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ABSTRACT 

On Estimation of Variance in Unequal Probability Sampling 

by 

S.H. Biyani 

Several estimators have been proposed for the variance of the Horvitz-

-Thompson estimator of the population total. Each of the well-known estimators 

can take values which are either negative, or positive but otherwise known to 

be impossible. In this paper, some alternative estimators are derived using 

a Random Permutation Model. It is shown that these estimators always take on 

possible values of the true variance. Relative efficiencies of these and 

some traditional estimators are numerically compared using a set of natural 

populations in which varying degrees of departure from the assumed model are 

observed. It is interesting to observe that the model-based estimators seem 

to have greater efficiencies relative to the "model-independent" ones in cases 

of severe model breakdown • 

Key words and phrases: Finite population, Variance of Horwitz-Thompson 
estimator, Random Permutation model. 
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L INTRODUCTION 

Consider a finite population U consisting of N units labeled 

1, 2, ••• , N, and having values y1 , y2 , ••• , yN respectively, for some 

characteristic y. Let p be a sampling design, which selects a sample 

s with probability p(s) from a collection S of possible samples. 

The data from a sample survey can be summarized as d = {(i,y.), iEs}, 
1. 

the collection of unit labels and the corresponding y-values. This 

includes any auxiliary information, which can be considered ~s a function 

of the unit lables. An estimator e is defined to be a function of the 

data d, and its value is denoted by e(s,y), with the understanding 

that it depends on z only through (y1,iEs). 

Definition 1.1. With respect to a given sampling design p, an 

estimator e is said to be p-unbiased (design-unbiased) for a function 

F(y), if 

1:p(s)e(.s,y) :::s F(z), for all z. 
SES 

Definition 1.2. The mean square error (MSE) of an estimator e of 

a function F(y), (with respect to a given design p), is 

MSE(e,y) = 2 
1:p(s)[e(s,y) - F(y)] 

SES 

For a p-unbiased estimator e, the MSE is also the variance of the 

estimator, and is denoted by V(e,y). 

When there is no ambiguity, we will abbreviate e(s,y) to e(s), 

V(e,z.) to V(e), etc. 
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For a given design p, let ~i be the inclusion probability of unit 

i, and let ~ij be the joint inclusion probability of units i and j, for 

i, j ~ 1,2, ••• ,N. In particular, ~ii= ~i. 

The sampling design will be assumed to be of fixed sample size 

throughout this paper; 

The Horvitz-Thompson estimator of the population total is given by 

~T(s) =1~
8

z1 , where zi = y1/~i. (1.1) 

The variance of e11T can be expressed in two equivalent forms as 

N 
V(eHT) ei t (ni. - ff1ff.)ziz., ,J=l J J J 

(1.2) 

. 
and 

V(eHT) = i~j(wiwj - wij)(zi - zj)2. (1.3) 

Two p-unbiased estimators of V(eHT), given by Horvitz and Tho~pson 

(1952), and Yates and Grundy (1953), respectively, are 

and 

-1 
vHT(s) = L (ffi. - ~in.)ff1 . z.z., 

i jgs J J J 1 J , 

-1 
vYG(s) a ~ ffiff. - nij)nij(zi 

i<J~S J 
z )2 j • 

(1.4) 

(1.5) 

It is well known that both estimators can take negative values, 

depending on the sampling design, and the population. A sufficient 

condition for the Yates-Grundy estimator vYG to be nonnegative 

~ 

;. 

~ 
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definite is, nij ~ n1nj for all i + j. Therefore, vYG is usually 

preferred to vHT' which can take negative values for almost all designs. 

On the other hand, Godambe & Joshi (1965) proved that is admissible 

among p-unbiased estimators of V(~T)' while the corresponding result for 

vYG is only known to be true for sample size two, due to Joshi (1970). 

(Of course, the negative values of vHT make it inadmissible, when we 

admit p-biased estimators.) 

Biyani (1978) has shown that for any sample size greater than 

two, there are sampling designs, for which vyc is inadmissible, even 

in the narrower class of nonnegative unbiased quadratic estimators. 

Further, even when it is nonnegative, it can take values known to 

be impossibly low. 

It may he noted that the estimator cHT for the population total 
N 

is obtained by dividing the general term in i~lyi by the inclusion 

probability n1 , and restricting the sum to the sample instead of the 

population. Similarly the variance estimators vHT and vYG are ob­

tained by dividing the general terms in the expressions (1.2) and (1.3) 

of V(eHT)' respectively, by the corresponding inclusion probabilities, 

and restricting the sum to the sample. The Horvitz-Thompson estimator 

of the total would intuitively seem reasonable, if y's 
i 

are expected 

to be aP.proximately proportional to Formal optimality results 

for 7IT have been proved by Godambe and Joshi (1965), Godambe and 

Thompson(1971), and others, by invoking superpopulation models under 

which y /n
1

,. i=l, 2, ••• , N have constant expectation and variance. However, 

no such justification cnn be given for vHT and vyc· 
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In this paper, we will consider alternative estimators of V(eHT), 

based on a superpopulation model consistent with a mpdel under which 7IT 
is optimal. First, we consider a more general class of functions in 

Section 2. General solutions for the optimal "estimators" of these functio~s 

under a general symmetric model are derived. These solutions generally 

involve some unknown parameters, except in the special case of a syUDDetric 

function. In particular, some optimality results for the sampl~ mean 

square as an estimator of the population mean square are obtained. In 

Section 3, a Random Permutation Model is considered as a special case of 
-- -

the general model mentioned above, and with some further assumptions, optimal 

estimators of v(71T) are obtained. In section 4, some "intuitive" 

and "optimal" model-based estimators are numerically compared with some of the 

p1:oposed p-unbiased estimators of V(e8T), using some natural populations. 

I 

I 
~ 

:-

j. 
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2. MODEL-BASED APPROACH 

In classical sample survey theory, the population vector y_ is 

treated as a fixed unknown parameter. A "Superpopulation model" 

regards z as the realized value of a random vector Y = (Y1 ,Y2 , ••• ,YN), 

having some distribution~- The problem of estimating any function 

F(z) can then be considered as a prediction problem, but we will make 

no distinction here between estimators .and predictors. Making certain 

assumptions about ; to represent our prior information about the 

population, we con obtain optimal cstlmntors (predictors) for various 

problems. We will use the expected MSE as the optimality criterion. 

