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SUMMARY 

The rank of the regression coefficient matrix in a multivariate 

linear regression model is referred to in this paper as the dimensionality 

of that multivariate regression. The problem of assessing the value of that 

rank when both s~ts of variates in the regression are jointly distributed is 

related to the classical multivariate problems ,of determining the number of 

principal components or pairs of canonical variates to use in a given prac­

tical situation. Different methods for assessing the rank of the regression 

coefficient matrix are described here, with emphasis on inference from cer­

tain graphical displays. The concept of a rank trace plot is introduced and 

illustrated using a number of real-data examples. Further information re­

garding the dimensionality of the regression is obtained through· comparing 

ganuna probability plots of the multivariate residual vectors. 

KEY WORDS: Reduced-rank regression, principal component analysis, canonical 

variate analysis, residual analysis, rank trace, gamma probability plots. 



1l 

-1-

1. INTRODUCTION 

In this paper we describe a certain generalization of the multivariate 

linear regression model which also provides a unified approach to the classi­

cal multivariate techniques of principal component and canonical variate and 

correlation analysis. 

This regression model can be described as follows. Let 

[ Y
x ] (1.1) 

be a collection of r + s variables partitioned into two disjoint sub-

collections, where l' X = [X1 , ••• ,Xr] has r components, 

·has s components, and X and Y are jointly distributed with mean vector and 

covariance matrix given by 

E 

E 

[ ; ] 
[!: :: ] [! -::J = ~: 

(1.2) 

= L (1.3) 

l' respectively, where Exx and EYY are both assumed nonsingular,~ denotes the 

transpose of the matrix~' and Eis the expectation operator defined by the 

distribution associated with the variate (1.1). Assume further that the 

variates X and Y are linearly related, so that 

(1.4) 
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whereµ and Care unknown parameters and Eis the corresponding error 

variate of the model, uncorrelated with X and having mean O and covariance 

matrix ;eE· 

Descriptions of this model in the literature assume implicitly that 

the regression coefficient matrix Chas full rank, and then demonstrate 
~ 

that simultaneous (unrestricted) least-squares estimation applied to all 

s equations of (1.4) yields the same results as does equation-by-equation 

least-squares. As a result, nothing is gained by estimating the equations 

jointly. 

A true multivariate feature enters the model when we know (or suspect) 

that the regression coefficient matrix C may not have full-rank, that in fact, 

rank (C) = t ~ min(r,s) = s, (1.5) 

say, so that a number of linear restrictions on the set of regression co­

efficients of the model may be present. The value oft in (1.5), and hence 

the number and nature of those restrictions, may or may not be known prior 

to analysis. 

Although! is presumed in (1.5) to be the larger of the two sets of 

variates, this reflects purely a mathematical convenience, and similar ex­

pressions as appear in this paper can also be obtained for the case in which 

r < s. 

The statistical literature contains some discussion of this type of 

multivariate regression model. Most of the papers on the subject assume 

that the value oft in (1.5) is either known a priori ([5], [6,p.335], 

[13], (17,p. 505], [18], [19], [21]) or that a suitable hypothesized value 

can be stated for the value oft ([l], (2, Section 14.2], [21]). With this 

0 

• 
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in mind, it was found convenient (in [13], [18], [19]) to distinguish the 

case t = s from the case 1 < t < s by terming the former full-rank regression 

and the latter reduced-rank regression. Similarly, the regression coefficient 

matrix C is called 'full-rank' or 'reduced-rank' as appropriate, and to show 

dependence on its rank, the matrix C is also written C(t). 

Several of the above-mentioned papers were specifically concerned with 

the relationships between multivariate regression analysis and the dimen­

sionality-reduction techniques of principal component analysis ([16], [5, Ch.9], 

[13]) and canonical variate and correlation analysis ([5, Ch. 10], [6], [13], 

[18], [19], [21], [24]). Bartlett [3], however, seems to have been the first 

to observe the important connections between these various methodologies. 

