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SUMMARY 

For a single-parameter curved exponential family, it is shown that the con

ditional distribution of the maximum likelihood estimator is the normalized like

lihood function, except for a relative error proportional to inverse sample size. 
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L INTRODUCTION 

Recently it has been shown (Efron & Hinkley, 1978; Peers, 1978) that there 

is a conditional normal approximation for the distribution of the maximum likeli

hood estimator in the one-parameter case. This conditional normal approximation 

uses an observed characteristic of the likelihood as a variance approximation. 

In principle the approximation is unnecessary for the special case of estimating 

a location parameter, because Fisher (1934) derived the exact, fully-informative 

conditional distribution of the maximum likelihood estimator. That distribution 

is the normalized likelihood function. In this paper we present theoretical 

evidence that Fisher's special case result is a good approximation in general. 

Specifically, let lik(8) denote the likelihood for a sample of size n from 

a curved exponential family distribution indexed by a single parameter 0 and let 

8 denote the maximum likelihood estimator. Then we find that the probability 

density of the pivot 8-8, conditional on a natural approximate ancillary a, is 



2 

lik(8) { -1} 
f lik(u)du l+O(n ) ' 

provided that 8 is chosen to make the Fisher information constant. The proof 

is based on an Edgeworth expansion for the joint distribution of the sufficient 

statistic, which is developed in Section 2. The final step to the conditional 

"' 
distribution of 0 is outlined in Section 3, where we find it essential to choose 

8 so that the expected Fisher information is constant. Section 4 contains 

some comments on the result, its implications and its possible generalization. 

2. JOINT DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMATE AND ANCILLARIES 

We suppose that x1 , ... ,~ are independent, p-dimensional identically dis

tributed vectors each with probability density 

e e n, 

where n e R. Thus f
6

(x) is in a one-dimensional curved subset of the p-dimen

sional canonical exponential family. The minimal sufficient statistic is 

S = I:Xj, whose probability density we denote by g
6 
(s). Our first aim is to find 

an expansion for g
8

(s) in terms of the log likelihood t 6 (s) = I: log f 0(xj) and 

its derivatives at the maximum. 

Before proceeding we introduce the following definitions and notations. Let 

(1) 

and 

A = C' ' 'eC·P>>, e /\a 'l\e ' • • • ' I\ 

where dots refer to differentiation with respect to 0. Simple calculations 

show that 
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(2) 

(3) 

and so on, where 

is the expected Fisher information. We assume that the maximum likelihood estimate 

8 is a solution of t 0 = O, and we define the observed Fisher information I= -t0. 

Finally let 

(4) 

For stylistic convenience we often drop the subscript 0, and use a circumflex 

to denote evaluation at 0; for example, V = Va and V = V9. 
The first step in expanding the joint density g0(s) is to note that suffi

ciency implies 

(5) 

-for any Sen. A saddle-point expansion of g8(s) corresponds to the optimal 

choice 0 = 0(s) used in the Edgeworth expansion 

Intel-½ T -1 
= ½ [exp {-½(s-n89) (nl:e) (s-n8e) } ](l+r ) , 

(27T) P n 
(6) 

where 

r = _!_ (HTp')[J](.s') + O(n-1), (7) 
n 6/ii 

as described in detail by Barndorff-Nielsen & Cox (1979). The term (HTp')[J](s') 

in (7) involves Hermite polynomials of degree up to 3 with arguments' which is 

an orthogonalised, standardized version of s. An important property is that 

(HTp')[3l(s') is invariant under affine transformation of s. 
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-With the choice 8 = S(s) in (6), an initial simplification is obtained by 

,... "T " 
s = A (s-nB). (8) 

Note that ;j is the deviation of i~·j) from E
8
{i~·j)} evaluated at 8 = 8, and 

that in particular s1 = 0. 

accordingly as 

"T " We shall writes = (O,u), and partition Vin (4) 

where nv11 = J. Then writing 

(9) 

and using (8), expression (6) yields 

lnEI-½ "T " l" 
g8(s) =½ exp {-½u (nW)- u} {l+r (s')}. 

(2n) p n 
(10) 

The next step is to rewrite (10) in terms of approximately ancillary statistics, 

which are transformations of 18, ... ,ig·p) To do this we choose the unique lower 

triangular matrix B = Ba such that 

-BWB T = identity (11) 

and define 

T 1 "" 
a = (a

2
, ••• ,ap) = -- Bu. 