Definition 2.1. An estimator e of a function F(z) is said to 

be optimal (or best) in a class K of estimators, under a given model, 

if for every other estimator 
, 

e in K, 

E~ 
5

~
5
p(s)[e(s,!_) - F(Y)]

2 ~¾ 
8

~ 5p(s)[e'(s,_ Y) - F(!)]
2

, 

for all possible distributions ; of ! under the model. 

In general, an estimator minimizing the expected mean square error 

among all estimators does not exist, and we restrict to some suitable 

class of estimators. 

Two types of unbiasedness restrictions are often considered: 

p-unbiasedness defined in Section 1, and ;-unbiasedness (model-unbiased­

ness) defined below. 

Definition 2.2. An estimator e is said to be ;-unbiased for a 

function F, if for every sES, 
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E~[e(s,Y) - F(!)] 0 0 

Another condition weaker than both p and ~-unbiasedness is 

p~-unbiasedness, introduced by Cassel, Sarndal and Wretman (1977). 

Definition 2.3. An estimator e is said to be pt-unbiased for a 

function F, if 

E~ E p(s)[e(s,Y) - F(Y)] = 0. 
~ SES -

We will next consider a functional form which includes the popu­

lation variance and V( 71T) as particular cases. 

2.1. A Class of Functions 

Let f(x,y) be a synunetric function; i.e., f(x,y) = f(y,x). 

Define, fij(z.) = f(y1,yj). For brevity, we will write fij for fij(z). 

Consider a function of the form 

where c .. 's are known constants. 
l.J 

2 
The population means square S , . defined by 

s2 = 

can be expressed 

2 

-1 
in the form (.2.1) with cij = [N(N-1)] and 

f ij = (y i - y j ) • 

(2.1) 

From (1. 3) , V (,_
1
T) is also seen to be of the form (.2 .1) , with 

2 
z. replaced by ~ = (zl'z2, ••• ,zN), cij = 11'i1Tj - ,rij, and fij = (z1-zj) • 
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Vijayan (1975) has shown that any nonnegative p-unbiased estimator 

of V(71T) must be of the form 

v(s) = 2 
i~jesbsij(zi-zj) (2.2) 

The same condition is obtained if the requirement of p-unbiasedness 

is replaced by the condition, that when z1 a z2 = ••• m zN' v(s) must 

vanish. This seems reasonable, because one would expect an estimator to 

be without error~ when there is no variability in the population. Similar­

ly, any nonnegative p-unbiased quadratic estimator of the population mean 

square must be of the form 

vanish when s2 
::z O. 

Eb .. (y .-y.) 2 , if we require that the estimator 
S1J l. J 

Henceforth, we will only consider estimators of the form 

e(s) ::z i<!esbsi/ij • (2.3) 

2.2. A General Symmetric Model 

Consider the following superpopulation model, to be referred to as 

Model I. 

E~[fij(x)] = m (2.4) 

E;[fij (x)fkh_(z)] = a2 , if i :::: k p j = h, (2.5) 

a1 , if i ::z k, and i,j,h are distinct, 

a0, if i,j,k,h are all distinct, 

where m, a0 , a1 , a2 are constants. 
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Note that in (2.5), the product moment of two f's depends only 

on the number of connnon subscripts. In particular, all exchangeable 

distributions ~ of Y are included under Model I. 

We will consider the following classes of estimators, defined for 

any given function. 

K0 = {all estimators of the form (2.3)}, (2.6) 

K~ = {all ~-unbiased estimators of the fonn (2.3)}, and 

K, K ~ defined similarly. 
p Pt, 

It is easy to see, that within the classes K0 and KE;, minimizing 

EE;~p{s)[e(s,!,) - F(Y)]
2 

is equivalent to minimizing EE;[e(s,Y) - F(Y)] 2 

for each s, and hence the best estimators in K0 and KE; do not depend 

on the sampling design. The best estimators in KP and KpE;' in general, 

depend on p. 

2.3. Equations for Optimal Coefficients 

2 
Let Q = E~ ~p(s)[e(s,Y) - F(!,)] • The optimal estimator of F(z_) = 

i<! Uc .• £ .• in the class K
0 

is obtained by min~mizing Q with respect to 
J £ 1J l.J 

b ... The equations giving the optimal values of the b's are: 
Sl.J 

ag = 0, or 
clb i. s J 

Hsij ~ O, i<j€s, seS, 

where lisij ,= EE; [ {e (s ,!) - F (Y)} fij (Y)] • 

(2. 7) 

To obtain the best estimator in KE;, we minimize Q, subject to the 

E;-unbiasedness condition 

, 
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By (2.4), this reduces to 

. ~ bi'= cu, 1.<Je:s s J 

where CU= i<JLUclj" 

are: 

9 

The equations for bsij 

a 
ab- [Q - ~SA (tb i. - CU)] e O, or 

sij s s s s J 

(2.8) 

H .. - A ~ 0, (2.9) 
Sl.J S 

where A, sES are Lagrangian multipliers. 
s 

Similarly, the best estimator in K is given by p 

s J1,jp(s)bsij • cij, i<je:U 

and Hsij - Aij = 0, i<je:s, se:S, 

where A .. , i<jEU are constants. 
l.J 

The best estimator in KP~ is given by 

E p(s) t b se:S. i<j e:s sij 

and Hsij - A= O, 

= CU, 

i < j Es , s e: S • 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

For each samples, (2.7) gives a system of c;) equations in as many 

coefficients. Although· this can be a very large number, the structure of 

the system enables us to solve it explicitly. Solutions of (2.8) - (2.9), 

and (2.12) - (2.13) can be easily derived from the solution of (2.7), but 

the solution of (2.10) - (2.11) seems to require the inversion of a large 

matrix, and will not be considered here. The solutions for the remaining 

systems are given below. The details of the derivation are given in the 

Appendix. 
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2.4. Solutions for the Optimal Coefficients 

Let, 

s == u - s 

Cs == i<le:scij 

csi = kfocik 

C- = 1t c.k = 1E C-1 ss e:s i e:s s 
kEs 

C- m L C 
s k,fiEs kh 

cu= i<!e:ucij =cs+ cs+ css 

dl = al - ao 

d2 = a2 - 2al + ao 

to= c;)ao + 2(n-l)dl + d2 = 

t 1 = (n-2)d1 + d2 

The solutlon of (2.7) is, 

n-2 ( 2 )a0 + 2(n-2)a1 + a2 

+ [a0(C- + C-) + 2d1C- /n)]/t
0

, s ss ss 

i<je:s, se:S. 

