger dimension of variation than e. Therefore, in 

general, reducti'on of s to an estimator (single statisti_c) will involve 

loss of information. For convenience and familiarity, information will 

be measured here by Fisher's method, namely by defini_ng 

information in= _l(T) = E{-I(elT)}. ; 
statistic T 8 

each· denotes one differentiation with respect to e. 
Particular interest focusses on the MLP (maximum likelihood point) 

a solution of i(ejs) = O , for which* 

A e , 

~(s) _ :J(9) > 
0 ( 3.1) 

e e 

outside the complete exponential families. Fisher was justifiably concerned 

with this result. The following simple example illustrates why. 

Let e1 ,e2 be independent Bernoulli outcomes, such that ei = + 1 

with equal probability, and let x. = e + e. • The estimate 
1 1 

- l -is such that pr{e = e) = pr(e
1 

+ e2 = O) =2 . This, and the value of a , are 

all that is available if (x1,x2) is reduced to e. This sacrifices 

obvious information, since 

-
*For any other stat i st i c 0 , ( ) ( s ) - ~ ( ~) ) / ( ~ ( s) -e a a ,~a))- ~ .s. l as n 

increases where c depends on the particular form of a . 

• 
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.... 
if I x1 - x2 I = O , then e r e for sure 

.... {3.2) 
if lx1 -x21rO , then 0=0 for sure. 

The example,while admittedly not within the technical framework of 

our discussion, does illustrate a phenomenon that is - namely the existence 

of supplementary information in measurement-error models, discovered by 

Fisher (1934). As in the example, so for a general measurement-error model 

x. = e+e. 
J J 

j=l, ••• ,n {3.3) 

the residua 1 s ~ = {(xj - e): j=l, ... , n} contain the supplementary i nforma­

ti on (and it is .Q.!U1_ supplementary). Fisher showed that for this model 

j (s) "z(ela) 
e = E[ Je - 1 ' (3.4) 

A • i.e. that the full sample information is "saved" in a together with 1ts 

conditional sampling distribution given ~ (this is the pair of statements 

(3.2) in the example). The specific algorithm presented by Fisher is 

remarkable: the density of the conditional sampling distribution is 

h(ej~,0) = lik(ej~)/ f lik(tl~)dt , (3.5) 

" Expressing this. more conveniently in_ terms of D = a - a, 

A 

lik(80 bs - di~) = __ .;:;..;:..;::,_ __ = 

J lik(tl~)dt 

lik(-dl~) 

J lik(tl~)dt 
(3.6) 

which is the supplementary information in explicit form. 

0 
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The following general principle evolved from Fisher•s discovery. 

Conditionality Principle: If ~ contains a component 

~ (called ancillary statistic) whose probability 

distribution is independent of e, then inference 

should be based on h(:l~,e) - i.e. inferential 

probability calculations should be conditioned on 

the o~ser.ved value of the ancillary. 

This deserves pause for comment. First, the principle_ guides us to an 

inference that is specific to the single sample outcome x, by restricting 
. -

our frame of reference to samples "like t in the manner described by ~. 

A special reason for this will be discussed in Section 4. The essential 
A 

attribute of a is that it determines the "relevant precision" for a; 

but some ancillaries do not seem to do this (Buehler, 1980). 

One argument against conditioni_ng is that if samples :n are really 

to be drawn repeatedly, then conditional hypothesis tests and confidence 

intervals at fixed levels will be less precise on average than uncondi­

tional counterparts. The superficiality of this criticism has been exposed 

by Barnard (1976, 19.78). In any event, what is good on average in a gen­

uine aggregate of samples may not correspond to what is good in a single 

instance - as Stein showed for simultaneous estimation. 