What is probably of greatest interest to the statistician is the case 

in which the rank of~ cannot be so specified beforehand and has instead to 

be determined from a given multivariate·sample of n independent obser,rations, 

j = 1,2, ... ,n, (1.6) 

on the variate (1.1). Such data will introduce noise into the relationship 

between Y and;, and hence will tend to obscure the actual structure of the 

matrix 2, so that rank determination for any particular problem will be made 

more difficult. There is, therefore, a need to make a distinction here between 

the "true" or "mathematical" rank of~' which will 'always' be full (since it 

will be based on a sample estimate of C), and the "practical" or "statistical" 

rank of C the one of real interest --- which will typically be unknown •. 
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The problem is, therefore, a selection problem: from the set of 

integers from 1 through s, we are to choose the smallest integer such 

that the reduced-rank regression of Yon X with that integer as rank 

will be close (in some sense) to the corresponding full-rank regression. 

The sense by which one multivariate regression can be 'close' to another 

multivariate regression forms the subject of this paper. Section 2 gives 

the main results concerning reduced-rank regression and its relationship 

to principal component a~d canonical variate analysis. Section 3 discusses 

the nature of the residuals from a specific (known rank) reduced-rank re­

gression. Section 4 introduces the problem of assessing the rank of C and 

Section 5 illustrates some of these concepts through a simple but interesting 

real-data example. Sections 6 and 7 then consider new types of graphical 

displ~ys by which that dimensionality may be determined. 

-• 
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2. REDUCED-RANK REGRESSION: MAIN RESULTS 

The general objective of reduced-rank regression, therefore, is to 

approximate the s-vector variate! by a set of s linear combinations, 

e +~~,of the r-vector variate X in which the number of linearly indepen­

dent combinations (i.e. dimensionality of the regression) may be less than 

s. In the event that there exist t (<s) such combinations, the (regression 

coefficient) matrix C will have rank t so that there will exist two (non­

unique) matrices, an (sxt)-matrix A and a (txr)-matrix B, such that 

C =AB, where A and Bare both of rank t. The problem, therefore, becomes - - -
one of finding an A and a B such that the variateµ+ ABX is approximately 

equal to Y. We have the following general result. 

THEOREM. L-et (1.1) be an (r + s) - vector~valued variate having mean 

vector (1.2) and covariance matrix (1.3). Suppose that L is non-singular -------------------------------------- -xx -
and that Eis positive-definite symmetric. Then, the (s x 1) - vector~, an 

(s x t) - matrix~, and a (t x r) - matrix~' where 12_ t 2_ s 2. r, that 

minimize 

are given by 

A = A (t) = -½ E C!1,···,!t1 

B(.t) 
VT 

r½ B = = -1 
~YX 

-1 
Exx 

·r: 
V 
-t 

µ = µ (t) = µ - A(t)B(t)µ 
-Y ,.,_ ..._, ...... x, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 



-6-

h V i th 1 t t t di h . th 1 1 were . s e a en vec or correspon ng tote J argest atent root, 
-J 

Aj' of the matrix 

-1 ½ 
Exx ~XY £ ' (2.5) 

j = 1,2, ••• ,s. At the minimum, the criterion (2.1) has the value 

W(t) (2.6) 

PROOF. A straight forward application of the Eckart-Young Theorem (see [10]). 

Some remarks regarding this theorem are necessary. 

1. The matrix B(t) in (2.3) can be re-expressed. as 

B B (t) [~i] -½ = = : ~xx 
UT 
-t 

h U · th 1 t t t d" to the J"
th largest were . is e a en vec or correspon ing 

-J 
latent root, A., of the matrix 

J 

-½ -½ 
Exx EXY £ EYX Exx 

j = 1,2, ••• ,r. Since it has been assumed here thats~ r, then 

A.= 0 for j = s + l, •.• ,r. 
J 

(2. 7) 

(2.8) 

2. The regression coefficient matrix C in (1.4) with rank t is, there-

fore, given by 

c<t) -½ t T ½ -1 (2.9) C = = r (I: . l V . V. )f EYX Exx, J= .... J -J .... .... ,I. 