The solution of (2.8) - (2.9) is 

b!ij = cij + dl(Csi +csj - 2Css/n)/tl +(Cs+ Css)/(~). 

The solution of (2.12) - (2.13) is 

bp; 0 
sij = bsij + K, 

where K = i<!e:ucij[(n-l}d1(2-~1-~j) + d2(1-~ij)]/[(~)t0]. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

The solutions (2.14) - (2.16) depend on the ratios a
0
/a2 and a

1
/a2• 

When these ratios are not known no (uniformly) best estimator under Model I 

exists, in general. In order to obtain an optimal estimator, further 

• 
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assumptions about the distribution of Y are necessary. This is taken up 

in Section 3. A special case where the solutions (2.15) 

and (2.16) do not depend on a
0
/a2 and a1/a2 , is considered below. 

2.5. The Symmetric Case 

If cij = constant for all (i,j} i<j, then F(]) = i<]eUcijfij becomes 

a "U-statistic", and the corresponding sample U-statistic is its optimal 

estimator in the classes KP~ and K~ , irrespective of the sampl~ng design. 

However, no optimal estimator in K
0 

exists, unless the ratios a0/a2 and 

a1/a2 are specified~ 

N -1 "" Theorem 2.1: Under Model I, the best estimator of F(!) • (2) i<j£Ufij 

n -1 "" in the classes K~ and KP~ (defined by 2.6) is given by e*(s) = ( 2) i<j£sfij. 

Proof: Putting cij ~ (~) -l in (2.15) and simplifying, we get 

b;ij. = (~)-1, which shows the optimality of e* in the 

class K~. The result for KP~ similarly follows from 

(2.16). 

2 -1 Consider the special case fij = (yi - yj) , and cij = [n(n-1)] , 

giving F(z.) = ffcijfij = s2
• The corresponding optimal estimator in K~ and 

2 I: - 2 - -1 I: K ~ is the sample mean squares = i (y1 - y) , where y = n . y1• 
p~ £S S S 1£S 

Since K~ and KP~ include, respectively, the nonnegative quadratic~- and 

p~-unbiased estimators of s2 vanishing when s2 
= 0, we obtain the following 

corollary. 

Corollary 2.1. 2 Under Model I, the sample mean square S is the best 

;- and the best p;-unbiased estimator of the population mean square s2 

among all-nonnegative quadratic estimators vanishing when s2 
= O. 
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3. RANDOM PERMUTATION MODELS' 

A superpopulation model requiring minimal input of prior information 

is a Random Permutation Model (RPM). Under the simplest RPM, the random 

vector Y is a random permutation of a fixed vector, i.e., 

1 
P(!, = w*) = N!' (3.1) 

for every permutation w* of a fixed, unknown vector~= (w
1

, ••• ,wN). We 

will denote this as Model II. This may be interpreted as the assumption 

of a lack of association between the unit labels and they-values. This 

model has been considered, in particular, by Madow and Madow (1944) and 

Kempthorne (1969), for _the problem of estimation of the population mean. 

The distribution of Y under Model II is exchangeable, and hence it 

is a special case of Model I. Other RPMs can be obtained by considering 

some function g(i,y1) of the unit label and they value, and regarding 

[g(l,y1),g(2,y2), •.. ,g(N,yN)] as a random permutation of a fixed, unknown 

vector. In particular, we will consider the case g(i,yi) = y
1
/n

1 
in 

Section 3.3. 

3.1. Moments under Model II 

An important feature of a RPM is that the moments and product moments 

of the components of the random vector· under the model are th•= corresponding 

moments of the realized finite population. For example, let~ denote the 

distribution under which Y is a random permutation of a fixed vector 

1 1 
E~(Y) a - E wi ~ - E Yi Q y, 
~ l N i=l N i=l 

• 
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since the realized value y_ is a permutation of~-

Let µ = EE;(Y1) 
r 

µr = E (Y -µ) 
E; 1 

µrs= EE;[(Yl-µ)r(Y2-µ)s], etc. 

The following relations can be·easily proved. 

-1 2 
µ22 = (N-l) (Nµ2-µ4) 

µ = -µ / (N-1) 31 4 

µ211 = -(µ22+µ31)/(N- 2) 

µ1111 = -)µ211/(N-J) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

2 For fij = (yi - yj) , the values of a0 , a1 , a
2 

[defined by (2.5)] can 

be expressed as follows. With i, j, k, i distinct, 

aO = E;[(Yi-Yj)
2

(Yk-Y1)
2
] = 4(µ22~ 2µ211+µ1111) 

2 2 
al= E;[(Yi-Yj) (Yi_Yk)] m µ4-4µ31+3µ22 

u 2 - l\ ( Y CV j ) 
4 

,!!!! 2 ( II 4 -1, 11 31 + 1 I a i :l) 

From (3.7) and (3.8), 

a1/a2 = 1/2 

(3.6) 

(3. 7) 

(1,h) 

(3.9) 

From (3.6) and (3.8), using (3.1)-(3.5) and simplifying, we obtain 

a0/a2 = 2[N2 - (N-1)(82+3)] / ·[(N-2)(N-3)(B2+3)], (3.10) 
,. 

where 2 
82 = µ4/µ2. 

2 3.2. Optimal Estimator of S under Model II 

2 Since Model II is a special case of Model I, s remains the optimal 

estimator of s2 
under model II, in the classes KE; and Kpf; [defined in 

(2.6)]. To obtain the optimal estimator in K0 under Model II, we put 

cij = l/[N(N-1)], and a0/a2 , a1/a2 from (3.9)-(3.10) in (2.14). After. 
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simplification, we get 

0 
b 1· s J 

(N-2)(N-3) 
= -----------------N (N.;.1) 

14 

1 
n(n+l) + (n-1)(82-3) + R' 

2 2 where R = (B
2
+3)[n(n+l)/N - (n +1)/N]. 