In 
(12) 

The latter statistic is asymptotically ancillary, having a normal limiting 

distribution with zero mean and identity variance matrix. This can be proved 

by first applying a centr~l limit theorem to the linear Taylor expansion of 

n-½~, whose limiting variance matrix is 
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cf. Lemma 2 of Efron & Hinkley (.1978) for the case p = 2. The particular choice 
.. ( .. ) 

of a in (12), in which aj depends only on 1a,···,1e J , corresponds to a rele-

vance ordering with a2 the dominant ancillary. If Ye denotes the statistical 

curvature per observation (Efron, 1975), one can see from (12) that 

(13) 

which was denoted by q in §5 of Efron & Hinkley (1978). 

Returning to expression (10), we now substitute from (12) to obtain 

lnEI-½ T A 

g6(s) =½p {exp{-½a a)}{l + r (a)}, 
(21T) n 

(14) 

where in r (a) we have used the affine invariance property of the Hermite poly
n 

nomials to replaces' by a. The constant coefficients p' in (7) are evaluated 

at 0, hence the circumflex on r. 
n 

In order to find an expansion for the joint distribution of (0,a) it 
A 

remains only to derive the Jacobian J = ja(0,a)/asj. This can be obtained by 

a geometric argument, or by direct calculus, and is 

-1 
0 A I 

J = IAI (15) 

0 
1 AT 
-B 
In 

see Appendix for details. Using (15) together with (11), (9), and (4) in (14) 

leads to 

A 

89 (0 ,a) 
-½p I T 

= (21T) JA½ {exp(-½a a)}{l+rn(a)}. 
0 

This can be simplified, by substitution for I from (13), to give 
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= (.2-rr) -½p J ~{ exp (-½a Ta)}{ 1+;~ (a)}, (16) 

where 

"' 
1 +..l. 1 T"' [3] "' 1 r*(a) = {6 (H p) (a)+ya

2
} + O(n-) 

n In 

1 + ..l. "' 
+ O(n-1), = n1 (a) 

In 
(17) 

say. Finally, substituting (16) in (5), we have the general density expansion 

(18) 

where~ is the standard normal density. 

Of course by carrying further terms in the Edgeworth expansion, as in 

Barndorff-Nielsen & Cox (1979), one can obtain a more detailed expansion of the 

final term in (18). However, such a finer development would be of no value in 

the approximate analysis of the next section. 

3. CONDITIONAL DISTRIBUTION OF THE MAXIMUM LIKELIHOOD ESTIMATE 

The main result we seek involves the expansion for the conditional density 

"' h
8

(ela) obtained from (18). In Fisher's (1934) analysis for the location model, 

where xj = 8 + ej with known distribution for the ej, the ancillary a is the 

"' 
ordered set of residuals xj - 8. Fisher showed that, because t 8(s) = t 8(6,a) = 

t
8
_8(0,a), 

• 
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"' exp{t
8

(8,a)} exp{t
8

(s)} 
=~--------=~--_;_ ___ _ I expU.0 (t ,a) }dt / exp{it (s) }dt • (19) 

This is the normalized likelihood function, a function only of the pivot 8-0 

and ancillary a. We wish to show that (19) is correct, to within a O(n-1) 

relative error, for the curved exponential family model. 

It turns out to be not only convenient but also crucial to choose 8 so 

that J 0 = n. We now assume this choice, and attempt to duplicate Fisher's result 

for the pivot 8-0. The first step is to obtain the expansion 
"' ,... 

,... exp{10(8,a)-1a(0,a)} 
h (a I a) - ----------.----e - I exp{t8(t,a)-1t(t,a)}dt (20) 

from (18). This follows by noting that ~
1

(a) = n
1

(a) + O(n-½) for 9-8 = O(n-½), 

and then formally computing the integral of (18). The term n1(a) cancels in 

the resulting expression for h
0

(ela), leaving the O(n-l) term in (20). 

Notice that in Fisher's problem t 0(0,a) is ancillary and therefore has can

celled out in (19). But this is not possible in our problem. Nor is the last 

step in (19) VGlid for us. Instead we must resort to approximations using the 

relationships 

"' I= n +/nya2 = n +/nya2 + Op(l) 

(j ~ 3), (21) 

where the first relationship depends on the fact that J
0 

= n. Now for 8-t = 

O(n-½) and 8-8 = O(n-½), (21) implies that the Taylor expansion for the exponent 

in the integral in C2O) may be written 
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2 Iii n 3 -1 i(t,a)-i (t,a) = -½(t-0) (n + ny a
2

) - 6 (t-0) µ +O(n ) 
t t t 

½ 2 /'ii- n 3 -1 = - (t-0) (n + ny a) - - (t-8) µ +o(n ) a 2 6 a 

2 In n 3 -1 = -½(t-8) (n + ny§a2) - 6 (t-8) µa+O(n ) 

" " 
= i8-t+0 (8,a) - i0(8,a) + O(n-1), (22) 

where nµ 8 = E0(t8). But the integral in (20) may be truncated at t-8 = O(n-½) 

with relative error O(n-1), so that we may substitute (22) in th~ integrand and 

obtain 

" 
he(ela) 

the analog of Fisher's result (19), valid for 0-8 = O(n-½). 