There is (finally) an obvious practical criticism: The conditionality 

principle is not applicable in general, because an ancillary statistic ~ 

is not always available. (A counter-proof of this statement has been 

sought unsuccessfully for 44 years!) This can be overcome by loosening 

the constraint of mathematical exactitude sl_i"ghtly. To this end, an 

inexact, yet practically useful, way to explain the essence of conditioni_ng 

is to say that the observed ~ is to be surrounded by the smallest 

• 
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possible reference set in which non-d_egenera te samp l i_ng probabi 1 i ty is 

defined, while at the same time losi_ng the leas.t possi_ble sample informa­

tion about e . 

The latter statement is helpful in our framework of replicated 

measurement, since for large n we can deal with approximations in a 

fairly systematic manner. Some fragmentary results concerning the first 

step, that of recovering information, were first given by Fisher, expan­

ded by Rao and developed most recently by Efron (1975). Of particular 

interest are the results 

(3. 7) 

and 

, (3.8) 

where in (3.7) y~~) is Efron's statistical curvature* of t(ej~) • The 
•• A 

static -t(els) , hereafter denoted by I , is called the observed 

information. The variation of I relative to )~5
) is essentially measured 

by {y~5
)}

2 , which helps to understand the difference between {3.7) and 

( l. 8). 

In the next section we go on to review some modern developments that 

make use of the "approximate recovery of information" suggested by Fisher. 

Section 5 returns to another aspect of the conditionality principle. 

A 
,! . 

• 
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4. New Likelihood Theory 

4.1 Normal Approximation Theory 

At times Fi.sher would refer to I as an anci_llary statistic, although 

this is not correct in_ genera 1. Note that for th.e measurement-error mode 1, 

(3.6) shows the shape of the likelihood to be the key ancillary. The larger 

is n, the more nearly normal-shaped is the likelihood - and .that normal 

shape is characterized by 

variance = C 1 

This notion carries over to the general case, where the standarized form 

(4 .1) 

is approximately ancillary (in fact a2 is a proximately N(0,1)), and both 

" 2 " 2 I ( e - e) and 2{R.{ e Is) - R.( a Is)} are approximately x1 given a2 • This 

is discussed in great detail by Efron and Hinkley (1978). It is important 

to recognize that j~S) (6- e) 2 behaves very differently, since for fixed 
0 

{4.2) 

Figure 1 shows very reliable Monte Carlo estimates of pr(statistic ~ 95% 

point of x~Ia2) for the three statistics 

{s) 
2{R,(0 Is) - R,( a Is)}, I (e - 0) 2---'-,~l ___ -'--ra-- 0) 

2 
, 

a -

• 
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Figure 1. Tail probabilities of pivotal statistics in Cauchy rreasure­
ment error model with n=20. Plotted points are Monte Carl o 
estimates of pr(statistic ~ 3.84) for statistics 

tail 
probabi 1 i ty 

.15 

. 10 

. 05 

. 01 

0 2 

1{J(i)-.t(&J}' 0 i r.(e-eY., X i .,6 (6- 6) 1
,. 

., 
\ 
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\ 

\ 
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\ 

• 
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approximation (~. 2.) .... _ .. ___ ._ 
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observed informat ion I 
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• 



- 11 -

together with the theoretical approximations .05, .05, (4.2), · for the 

Cauchy measurement-error model when n = 20 • 

4.2 More Accurate Theory 

The normal approximation for I 112 (e - e) is unsatisfactory in one 

familiar respect: the exact and approximate densities differ by a 

O(n- 112) term. Of course in the measurement-error model this can be 

avoided by working with the exact result (3.6). A better approximation can 

also be obtained in general. To see this it is convenient to work within 

a curved exponential family (Efron, 1975) where f(xje) is given by 

(4. 3) 

Now ~ is k-dimensional, as is ~e, but {~
6

} is a one-dimensional 

curve. If we write ~e = E(~le) and ~ = I:~j , then successive derivatives 

of R.(61~) at 0 = e are, given by 

• A ·T 
R. ( e ) = aA ( s - n a ) , 

,v """" ,..,A e e 
i{e) = -I n~! (~ - n~J , etc • 

e e 

A simple affine transformation of the "shape statistics" 

yields the approximate ancillary vector statistic 

a2 

a = ... =M(s-na) 
A ,v ,vA e e 

••A (•k)A R.(e), •.• ,R. (e) 

(4.4) 

which has approximate standard spherical normal density for large n. 