(3.11) 

2 Since, the solution depends on B
2

, no optimal estimator of S exists 

in K
0

, under Model.II, unless the model is further restricted by specifying 

a2. For large N, and B2 m 3 (corresponding to a normal shape), we get 

0 
bsij = 1/n(n+l), giving the well-known estimator 

-1 2 2 
[n(n+l)] E (yi-yj) = (n-1)/(n+l) • s. 

i<je:s 

Remark 3.1. When 8
2 

is not known, it can be easily shown that sub­

stituting any underestimate of B would give an estimator better than s 2 • 
2 

In particular, substituting the smallest value R
2

• 1 gives, for large N, 

0 2 -1 b 1 . = (n -n+2) , giving the estimate 
s J 

e*(s) = 
2 -1 

= (1 + n(n-1)] s2 (3.12) 

Remark 3.2. If the sampling design is Simple Random Sampling (SRS), 

2 then the MSE of any multiple of s is constant over all permutations of the 

population vector, and hence the expected MSE under Model II is.the same 

as the actual MSE for the realized.population. It follows that s 2 is 

2 * inadmissible as an estimator of S, the ~stimator e given by (3.12) 

being uniformly better than s 2 • 

.. 
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Remark 3. 3. If we have a sample of n independent observations from 

any population (not necessarily finite) then e* is uniformly better than 

s2 as an estimator of the population variance, if the population has a 

finite fourth moment. This result, easily obtainable by c•Jnsidering mul­

tiples ,,-f s 2 , does not seem to be well known. 

3.3. Optimal Estimators fo~ V(eHT) 

To obtain optimal estimators for V(eHT), we consider the model under 

which!,= (Z1 , ••• ,ZN), with Zi = Yi/~i' is a random permutation of a fixed 

vector, i.e., 

P(! • u*) 1 --N ! ' 
(3.13) 

for every permutation u* of a fixed vector u. We will denote this as 

Model III. Godambe and Thompson (1971) showed the optimality of eHT under 

this model, in the class of p-unbiased estimators of the population total. 

Define fij(;_) = (z1 - zj)
2

, and a
0

, a1 , a2 as in (2.5), with!, in place of 

Y. The values of a
1
/a2 and a

0
/a2 under Model III are given by (3.9) and 

. N N 
(3.10), with B2 replaced by B2z = [ E(z

1
--i) 4/N] / [ I(z

1
- i) 2/N 12• 

The optimal coefficients can be obtained from (2.14)-(2.16), . 
substituting for a0/a2 and a

1
/a2• Since a0/a2 depends on B

2
z, in general 

no best estimator of V(eHT) exists in K0 , K~ or K ~, unless B is specified. 
\:, p1.:, 2z 

For s2 = 3, and large N, we get the following approximations for the . z 

optimal coefficients in the classes K0 , K; and Kpt respectively. 

[These are the exact solutions for S = 3 (N-1) /(N+l).] 
2z 
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b
0 

a c + (C-
8
i+c-

8
j)/n + 2C-/[n(n+l)] slj ~ s 

E; 
b .. = 

SJ.J 
c .. + (C-.+c-.)/n + 2C-/[n(n-l)] 

J.J SJ. SJ S . 

+ 2C- /[n2(n-l)], ss 

bpE; 0 
. j = b "j + K, SJ. SJ. 

cij = ninj - nij' csi = k~scik = ni(l-Tii) - k~scik' 

N 
C- = E ckn = E Tii(l-ni)/2 - C - - E cij 

s k<tES ~ i=l ss i<j€S • 

(3.14) 

(3.15) 

(3.16) . 

(3.17) 

C- = EC-, and 
ss iEs si 

The optimal estimators are obtained by substituting the above values 

for the coefficients in (2.3). 

Theorem 3.1. Under Model III (defined ·by (3.13), with s
2

z a 3 and N 

large, the optimal estimators of V(eHT) in the classes K0 , KE; an~ KpE; 

[defined by (2.6)] are, respectively, 

E c.jf .. + (n-1)/n E C-ifi +(n-1)/(n+l) • C8f
8

, 
i<jEs 1 J.J iEs s s 

(3.18) 

v"'·(s) • I: c1j f 1j+ I: C-1 [ (n-1) ¥1 +f ] /n + C-f , 
~ i<jES iEs 8 8 8 8 s 

(3.19) 

and 

(3.20) 

above. (3.21) 

" 

... 
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Remark 3.4. In (3.18) and (3.19), the first sum represents the terms 

in expression (1.3) of V(e
8
T), corresponding to the sampled pairs of units. 

The second term predicts the contribution from pairs with one unit ob­

served and one unobserved, and the last term predicts the contribution from 

entirely unobserved pairs. Note that the last two terms of v
0 

are 

"shrunken" by factors of (n-1)/n and (n-1)/(n+l) respectively. The term 
n _. 

K(2)f5 
in (3.20) makes an adjustment to v0 for achieving ~-unbiasedness. 

Remark 3.5. The computation of the estimators v0 and v~ does not 

require much additional work compared to the Yates-Grundy estimator, since 

most effort is required for the computation of the n
1
j•s. However, the 

computation of K, and hence of v~,may become impractical for very large 

N • 

We next show that the estimators v
0

, v~, and vp~ always take possible 

values of V( 71T) given the sample. 

3.4. A desirable property of the optimal estimators. 

In the ~allowing theorem, the notation v0 (s, z1 ,ies) is used to denote 

the value of v
0 

for givens and zi,ies. A similar notation is used for 

other estimators. The value of V(~T) for given (z1,z2, ••• , zN) is denoted 

by V(7IT' z1,z2, ••• , ZN). 

Theorem 3.2: Let p be any fixed sample size design with ~1>0 for 

i = 1,2, ••• ,N, and let v0, v;, vp; be as defined in (3.18)-(3.20). 