-

0 

,: 

.. 
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which, if t = s, reduces to the full-rank regression coefficient 

matrix, to be denoted henceforth by 

(2.10) 

3. A principal components analysis of the r-vector variate X corresponds 

to setting Y = X, s = r, and r = I in the above ·theorem. This gives ......, ....., ......, """'r 

the following versions of (2.2) - (2.6): 

A (t) = [~l' ••. ' ~t] = B(t)-r, 

c<t) t V. t' 0 = I = I:. 1 V.' J= -J -J .... .... r' 

where V. is the latent vector corresponding to the j th ·largest 
-J 

latent root, A.·, of Exx··. The minimum value of the criterion 
J -

(2.11) 

(2.12) 

(2.1) in this case is given by rI=t+lxj' the sum of the residual 

r - .t latent roots of ;XX. The first t principal components of 

X are given by the elements of the vector ~(t) = ~(t)~, (i.e., 

~ - VT X j = 1 2 t) where var{~.}= 
j - -j - ' ' ' ... ' ' J 

for j :fi k. 

4. A canonical variate and correlation analysis of the two sets of 

variates,~ and !,corresponds to setting£ -1 
= E 

~YY. in the above th~orem, so 

that the minimum of (2.1) over choice of~, Bandµ is invariant 

under simultaneous linear transformations of the variates X and Y. 

The reduced-rank regression coefficient matrix (2.9), therefore, becomes 

(2.13) 
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where V. is the latent vector corresponding to the j th largest 
-J 

latent root, A., of the matrix 
J 

(2 .14) 

The matrix,~, is a multivariate generalization of the simple 

squared correlation coefficient between two variables (r=s=l), 

and also of the squared multiple correlation coefficient between 

a single variable and a number of other variables (s=l, and any r). Set 

-½ 
~yy (2.15) 

The matrix A (t)- is for 1 < t < s, a reflexive generalized-inverse 

of A(t), and for t=s, ~(s)- is the unique inverse {~(s)}-l (see (20]). 

Note the symmetric relationship between ~(t) (as given in (2.7)) and 

A(t)- (in (2.15)). The transformed variates 

(2.16) 

have correlation matrix 

corr = 

where !t = diag{p1 , p2 , ••• ,pt}, pj =Al, j = 1,2, •.• ,t, and the 

j th components of both ~(t) and ~(t), namely 

and wj 
T -½ = V. Eyy Y, ""'-J ......, ....., 

j, 
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. 1 h · th . f . 1 . d respectiye y, are t e J pair o canonica variates, an pj , 

the correlation between them is the j th ·canonical correlation 
ci 

coefficien~ ( j=l,2, .•. ,t). 

,o-, 

;... 

• 
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3. RESIDUALS FROM A REDUCED-RANK REGRESSION 

Estimation of the vector and matrix quantities in Section 2 above is 

carried out using the sample of values (1.6). First, (1.2) is estimated by 

-1 n & = n rj=l ~j and 
lL_A- = -lrn y and (1.3) by 
:.:..y n j=l -j' 

-1 n (n-1) E. 1 J= -J - -J 

[
X. - ~X] [X. (3.1) 
,,... ,,... 
Y. \L Y. 
-J :...y -J 

All estimates of unknowns are then based on the appropriate elements of (3.1), 

and denoted by placing a circumflex above the quantity to be estimated. In 

this way, we denote ~(t) to be an estimate of (2.4) and c(t) to be an 

estimate of (2.9). 

The collection of n residuals-vectors from a rank t reduced-rank 

regression of Yon Xis given by the matrix 

where 

A(t) 
£ 

(t) (t) 
= [£ , ••• ,£ ], 

.... 1 -n 

,,... ( t) 
µ = (Y. - ~y) - C(t)(X. - ~X), 

-J - - -J 

j=l,2, .•• ,n. 