" 
Expressed in pivotal form, the result for T = 8-8 is 

" lik (8-t) 
ha(tla) = f li~ , .. ,..:a .. {l+o(n-1)}. 

s 

(23) 

(24) 

In principle the normalized likelihood is, then, a better approximation than 

Efron & Hinkley's (1978) normal approximation, since the latter involves a 

relative error of order n-½. The result (24) also more closely resembles the 

" 
Bayes posterior distribution obtained for the pivot 8-0 when using the Jeffreys' 

prior density proportional to J~½. 

4. COMMENTS 

The result linking normalized likelihood to the conditional distribution of 

8 is very similar to a result obtained by Cox (1980) for the 11 confidence dis-
. 

tribution" based on the score statistic t 8; Cox's second-order ancillary seems 

to be an expansion of our a2. 
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A referee has rightly questioned the value of our theoretical result, 

particularly in view of the restriction on parameterization. To take the 

theoretical implications first, it would appear that likelihood per~ has a 

stronger interpretation than was previously believed, and tpat the oft-advocated 

information-stabilizing choice of 0 does indeed correspond to a (local) loca

tion parameter. I believe that (23) can be used to show that the log likelihood 

ratio statistic 2(19-1
8

) is equal to Xi+ Op(n-1) conditional on a,·generalizing 

Lemma 3 of Efron & Hinkley (1978). For the particular class of problems con

sidered, aTaas defined by (12) is the usual chi-squared goodness of fit statis

tic, whose distribution can be expanded in asymptotic series by use of (18). 

The practical use of (23) requires choosing 8 so that J 8 is constant. 

Section 6 of Efron & Hinkley (1978) gives details of one example where this is 

relatively easy. Cox's (1980) Poisson process example is also straightforward. 

But the example discussed by Hinkley (1979) appears intractable. 

One suggestion to be drawn from the restriction J8 = n is that the result 

(23), and Efron & Hinkley's (1978) conditional normal approximation, will not 

hold for the multiparameter case in general. To shed a little more light on 

this point, consider the following example due to George Cobb. Let Yi= 02zi + E1 , 

where the si are independent N(O,1) and the Zi are independent N(6
1

,1). The 

minimal sufficient statistic is (!Zi,!Z~,EZiYi), and A= EZi (EZi) 2/n is 

ancillary with respect to 8T = (81 ,02). The expected Fisher information matrix 

~ 2 is J6 = diag(n,n+n81), and the observed Fisher information matrix is I= 
A2 A 

diag(n,a+n81). Evidently the conditional distribution of e
2 

given a is not 

approximately N(02,r22 ), which would generalize Efron & Hinkley's (1978) result, 
A2 

but this is the conditional distribution given a+ ne
1

. Note, however, that 
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" T " 2 (8-8) I(S-8) c 2(t8-t8) = x2 given a. (25) 

One might speculate that (25) holds approximately in general, for an appropriate 

approximate "simultaneous ancillary" a, so that a simple approximate conditional 

theory exists for simultaneous estimation. 
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APPENDIX 

To evaluate the Jacobian given in (15), we begin with (8) and (13) which 

combine to give 

T if it is understood that the zero first element of A9(s-nB8) is deleted; the 
A A 

statistic 0 = 0(s) satisfies the likelihood equation 

A 

Conside~ a small perturbation os of s, with corresponding perturbations 06 and 

oa. Then first expanding the likelihood equation we find that, retaining 

first-order terms, 

.T. 
Therefore, because ~ = nA8B

0
, and because of (3), 

which implies 

A 

06/as 

A similar linear expansion for a+oa leads to 

say, wherein A0 has its first column A§ removed. Combining the expressions 

for ae/as and aa/as we have 



" lo(8,a)/osl 

12 

-1. 1 T . 
= 1 r A0, - A0B0 + A0n01 

In 
-1· 1 T 

= II A0, - A0B81 
In 

T . -1 1 T 
= I Aa diag (.I , - Be) I , 

In 

where the last expression A8 now includes its first column A§·· 

This result can be achieved simply by decomposing os into a perturbation 

•T 
0S1 in the plane {s: A9(s-nBa) = O} and a perturbation os2 parallel to the 

curve {nS8}, and noting that oa = _!_ A0B§(os1), 08 = ii(os2), where Ag has its 
In 

first column removed. 

• 

, 

.; 
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