(i) For a given samples, and z
1 

iEs, there exists a choice of values of 

z., its, such that 
i 

V(71T,z1,z2, ••• ~~) = v0(s,z1ies) 
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(ii) A similar result holds for v; and vp; 

Proof: (i) Assume without loss of generality, thats=· { 1,2, ••• n}, 

and let z
1

, z2, .•. zn be given. We need to show that for suitable choice 

(3.22) 

To prove the result, we will define a posterior distribution n for 

·czn+1, ... ,ZN), such that 

and the possible values of (Zn+1 , ... ,~) under n are limited to a finite 

set. This would imply that the right hand side lies between two possible 

va~ues of V(eHT) given z1 , .•. ,zn. Since V(;iT,z1 , ... ,zN) is a continuous 

function of zn+l'•••>zN' by the "intermediate-value property", there exists 

a choice of zn+1, ••• ,zN for which (3.22) holds. It remains to find a 

distribution n for which (3.23) holds. Consider two distributions n1 and 

n
2 

def~ned as follows. 

Let, under n
1

, Zn+l' ••• ,ZN be independently distribut1:!d, each with 

the empirical distribution of the sample, i.e., 

k=n+l, ••• ,N • 

Let, under n
2

, Z
0
+1, ••• ,~ be perfectly correlated, ea.ch with the 

empirical distribution of the sample, i.e., 



! 

,. 

:: 

.. 

! 
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For i=l, ••• ,n and n+l< k;'h < N , 

n 
( ) 2 ( )2 2 -1-E z -z • E z -z • t (z -z) /n • (n-l)n f n1 i k n2 i k j =l i j . 1s 

2 -2 n 2 -1-
En(Zk-Zh) = n E (z.-z.) = (n-l)n f , 

1 i,jcl ]. J S 

2 
E (Z -z. ) = 0 n k -h ' 

2 

where fis and f are defined by s (3.21) 

Define n a (nn1 + n
2
)/(n+l). From (3.24), 

. 2 -1-
E (z -z) = (n-l)n f n i k is, l~i~ n, n+lS k-S. N 

From (3.25) and 3.26) , 

2 -1-
En(Zk-Zh) = (n-l)(n+l) £

5 
n+l~ k :/: h~ N 

We have 

V(7iT'zl, ••• zn,zn+l'···,~> =i~es cijfij 

2 2 
+ E cik(z.-Zk) + E _ ckh(Zk-Zh) 

ies 1 k<hes 
kis 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

Taking expectation with respect ton, it is easy to see that EnV(eHT) 

reduces to v
0

(s) given by (3.18). This proves the first part of the theorem. 

(ii) To prove the second part, let s0 be any given sample. If s
0 

is the 

entire population, the result is trivial. Otherwise, let kts0• We must 

have O < Tik < 1. Coefficient of z! in V(71T) is Tik(l-Tik) > 0. Thus, we can 

make V(eHT) arbitrarily large by choosing zk sufficiently large. It follows 

that if Mis any possible value of V(~T) given z1ies, then any real number 

greater than Mis also a possible value. To prove that v~(s0) and vp,(s0) are 

possible values of V(71T) given z1ies0 , it is sufficient to prove that 
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Consider first, v;(sO). From (3.18) and (3.19), 

vr<so)-vo<so) = h· 1 , 
~ so so (3.29) 

where h is a constant. We need to show h > O. 
so so-

Let~ be any distribution of! under Model III. By Lemma 3.1 {given 

following the theorem),. 

by t-unbiasedness of vt. 

By (3.29), h Er(I ) < O. 
so':> so -

Since f is nonnegative, and not 
so 

identically zero, h < 0, which proves the result for vr. 
so - ':> 

Finally, to prove the result for v r' observe that 
. P':> 

vp~(so> - vo<so) .. Kfso' 

and it is sufficient to show that K >O. 

Since v; and vp; are both p; unbiased under Model III, 

Er E p{s)[vr(s) - v r<s)] = 0. 
':> s€S ':> P':> 

By (3.29) and (3.31) , E p(s)(h -K)Erf • 0. 
s€S s_ ':> s 

(3. 31) 

But, under Model III, Erf is independent of s. Thus, E p(s)(h -K) = O. 
. ':> s S€S s 

Buth~ O, as we have shown above. Therefore, K >O and the proof is 
s 

complete. 

• 



• 
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Remark 3.6: Theorem 3.2 implies, in particular, that the estimators 

v
0

, v; and vp; are nonnegative. 

Lemma 3.1: Let(!,!) be a random vector with distribution;. Let 

e0(X) be a nonnegative predictor of a nonnegative function F(X,l), with 

the smallest mean square error (with respect to;) among all constant 

multiples of eo· Then, E~eo (X) ~ Ef;F(X,JD. 

Proof: If E;e0 {x) = 0, the result is trivial. Otherwise, let 

t a E;F(!,i) / Ef;eO {,!), or E~ [ te0 (!) - F~,.Q.)] • O. (3. 32) 

We must show t ~ 1. 

Proof: Let M;(e) and V;(e) denote, respectively, the mean square 

error and the variance of a predictor e of F(X,!). Since e ~ e
0

, minimizes 

~(e) among all multiples of e
0

, we have, in particular, 

Mt(e0) S. M;(te0) 

= V;(te0) { since te0 is ;-unbiased by 3.32) 
2 

= t V~(e0) 

s.. t~~(e0) 

2 
Hence, lS.t • By (3.32), t must be nonnegative, since e

0 
and Fare nonnegative. 

Hence t > 1. 

To apply the Lemma to (3.30), let X m (z1 , ••• ,Zn)' 8 a (Zn+l'•••,ZN), 

F = V(7rr), e
0 

= v
0

(s
0
), and observe that for each samples, v(s) = v

0
{s) 

minimizes E~[v(s,Zi ies) - V(7iT'z1, ••• ,ZN)]
2 

in the class K0 , which includes 

all multiples of v
0

• 
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4. NUMERICAL COMPARISONS 

An empirical study was made to compare the relative efficiencies of 

several estimators of V(eHT), the variance of the Horvitz-Thompson esti­

mator. The estimators comp~red include vHT' vYG' v0 , vp~ defined by (1.4), 

(1.5), (3.18) and (3.20) respectively, and three other estimators defined 

below. 

and 
N 
I: cij, 

i<j 

· (due to Ajgaonlcar 1967), 

N 
L C 

i<j ij 
(due to Fuller l970), 

The estimators vHT' vYG' and vA are design-unbiased, while vF is ap­

proximately so. Under Model I, the ratio-type estimators vF and vR are 

both ~-unbiased and vp~ is p~-unbiased. It should be noted that v0 and 

vR are design-independent in the sense that they depend on the design only 

through the coefficients c ..• The estimator v ~ is basically model-based, 
1J p~ 

but it is slightly design·-dependent, as it includes a term (of order 1/n) 

involving the design parameters ni, nij. 