(3.2) 

(3.3) .. 
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The columns of the matrix ~(t) in (3.2) are each asymptotically (large n) 

s-variate normally distributed with mean zero and covariance matrix 

(3 .4) 

where Aj and Vj are the j
th latent roo~-and vector respectively of (2.5), 

if indeed the variate (1.1) is (r + s)-variate normally distributed. 

Furthermore, 'the columns of (3.2) are asymptotically pairwise uncorrelated. 

(These results can be obtained using perturbation expansions as in [13].) 

For the full-rank case, the corresponding set of residual vectors are each 

asymptotically jointly ~ormal with mean zero and covariance matrix 

-1 ~ 
~YY - ~YX Exx ~xy· 

In view of these remarks, we estimate the residual covariance matrix 

" ( t) 
~e;e; 

· -1 n "(t) ;C_t)-r 
= (n-1-r) r. l €. w , 

J= -J -J 

and we write, for the full-rank case only (where t=s), E(s)= E 
.... e;e; .... e;e; 

(3.5) 
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4 • THE CASE OF UNKNOWN RANK 

Discussion so far has centered around the case in which the regression 

coefficient matrix Chas a specific rank, t say. The remainder of this 

paper is concerned with the case in which the value oft is unknown a 
priori and has to be assessed from the sample data (1.6). 

It was pointed out in Section 2 of this paper that a reduced-rank 

regression of rank t corresponds to a choice of either the first t prin­

cipal components of X or of the first t pairs of canonical variates of 

X and Y. Recall that W( t) denotes the minimum value of (2 .1) for a fixed 

value oft. The reduction in.W(t) obtained by increasing the rank from 

t=t0 to t=t1 (t0<t1) is, therefore, given by 

tl 
wct0) - wct1) = rj=ta+IAj , 

I 

(4.1) 

where A. is the j
th largest latent root of (2.5). That is, one method for 

J 

assessing the rank of C can be based either on the sequence of ordered 
A A 

latent roots, {A.,j=l,2, ••• ,s}, in which A. is compared with suitable reference 
J J 

values for each j, or on the sum of the (s-t0) residual latent roots (see, e.g., 

Kshirsagar [14, sections 8.7 and 11.7]). 

An obvious disadvantage of relying solely on such formal testing pro­

cedures is that any routine application of them might fail to take into 

account the possible need for a preliminary screening of the multidimensional 

data set in question. Robustness of sample estimates of the latent roots 

and hence of the various tests when outliers or distributional peculiarities 

are present in the data is a major statistical problem. In the context of 

this paper, disregard for such details could lead to incorrect inferences re­

garding the dimensionality of the regression. 

... 
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5. A SIMPLE EXAMPLE 

The data for this example was taken from Rao [15, p. 245], where it is 

attributed to Frets [11]. The same data appears in ~nderson [2, p.58], 

Dixon [7, p. 212], and various other places for illustrating certain statis­

tical procedures. While the original investigation consisted of about 3600 

measurements on 360 families, this particular subset consists of two measure­

ments, head-length and head-breadth, on each of the first and second sons in 

a sample of 25 families. Thus, x1 (X2) is the head-length (head-breadth) of 

the first son, and Y1 (Y2) is the head-length (head-breadth) of the second son. 

Estimates of the mean vector and covariance matrix of these four vari­

ables can be found on p. 303 of Anderson [2] and will not be repeated here. 

Two regressions ~ere mad~ on the data, a reduced-rank regression (t=l)and a full­

rank regression (t=2), using the canonical variates set up. The results are 

as follows: 

-"(1) ~-43 o.sJ -"(2) [0.45 O.SJ 
C = C = , , 

.29 0.36 0.27 0.38 

"'(l) ~3.3~ , "'(2) G3.7J µ = µ = 
41.40 - 7 .17 

An initial inspection of these results shows that the matrices ~(l) and ~( 2) 

are not·very different from each other. 