(M can be chosen so that aj depends only on the first~_j_d_e_r_iv_a_t_i_ve_s ______ ____ 
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"" of 1 at a , in which case a2 is (4.1).) Now one can obtain 
"" h(ele,~) via the following steps: 

(i) Use of sufficiency g(sle) = g(sle(s))exp{t{els)-R-(0(s) Is)} 

(ii) Use of an Edgeworth series expansion for g(sla(s)) 

(iii) Transformation s + (8,a) 

The result, given in Hinkley (1980), is quite ·si~1ple: 

"' lik(elx) _1 h(el~,e) = ------ n + O(n )} J lik(tl~)dt 
(4.5) 

)(s) -
provided that we choose e so that 

0 
= n • As in (S.6), the more con-

venient form for D = e -0 is 

(4.6) 

Thus the likelihood itself provides the appropriate approximate distri~ 
"" bution for a. Cox (1980) reaches the same conclusion indirectly, but 

more generally, by an ad hoc argument. 

Note that (4.5) holds in the complete exponential case, when ~ is 

null. The relevant expansion theroy is discussed by Barndorff-Nielsen 

and Cox (1979). The fact that there ll an O(n-1) error in (4.5) is 

unavoidable whenever a is not exactly ancillary. -
4.3 Sequential Estimation Experiments 

Reference has been made to the observed information I as a relevant 

measure of the actual information content of data, or precision of estima-

tion, as opposed to the prior expectation 3 ~s): This suggests that if 
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one wished to obtain a specific amount of informati.on (precision) C, 

say, then one should obtain data so that I ~ C . This implies sequen­

tial sampli~g of x1,x2, ••. until 

N = min{n: I(x1, ... ,xn) ~ C} (4.6) 

Notice that if one solved the usual "des.ign equation" )~s).?.. c 
one would obtain a fixed value of n. For which the subsequent sample 

( x1 , ... , xn) may give I << ~ ~ s) ; for examp 1 e, with n = 20 in the Cauchy 

measurement error model we deduce from the N(O,l) approximation for a2 
that I will be at least 4.5 less than ) ~s) = 10 with probability 10%. Of 

course I» , (s) is also possible. a 
The sequential scheme (3.6) has been studied in some detail by 

Grambsch (1980). For the measurement-error model N and I are exactly 

ancillary, so that (3.6) still applies. More. generally, provided that a 

is chosen to make j 8 = n, a is again approximately ancillary and 

the earlier normal-approximation theory holds again. The superior result 

(4.5) probably holds also. Grambsch develops an approximate distribution 

theory for stopping time N , when C is large, and in wrMcular she 

~hows :that 

4. 4 Pec.tJ:lj a r Cases 

The theory reviewed above rests heavily on the fact ot-· 

replication and uses expansions with respect to normal approximations. 

Without replication rather different results can emerge. One particularly 
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interesting class. of pro~lems is ~hat of_reg~lar nonergodic, 

processes, discussed by Feigin and Reiser (1979); see also Feigin (1981). 

For the very speci a 1 case of a Yule process {xt} with x
0 

= 1 , 

E(xt) = exp(at) , the log likelihood based o·n {xt: 0~ t~T} is 

T 

t(ajx) = canst. + (xT - 1 )log a -( f xudu)a 
0 

= const. + s1 log A - s2A , 

a curved exponenti a 1 family. Here ~ = s,1s2 , A= I/ ) ~ s) is approxi-
A a 

mately unit exponential for large T, and (6- a) is conditionally 

approximately N(o,C1). given A=a. The unconditional distribution of 

e -e is not appr~ximately normal. The curved exponential str~ct~re~~ill 

permit an expansion theory much like that leading to (3.5). The general 

situation for non-ergodic processes is unclear, and is worth further 

detailed study. 