The populations used in the study are listed in Table 1. In each 

case, we have an auxiliary variable x approximately proportional to the 

variable y of interest. For most of the populations, the Horvitz-Thompson 

estimator can be expected to perform reasonably well as an estimator of 

the population total. However, for the purpose of illustration, population 

--10, containing at least one "wild" observation is also included. Population 

9 is a trimmed version of 10, excluding two units with the smallest and the 

... 

,. 



Table 1. Population Used in the Study 

Pop. 
No. Source y X N 132z 

1 Hanurav (1967, p.386) 1960 population 1950 population 20 9.0 

2 Yates (1960, p.163) number of absentees total no. of persons 43 3.2 

3 Sukhatme and Sukhatme 
(1970, p.166) no. of banana bunches no. of banana pits 20 3.1 

4 Sukhatme and Sukhatme 
(1970, p.51) area under rice total cultivated area 25 1.9 

5 Rao ~1963, p.207) 1960 under 1958 area under 14 1.9 N area corn com w 

6 Cochran (1977, p.203) weight of peaches eye-estimate 10 1.4 

7 Cochran (1977, p.325) number of persons number of rooms 10 2.1 

8 Sukhatme and Sukhatme 
(1970, p.183) 1937 area under wheat 1936 area under wheat 34 3.4 

9 Subset of 10 (see text) 23 2.6 

10 Yates (1960, p~l59) volume of timber eye-estimate 25 19.9 
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largest values of y/x. The kurtosis coefficients s2z range from 1.4 to 

19.9, whereas the optimality of v0 and vp~ under the Random Permutation 

Model (Model III) holds for B2z = 3. 

The sampling scheme of Sampford (1967) was used to draw samples with 

inclusion probabilities proportioned to x. For this design, all estimators 

except vHT are nonnegative, as the relation ,ri,rj - ,rij ~ 0 holds. The de­

sign was implemented using Sampford's rejective algorithm, with a computer 

program written in FORTRAN. Sample sizes 3, Sand 10 were considered. For 

four populations, sample size 10 was not UHl1 tl because the condition 1T. a: xi 
. 1 

would have forced the largest ,ri to exceed unity for n ~ 10. From each 

populnt1on, 200 samples were drawn of ench sample size used. 

The true variance V(eHT) and the values of all estimators for each 

sample were calculated using exact values of nij. The empirical efficien­

cies (ratios of mean squared errors over 200 samples) relative to the Yates­

Grundy estimator are given in Table 2. 

4.1. Discussion of th~ Results 

Among the three design-unbiased estimators,vHT and vA have clearly per­

formed worse than the Yates-Grundy estimator, although in a· few cases they 

are somewhat more efficient. Ironically, the worst performer vHT is the 

only one for which an admissibility result is available! The approximately 

design-unbiased estimator vF is somewhat more efficient than vYG in most 

cases. 

The "intuitive" model-based estimator vR as well as the "optimal" 

estimators v0 and vp~ have performed generally (but not uniformly) better 

than the rest. For n = 3, v0 is the best of the seven estimators for all 

populations except no. 10. For n = 5, v0 is again the best with two excep­

tions. For n = 10, the picture is mixed, with vR performing the best for 

4 out of 6 populations. 
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Table 2. Efficiencies Relative to the Yatus-Grundy Estimator 

----------------------------------------------------------------------
Pop. Sample vHT VA VF VR V vpt 

No. Size 0 

--------- --------- ------ ----~- _ea, ____ 

1 3 0.14 0.91 1.03 1.07 2.86 1.04 
5 .03 .37 1.05 1.12 1.92 1.10 

10 .004 .20 1.01 1.06 1.27 1.12 

2 3 1.00 .98 1.03 1.35 1.81 1.07 
5 1.03 .24 1.06 1.63 1.73 1.20 

10 1.24 .01 1.20 1.94 1.92 1.58 

3 3 .61 .94 .99 .92 2.07 .97 
5 .23 .86 .96 .90 1.42 .93 

10 .03 .11 .94 .84 .99 .86 

4 3 .16 .46 1.09 1.17 1.79 1.17 
5 .05 .06 1.24 1.35 1.68 1.43 

s 3 .08 .68 1.19 1.37 1.67 1.33 
5 .02 .12 1.30 1.37 1.30 1.48 

6 3 .002 .93 1.06 1.18 1.42 1.15 
5 .0003 • 39 1.13 1.30 1.42 1.32 

7 3 .16 .92 1.10 1.23 2.03 1.18 
5 .03 .so 1.18 1.37 1.47 1.38 

8 3 .23 .34 .88 .58 1.74 .78 
5 .07 .27 .88 .35 1.06 .58 

10 .03 .26 1.39 4.65 2.48 1.33 

9 3 .82 .59 1.07 1.06 1.53 1.10 
5 .71 .32 1.11 1.27 1. 77 1.22 

10 .24 .09 1.18 1.68 1.59 1.67 

10 3 .96 1.15 1.14 7.33 4.74 1.37 
5 .98 1.31 1.16 13.98 3.96 1.99 · 

10 1.15 .40 1.43 13.19 6.70 5.34 

----------------------------------------------------- ~--~---------~----
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A simple intuitive explanation for the high relative efficiency of 

vR for population 10 and the unusual trend for population 8 is given below. 

4.2. Effect of Extreme Values 

Consider the problem of estimating the ratio y/x of the population means 

of two characteristic x and y. Two basic estimators of the ratio are: 

and 

R = 1/is (the ratio of sample means) 

:I l: rix/nxs 
ie:s 

M = I: r/n, 
ie:s 

(the mean of ratios) 

where ri = yi/xi. 