Further detailed study of this data indicated certain unexplainable 

peculiarities. The 25 observations were checked against the complete 

collection in Frets [11]. It was found that six of these 25 observations 

were different from those in the original source data. The incorrect 
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observation numbers are 11, 12, 13, 14, 15, and 25. From a close examination 

of the original source data tables it appears that the values of the first 

five of these errors were taken from the wrong columns of the original data; 

the sixth appears to be an independent error. Both sets of data are given 

here in Table 5.1. 

The 'corrected' sample was analyzed in a similar manner as was the 

previous set; the results are summarized as follows: 

(values 

"' = ~87 .4J ~x 
151.12 

102.83 

"' (0.82) 

"' 
~y = 

59.62 

51.86 

f183.3~ 

1_149.3~ 

70.32 

44.25 

52.68 

40.21 
I: = .................................... 

(0.70) (0.62) 97.98 51.71 

(0.76) (O. 82) (0.77) 46.24 

in parentheses are correlations between appropriate 

"'(1) [0.25 0.6~ ~(2)= [0.57 0.2j 
C = 

0.21 0.53 - 0.19 0.56 

"'(1) G2.1J ~ (2) = L6.6J µ = 
29.99 29.62 

variables) 

This time the estimates of C fort= 1 and t = 2 look very different from 

each other. 

~ 

~ 
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6. THE RANK TRACE 

We now propose a more elaborate method for assessing the dimensionality 

of a multivariate regression. It is described in terms of the following 

steps: 

1. 

2. 

3. 

Carry out a sequence of reduced-rank regressions for specific 

values of t. 

From each of the regressions of step (1), compute 
"'(t) 
C and "'(t) 

E • ---e:e: 
Make a scatterplot of the s+l points 

(8~(t), 8~!~)), t=0,1,2, ••• ,s, (6.1) 

where 

8c<t) = 
11 c<t) - ell 

"' - (6.2) 

II ~ II 

8E<t) 
H i<t)_i 11 

-e:e: . ...e:e: 
= -e:e: A 

- ~ II II ~yy -e:e: 

(6.3) 

and join up successive points in the plot. This is the rank trace 

for the regression of! on!· 

4. Assess the rank of C as the smallest rank for which both (6.2) 

and (6.3) are approximately zero. 

In small problems (where the value of sis at most 10), all values of 

t should be examined. For larger problems (s > 10), the costs of _computation 

become critical and it is, therefore, recommended to be more selective in 
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choices oft; one possible way is to carry out regressions for a few 
A 

small values oft, say t=l,2, .•• ,t0+1, where t 0 might be an initial esti-

mate oft (perhaps based on the sequence of sample latent roots) plus the 

usual full-rank regression model (in which t=s) for purposes of comparison. 

For the examples in this paper, the classical Euclidean norm 

2 !..: o:iI: .a .. )2 
J 1J 

is used in computing (6.2) and (6.3). For the case when t=O, define ~(O) 

"(O) A 

to be the null matrix with all entries equal to zero, and E ~ to be Eyy. 
-€~ -

Thus, the first point (corresponding to t=O) is always plotted at 

(1,1) and the last point (corresponding to t=s) is always plotted at (0,0). 

The horizontal coordinate (6.2) gives a quantitative representation of the 

difference between a reduced-rank regression coefficient matrix and the full­

rank regression coefficient matrix, while the vertical coordinate (6.3) shows 

the proportionate reduction in the residual variance matrix in using a 

simple full-rank model rather than the computationally more elaborate 

reduced-rank model. The rea~on for including a special poi.nt for t=O 

is that without such a point, it would be impossible to deduce in many 

applications that the statistical rank of C should be t=l. In this formu­

lation, t=O corresponds to the completely random model, Y = µ + s. - -
Assessing the dimensionality of the regression by using rule (4) above 

involves a certain amount of subjective judgment, but from experience with 

many of these types of plots, the choice should not be too difficult. Due 

to the nature of ~(t), the sequence of values for the horizontal coordinate 

(6.2) is not guaranteed to decrease monotonically from 1 to 0. It does 

,,-
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appear, however, that in many of the applicat~ons of this method (in 

particular, for the canonical variates case), the plotted points appear 

within the unit square, but below the (1,1) - (0,0) diagonal-line, in­

dicating that the residual variance matrices typically stabilize faster 

than d-0 the regression coefficient matrices. 