The pervasiveness of likelihood as conditional sampli_ng distribution, 

as in Sections 3 and 4.2, extends to what seems to be a very different 

problem: Le.t the doubly-infinite sequence {xj: j = ••• ,-1,0, 1, ••. } be 

such that {xj: j .:'.5.. a} are iid with distribution F
0 

and {xj: j 2.. e + 1} 

are iid with distribution F1 • Then ~ is again the shape of lik(el~) 

and (3.3) holds. As Cobb (1978) notes in proving this, the problem is a 

location (group-invariant) problem - different only in the sense that 11 in­

fo.rmation11 about a remains finite even with doubly-infinite sampling. 

5. Goodness-of-Fit Screening and Ancillarity 

Implicit in -~~andard approaches to statistical model analysis is a 

condition: if there is evidence that the given model does not fit, then 

... -



- 15 -

one will not base an analysis on an assumption of the model's validity. 

Should we not therefore take-explicit account of this modus operandi 

when the model does fit? In consideration of this point, note that for the 

model (3.3), formal and informal tests of fit are based on the residuals 

~ • The same is true for mode 1 ( 4. 3), where we have in pa rti cul ar the 

chi-square test statistic 

In fact all proper tests of fit are based on exact or approximate ancillaries. 

Suppose _t~e statis~ics t1(~), ... ,tm(~) are used with critical value t~ 

for ti • Then cl early con~i ti·ona 1 inference is unaffected by goodness-of-

fi t screening, since 

However unconditional inference (not conditioning on ~) is affected 

because 

This is a striking result in favor of conditional (and Bayesian) inference, 

I think. 

Note that in certain cases where the t. are explicitly defined one 
1 

can evaluate the effects of screening on repeated-sampling properties of 

unconditional inference by approximate use of (5.1). For example, consider 

the normal approximation theory of Section 4.1 and suppose that 

t
1 

(~) = la
2

1 with critical value t~ . Assuming that both I 112(9- e) and 

a
2 

are exactly N(O,l) , a simple Taylor expansion shows that 

• 



- 16 -

(s) 2 (l-2¢(- tf)-2t~<P(t~)} 
~ ¢( z) - l {ye } z <P( z) o 

2 l - 2¢( - tl ) 

If t~ = z = l . 96, for n=l O measurements on the Cauchy error model the 

correction term is approxi mately 0. 01; or , put another way, the error of 

a nominal 2-1/2% one-sided test for e would be close to 3-1/2% . The 

same effect would show up using a more refined distributional approximation 

for I 112(e - 0) . 

Of course most problems involve more compli cated goodness -of-fit 

statisti cs than in this examp le . 

6. Multiparameter Problems 

As is usually true, mul tiparameter models are considerably harder 

to deal with, and likelihood theory is less complete than for single 

parameter models . One point we must live with i s the important di fference 

between joint inference and separate inference. To see t hi s, note t ha t 

Bayes ' s Theorem gives , with obvious not ation, 

and hence 

( 6. 1 ) 

No pivotal distribution for e1 - e1 can be fo und, in general, for which 

combination with p(e1)=J p( e1, e2)de2 will yield (6.1), even approximately. 

• 
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Thus, referring back to the "inferential purpose" of Section 2.2, we see 

that separate inference is precluded in general - even i"f only e
1 

is of 

interest. 

To see the difficulty (and some light) from the viewpoint of the 

conditionality principle, consider the following example due to G. Cobb: 

u1, ••• ,un are independently sampled from N(A,l) , and conditional on these, 

the n measurements x. are independentlyN{~r..u.,l), j=l, ..• ,n • Now 
J ~ J 

2 T T A 2 A -1 s= (EuJ.,Eu.,Eu.x.) , e= (A,lJJ) , lfJ=Eu.x./Eu., >..=n Eu. and 
J JJ . JJ J J 

a= 1::uj- n~2 is ancillary. The "usual" practical analysis for l/J treats 

u1 , ••• , un as fixed, and conditions on r:uj = a+ ni to give a 

N(O,(Eu2.)- 1) reference distribution for ~-l/J. But the conditionality 
J 

2 A 

principle directs us to condition on a , not on r:uj , and h(lfJ- l/Jla) is 

not exactly or approximately N(O, (i:ujr 1 • With reference to Section~·-
~· 22 -1 
the element I of I gives the conditional normal approximation 