If r. changes by an amount d, then Rand M would change by dx./nx and 
1 1 S 

d/n respectively. It follows that an extreme value of r 1 will have a greater 

influence on the ratio of means R, if~> is, and on M, if xi< xs. Thus 

the ratio of means can be expected to be more efficient, if an extreme value 

of ri is associated with a unit with small xi, and vice-versa. 

For the problem of estimating V(eHT), the estimators vR and v
0 

are 

essentially of the types Rand M respectively, apart from a constant multi­
N 

plier I: ci. (and some shrinkage in case of v
0
), the roles of xi and ri 

i<j J 

being played by cij and fij respectively. Thus, vR can be expected to be 

more efficient if extreme values of fij are associated with small values of 

' ( -1" Now observe that for a fixed i, the average of cij sis N-1) ~ cij = 
-1 j (=ri) 

(N-1) u1 (1-~i). Hence, if ~i is either very small or close to 1, then 

c 's would be relatively small Also, .. ff z1 is extreme, then f. . is ij • 1J 

extreme for every j (/i). It is found from the data of population 10, that 

an extreme value of zi is associated with a small value of x1 , and hence a 
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small values of 1T • 
i 

It follows that extreme values of fij are associated 

with small values of c .. , making vR relatively more efficient. 
1J 

In population 8, an extreme value of z is associated with a unit 

having a large x value. For n=3, 5 and 10, the inclusion probability 

1r1 of this unit takes the values .26, .44 and .88, respectively. Thus 

n1 (1-n1) takes the values .19, .25 and .11 respectively. As we might 

expect, the relative efficiency of VR is smail for n=3, gets even smaller 

for n=S, but becomes large for n=lO. The changes are quite dramatic because 

the "wild" unit is the one with the largest inclusion probability. 

To summarize the effect of extreme values, we might expect vR to be 

more efficient when extreme ratios y/x are associated with units having in­

clusion probabilities either substantially below average, or close to unity. 

Otherwise, v0 can be expected to be more efficient. The choice of estimator 

is particularly critical when the extreme observation has a large inclusion 

probability • 

4.3. Concluding Remarks 

Using the mean square error as the criterion, the model-based esti­

mators vR, v0 and vp~ appear to be generally more efficient than the design­

based estimators. The relative efficiency of v0 does not appear to be as 

much affected by deviation of a2zfrom the value required for optimality, 

as by other deviations from the RPM, in particular, the association of 

extreme values of z with extreme values of x. In the presence of the ex­

treme values, v
0 

is, in.some cases, less efficient than vR. However, in 

these cases, its eff~ciency relative to the design-based estimators is 

higher than usual. In other words, although the optimality of v
0 

is 

3ffectcd by model breakdown, the design-based estimators fail to solve 

this problem. In order to obtain more robust estimators, it seems necessary 

to consider a ·wider range of models, rather than no model. 
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APPENDIX 

SOLUTIONS FOR OPTIMAL COEFFICIENTS 

The notation of Section 2.4 will be used in this appendix. 

The following linear operator for two-way arrays is useful in the 

derivation. 

Given a two-way array of elements xij , define. 

El xij ·; (xik + ~j) - xii - xjj 

= L (xik + ~.) + 2x .. 
k(;lii,j) J l.J 

In words, t
1 

gives the row-sum plus the colunm-sum excluding 

the diagonal terms xii, Note that t 1 x .. 
l.J 

does not depend 

on xii, xjj , and is defined even when the diagonal terms are not 

defined. 

Lenuna A: ... , u be numbers satisfying 
n 

let x .. = u. + u. • Then 
l.J ]. J 

n 
Proof: t 1xij =k:

1
(ui""it""it+uj) - 2ui - 2uj 

n 
= n(ui+uj) + 2k~l ~ - 2(u1+uj) 

= (n-2) (u.+u.) by hypothesis. 
]. J 

n 
1: u. = 0, and 

i=l ]. 

Now consider the problem of solving (2.7) to obtain the coefficients 

of the optimal estimator in K The equations are: 
0 

N 

Er.: [ E bskh fkh CD f ij (!)] Cl EE; [ >: ckhfkh(!)fij~!)l , (A.1) 
, k<h~s k<h 

i;lzjEs, SES • 

..... 
'-
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Defining gskh = bskh - ckh' 

t g kb E;{fkh(Y)fi.(Y)} 
k < h€s s J 

=( E 
k€S 

+ 1: l { k<h€s 7th Etfkh(Y)fij(Y)} 

h€s 

Separating terms with 0,1,2 subscripts common with (i,j) and using 

(2.5), 

a L gskh 
O k<hEs 

(# i,j) 

+ al k!s (gsik + gskj) + a28sij 

(#i,j) 

= E_[(cih + c.h) a1 + E 
h€s J k€s 

~h a0 ] + E _ ckh a0 • 
k<h€s 

(#i,j) 

Putting C- = E ~, C- = t c-k, sk hEs ss k€s s 

C- = E ckh' 
s k<h€s 

g = I: s g k<h~s shk, and 

tlg 1· = E (g ik + g k.) + 28 ij . s J k€s s s J s 

(li,j) 

ao (gs - ~18sij + gsij) + al (I:18sij - 28sij) 

+ a2g ij = (C-. + C-.)a1 + (C- - C-i - C-.) a0 + C- a0 • 
S S1 SJ SS S SJ S 

Putting dl = al - ao, d2 ° a2 - 2al + ao , 

aogs + dl Ll 8sij + d28sij O dl(Csi+csj) + ao (Css + C;), 

(A. 2) 

i rr j€s. (A.3) 

Next, we average (A.3) over all pairs {i,j), i<j€s. Note that, 

I:1gsij contains 2(n-l) terms, and by symmetry, each-has average 
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I: g kh/ /~) = g ,(~) • Average of {A.3) is 
k<hcs 8 \ 

9 

aOgs + dl. 2{n-1) gs/{~)+ d2gs/(~l 

= d • 
1 

2C- /n + a0(C- + C-), ss ss s or 

g/(~l = [d1 • 2C- /n + a (C- + C-)]/t0 , ss O ss S 

where to Q l~l ao + 2{n-1) dl + d2. 