For the principal components case, the expressions (6.2) and (6.3) 

reduce to the following simple forms: 

6~(t) 
-e:e: 

r A2 r A2 }½ 
= { o: · t+1"'- · ) / ( r, . 1"'- • ) • J= J J= J 

It is clear from (6.4) and (6.5) that: (a) we are really looking at the 

residual latent roots again (although this time they are each squared); 

(6.4) 

(6.5) 

(b} all the information regarding dimensionality of the regression is con-_ 

tained in the residual covariance matrices and not in the regression co­

efficients; and (c) the r + 1 plotted poi~ts do indeed decrease monotonically 

from (1,1) to (0,0) in this special case. (Unfortunately, no similar re­

duction of (6.2) and (6.3) can be obtained for the canonical variates case.) 

In view of (6.4), a different criterion of assessing dimensionality from 

the rank trace plot in the principal components case needs to be applied. 

A natural rule (which has also been proposed for obtaining multidimensional 

scaling solutions; see, e.g., Gnanadesikan [12, p. 46]) is that of assessing 

the rank of£ by the smallest integer value between 1 and rat which an 

"elbow" can be detected in the PC rank trace plot. 

Example 1 (continued). The CV rank trace of the data from Rao [15] 

is plotted in Figure 6.l(a). From the plot it appears that tµe rank of 
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C is best estimated by t=l, which also seems reasonable on the basis of the 

canonical correlations, 0.7885 and 0.0537. The 'corrected' data, however, yield. 

a very different result with the CV rank trace plotted in Figure 6.1 (b). The 

plots suggest that the estimated rank of C should be t=2 (the canonical correlations 

are 0.8386 and 0.3256). A third analysis (not shown here) was made on the complete 

data in Frets (11] on the same four variables. (The set of extensive data tables 

was screened very carefully since cross-referencing of observations there often 

proved inconsistent; this meant that the data wereboiled down to 247 points.) This 

larger set (which also contained the 'corrected' 25 values) gave a similar 

plot of the CV rank trace to the 'corrected' data, again suggesting that 

the rank estimate should be t=2. The sample canonical correlations, 

0.6588 and 0.5077, appear to reflect the same information. 

Example 2. U.S. and European Temperature Records. These data, which 

were made available by J.M. Craddock (Meterological Office, Bracknell, 

Herts., England~, the World Weather Records, Smithsonian Miscellaneous 

Collections, and the U.S. Weather Bureau, consist of 516 mean monthly 

temperatures (1918-1960) for five U.S. cities (New Haven, Cape Hatteras, 

Cincinnati, Nashville, and St. Louis) and for five European cities (Copen­

hagen, DeBilt, Paris, Odessa, and Valentia). Before analysis, the series 

for each city was seasonally adjusted by subtracting out the mean for 

each of the 12 months of the year. The European cities were treated as 

the X variables and the U.S. cities as the Y variables, so that r=s=S and n=516. 

As in the previous example, all points of the CV rank trace plot (see 

Figure 6.2) are interior to the unit square, and the rank of C is assessed 

at t=3. 
2 It is worth noting that a formal X test for the·significance of 
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the residual canonical,correlations gives only the first two canonical 

correlations as being non zero. The five correlations are 0.3836, 0.2746, 

0.1340, 0.0507, and 0.0090, and the CV rank trace plot has, therefore, 

yielded additional information for this example. 