variance for i,--y,. given a+ _n~2 , not given . a • 

An interesting fact that leads to some speculation is that the two 

pivotal quantities of the form 

(6.2) 

have standard normal distributions, independent of e and a, and satisfy 

P~ + P~ = ( a -e) T I ( a -0) 

A remarkably similar phenomenon occurs in the measurement-error model 

X. = µ + o eJ. , for which a.= (x. - µ)/cr , j=l, ... ,n . In this case, writing 
J J J 

>..=log cr , 'f( = µ we find P1 and P2 of_ the form (6.2) 'which ar~ approxi-

mately standard normal with correlation r_{~) and satisfy 
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(P ,P )(l r(a))-l(p1) = (a - a)T I (8 - 8) 
1 2 r(a) ·1 P2 

which is conditionally approximately 'X~; see Hinkley (1978). 

One might conjecture that for a general class of replication 

problems one can transform ~ + ~, (~,~) + (~,§) and then obtain pivotals 

of the form 

such that 

( i) The P. are approximately standard normal with correlation matrix 
J 

R(a) -

This conjecture has to do with a conditional normal-approximation theory. 

But what about analogs of ( 3.5) and ( 4.5)? A relevant n_egative fact is 

that the matrix ~ ~s) cannot be made independent of 0 by suitable 

naming of 0. A very positive result ford-dimensional curved exponential 

families has been found by Barndorff-Nielsen (1980), who shows that if ~ 

is similar in form to (4 .. 4) then, with relative error of order n-1/2 ,:-

this generalizes an intermediate result of Hinkley (1980). Grambsch (1980) 

shows that (6.3) implies a spherical standard normal distribution for 

I 112 (a - 0) conditional on a. 

The situation is necessarily rather different for the case of j:pfinitely­

many nuisance parameters, that is to say for models where each x. introduces 
J 

• 

• 
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a new parameter in a pdf of the form f(·l8,Aj) , j=l, ••• n. Here we have 

unreplicated information on each A· . One practical approach to some such 
J 

problems is to define a partial likelihood (Cox, 1975) in order to 

e_limin~!-~_the Aj • Partial likel~ho_od can_b~J:reated i_n_a_rnann~_!'__SJf!lilar 

to that of Section 3.2, although partial likelihood does not share all of 

the properties of likelihood. A second practical approach is to adopt a 

sampling model for the Aj, with density p{Ala.), and thus to replace the 

problem by giving the posterior form f8(ejs,a.) plus an inferential result 

based on lik(a.ls). Yet a third, fiducial, approach is applied to the 

famous 11 weighted-means 11 problem by Hinkley (1979). 

7. Concluding Remarks 

Of necessity, this paper has a fairly narrow focus. No attempt has 

been made to give a general discussion of likelihood outside the framework 

of replicated experiments for which the information content is large. Within 

that framework I have not described all of the important recent work: a 

notable omission is the pair of papers by Bates and Watts (1980a,b) on 

curvature measures in non-linear regression, which from the practical 

standpoint is very important. Less recent, but also important, is the 

theoretical work of Fraser (1964), and the illuminating work of Sprott (1975). 

Useful thoughts about ancillarity are to be found in Kalbfleisch (1975). 

In the paper I have not discussed hypothesis testing directly, nor 

point estimation in the decision theory sense. Relevant remarks about 

locally most powerful tests may be found in Efron (1975), Efron & Hinkley 

(1978) and Kallenberg (1981). On the subject of point estimation a valuable 

recent reference is the paper by Berkson (1980) and its discussion. 
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