Subtracting (A.4) from (A.3) and putting 

hsij = gsij - gs/(~) • and 

D- i = C-i - C- / n , s s ss 

dl I:lhsij + d2hsij = dl(Dsi + Dsj)' 

i~je:s 

(A.4) 

(A.5) 

(A.6) 

(A. 7) 

(A. 8) 

Let hsi• = kl: hsik. Then, by definition of I:1 , (and using hsij • hsji) , 
e:s 

(Ii) 

I:l h . : = h i + h . 
Sl.J S • SJ• 

Thus, (A.8) becomes d1 (h i + h.) + d2h .. = d1(D-. + D-j) • 
S • SJ• Sl.J Sl. S 

By (A.6) I h81 • = I hsij = 0 • 
ie:s i;&je:s 

Thus Lemma A applies to xij =- h81 • + hsj• , giving 

E1 (h . + h j.) = (n-2) (h 1 + h j ) • 
SJ.• S S • S • 

Similarly, I D-i= 0 , and by Lemma A, 
ie:s 

5 

El (Dsi + Dsj) = (n-2) (Dsi + Dsj) • 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

;;. 

..;:, 

~ 
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Applying the operator r
1 

to (A.10), · 

Using (A.9), (A.11) and (A.12), 

d1 (n-2)(h
9
i• + hsj•) + d2(hsi• + hsj•) ~ d1 (n-2)(D5i + D;j) , 

or 

hi + h. = (n-2)d1 (D-i + D-j )/t1 , 
S • SJ• S • S • 

Substituting from (A.13) into (A.10), 

hsij = dl (Dsi• + Dsj.) /tl ~ 

= d1(c-1 +c-. - 2C- /n)/t1 • 
S • SJ• SS 

By (A.2), the solution bsij = b~ij of (2.7) is given by 

0 
b .. = c .. + g i" 

Sl.J l.J S J 

::::: Ci . + h . . + g / (;) • 
J Sl.J S 

(by A. 6) 

Using (A.5) and (A.14), 

b:ij o cij + [aO(Css +Cs)+ 2d1Css/n]/t0 

+ d1 (C-. + C-. - 2C- /n)/t1 . SJ.• SJ• SS 

Next, consider the problem of finding the optimal coefficients 

under ;-unbiasedness, given by (2.8) and (2.9). This can be derived 

from the solution of (2.7), (given by A.15) as follows. 

0 
Let the solution of (2.7) (H "j = 0) be b ij =bi" , and let 

S1 S SJ 

the sol_ution of (2.9) (Hsij = A
8

) be bsij = b;ij , where "s is to 

be chosen to ·satisfy (2.8). 

(A.13) 

(A.14) 

(A.15) 
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For fixed i, j, we can write Hsij = E akh bskh - a 0 , 
k<hEs 

where a = 
kh 

and 

akh = a0 , a1 or a2 according as {k,h} has O, 1 or 2 elements common 

with {i,j}. The number of times akh takes the values a0 , a1 , and 

a2 [as (k,h) varies over all pairs of units in s] is (n;2) , 2(n-2) 

and 1 respectively. 

Thus, 

Therefore, Hi. - A = E akh (bskh - As/t0) - a 0 s J s k<hEs 
0 

Thus, if bsij = bsij is a solution.of H .. = 0, then bi. - As/t0 is 
S1J SJ 

a solution of To get the required solution b~ .. eliminating 
S1J 

). . , 
s 

put 

= c .. + d1(C-i + C-j - 2C- /n)/t1 + µ , where 
1J . S S ss S 

is a constant. 

From (2.8), 

i<;ES {cij + dl (CSi + C;j - 2Css/n)/tl + µs} =cu' 

n 
or C + 0 + (2)µ = CO s s . 

Thus µ
6 

= (CU - Cs)/(;)= (Cg+ C;s>l(;J , 

and the solution of (2.8) - (2.9) is 

b~ .. = c .. + d1 (C-i + C-. - 2C- /n)/t1 + (C- + C-)/(;). 
S1] 1] S SJ SS SS S. 

(A.16) 

(A.17) 
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Similarly, the solution of (2.12) - (2.13) must be of the form 

b~ 0 0 
bsij = bsij - A/t0 = bsij + K (say), where K is chosen to 

satisfy (2.12). That is, 

+ {a0(C- + C-) + 2d1 C- /n}/t0 +K] =CU. ss s ss . 
N 

We have E p(s) E cij = i<Ej cij E p(s) 
se:S i<je:s s,i,j 
N 

c E ci.'JT .. 
i<j J l.J 

E p(s) (C- + C-) = Ep(s) (CU - C
8

) 

se:S ss 8 se:S 
N 

= C - E p(s) C = CU - E c1J.1Tij , 
U se:S 5 i<j 

E (C-. + C-j - 2C- /n) = 0, 
Sl. S SS i<je:s 

E p(s) c_ = E p(s) E ci. 
se:S ss se:S ie:s J 

je:s 
N 

= E c .• [ E p{s) + E p{s)] 
i<j l.J S>i s,i 

s1j S3j 
N N_ 

• i~jcij (tt1 - ttij + ttj - tt1j) • i~j c1j(ff1 + ffj - 2ffij). 

From (A.18) - (A.22) 

(;)K + i!j cijffi~ + (;)t~l fo<cu - i!j cijffij) 

+ 2d
1 

n - l ~ c 1 • ( ff 1 + ff. - 2ff ij ~ = CU , 
i<j J J J 

l;JK • it ci/1 - ffij) - .(;} t~l ao it ci/1 - ff ij) 

-1 N 
- d (n-l)t E ciJ. (1Ti + 'JTJ. - 21Tij) , 

1 0 i<j 

(A.18) 

(A.19) 

· (A. 20) 

(A. 21) 

(A.22) 
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/n) _1 N tnJ 
K = (12 t 0] i~j c1j[t2(1-w1j) - I 2 a0(1-w1j) - d1(n-l)(w1 + wj - 2w1j)l 4 

/n) -l N 
== q 2 t 0 ] i ~ j c ij [ d2 ( 1 - 1r ij_) + ( n-1) d1 ( 2 - 1r i - 1r j ) ] 

r.t· 

(A. 23) 

.... 

:1•· 

'~ .. 

• 