Example 3. L.A. Heart Study Data. These data were taken from Dixon 

and Massey (9, pp. 14-17], and consist of measurements on 200·men who were 

survivors of a group having had an initial examination in 1952 and who 

were re-examined in 1962. For this e~ample, the variables in [9] were 

divided into two groups: a set of r=6 (1952) X variables (i.e., A, C, D, 

G, I, and J) and a set of s=4 (1962) Y variables (i.e., E, F, H, and K). 

Only those cases with L=O were used here, where Lis coded 1 (or 0) if 

a coronary incident occurred (or, did not occur) between 1952 and 1962; 

this reduced the size of the sample to n=174. The plot of·the CV rank 

trace (see Figure 6.3) yields an exterior value for the reduced-rank 

regression of rank·one; all other points are interior to the unit square. 

The rank of C is assessed at ~=3, which agrees with the appropriate x2 test 

.for significance of the canonical correlations (namely, 0.6704, 0.5443, 

0.4790, and 0.0932). 

Example 4. Fisher's Iris Data. This is a classical data set of n=50 

measurements on the r=4 variables, sepal length, sepal width, petal length, 

and petal width, of the species Iris Versicolor. See, e.g., Anderson [2, Section 11.5]. 

The PC rank trace plot is given in Figure 6.4, and the rank is assessed as 

t=l. The corresponding latent roots are 0.4879, 0.0724, 0.0548, and 0.0098. 
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Example 5. Jarvik Smoking Questionnaire Data. These data were taken 

from Dixon and Brown (8, p. 624]. They refer to r=l2 answers to a smoking 

questionnaire administered to n=llO subjects. Each question was coded 1 to 5 

such that a high score represents a desire to smoke. The PC rank trace 

plot (see Figure 6. 5) shows an "elbow" at t=3. The latent roots for this 

example (which were calculated from the (12 x 12)-correlation matrix of 

the data, are given by 5.426, 2.997, 1.361, 0.560, 0.363, 0.302, 0.241, 

0.200, 0.158, 0.146, 0.137, and 0.110. 

.. 
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7. COMPARING GAMMA PLOTS OF MULTIVARIATE RESIDUALS 

The methodology proposed in Sections 4 and 6 for assessing the rank 

of the regression coefficient matrix used various summary measures re­

sulting from each regression, namely the set of latent roots, the ~equence 

of regression coefficient matrices themselves, and their corresponding re­

sidual variance matrices. The purpose of this section is to describe an 

additional method using the set of multivariate residuals from a series of 

reduced-rank regressions. 

"'(t) . 
The residuals are thens-dimensional vectors e:. , J=l,2, ••• ,n, obtained 

-J 

from a reduced-rank regression of rank t. See Section 3 above. One method 

bf comparing these vectors simultaneously is to construct a quadratic form 

for each vector in which the choice of 'compounding' m~trix is positive­

definite, but btherwise arbi~rary. Then derived quadratic forms (for a 

given compounding matrix) may then be compared with each other (for example, 

through a linear ordering of their values). 

If Mis some positive-definite matrix, the quadratic form 

f (.n) (e: ~t)) 
-J 

"'(t}T "'(t) 
= e:. M e:j ' -J - .... 

converges in distribution to the random variable 

with distribution 

(7 .1) 

(7.2) 

(7 .3) 
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where {µk(t)} are the latent roots of the matrix E(t)M and x
1
2 denotes an 

-€€ -

independent chi-squared variate having one degree of freedom (Box [4, 

Theorem 2.1]. In the special case when M = {r(t)}-1, (7.1) converges in 
- -€€ 

distribution to a central chi-squared variate withs degrees of freedom. 

The distribution (7.3) is approximated here by a gamma distribution 

with density 

n n-1 -Ax g(x; A,n) =AX e /r(n), (x>O, A>O, n>O~ (7.4) 

where A= A(t) is the unknown scale parameter and n = n(t) is the unknown 

shape parameter, both depending on the value oft. Estimation of A(t) and 

n(t) is carried out by the method of maximum likelihood using the first K 

order-statistics of then values> 

f(n)c~ft>), f(n)(!~t)), ••• , f(n)(!~t)). (7 .5) 

The details may be found in Wilk~ al (23]. 

Following the estimation of A(t) and n(t) in (7.4), ganuna probability 

plots are prepared in the manner of Wilk~ al. (22] using gamma quantiles 

computed from the estimates i(t) and ~(t). Such a plot should resemble a 

straight-line configuration whenever the values (7.5) are from the estimated 

gamma distribution. If several of the largest values of (7.5) appear too , 

large, or if a certain degree of 'curvature' is visible in the plot, then the 

assumption that all the values in (7.5) are gannna distributed may be invalid. 

For purposes of comparing several reduced-rank regressions (each having 

a different rank), it is important that the same number K, of smallest order­

statistics be nominated for each value oft. Revised gamma plots omitting 

any 'overly-large' values might be made to check better agreement of the 

model to the remaining data. 

~ 

;.. 

't .. 

.. 
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As long as the statistical rank of the regression coefficient 

matrix is larger than those values oft being considered, the corresponding 

gamma plots should differ markedly for different values oft. When t reache~ 

this rank, the plots should cease to change significantly and should 

settle down. The characteristics of these gamma plots that yield information 

regarding degree of stability are: 

(1) the sequence of estimates of (A,n), namely, 

(~(].), ~(].)), ••• , (~(s), ~(s)); and 

(2) the general 'shape' of the plots. 

For a·given value oft, the gamma plot indicates the presence of outliers 

and any distributional peculiarities that may exist in the data. On the 

other hand, a comparative analysis of gamma plots for different values of 

twill help to assess the value oft. For the latter type of analysis, 

the shape of each plot is, therefore, important only in so far as ·it allows 

two or more plots to be compared with each other. Choices of M include the 

(s x s)-identity matrix I, and {E(t)}-1 , for t=l,2, ••• ,s. Results so far 
.... s -E:E 

indicate that the estimates (~(t), ~(t)) are much smaller when I is used 
-s 

"'(t) -1 as a compounding matrix than when {E } is used. 
-EE 

Example 3 (continued). The gamma plots for the multivariate residuals 

"'(t) -1 
are shown in ~igures 7.1 (~ = !4) and 7.2 (~ = {EEE} , t=l,2,3,4); for 

these plots, the smallest K=l50 order-statistics of (7.5) were used to 

estimate the gamma quantil~s. Internal features of these plots show a 

lack of near-zero values and a possible outlier, as well as evidence of non-

normality in the residuals. However, comparisons of the plots over the 

four values oft reveal that the configurations of the quadratic forms in 

tpe residuals chan~e much less _markedly foilowing t=3 than for any previous 

value oft, again suggesting that t=3. 



1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

, 

TABLE 5.1 

CORRECTED DATA FOR EXAMPLE 1; r=s=2, n=25 
(*ASTERISKS DENOTE INCORRECT OBSEEVATIONS USED 

BY RAO, ANDERSON AND DIXON.) 

Head Length, Head Breadth, Head Length, Head Breadth, 
First Son First Son Second Son Second Son 

X . .1 . X2 yl y2 

191 155 179 145 
195 149 201 152 
181 148 185 149 
183 153 188 149 
176 144 171 142 

208 157 192 152 
189 150 190 149 
197 159 189 152 
188 152 197 159 
192 150 187 151 

186 (179*) 161 (158*) 179 (186*) 158 (148*) 
179 (183*) 147 (147*) 183 (17 4*) 147 (147*) 
195 (174*) 153 (150*) 174 (185*) 150 (152*) 
202 890*i 160 ll 59*) 190 (195*) 159 (157*) 
194 88* 154 .151 * l 188 (187*) 151 (158*) 

163 137 161 130 
195 155 183 158 
186 153 173 148 
181 145 182 146 
175 140 165 137 

192 154 185 152 
174 143 178 147 
176 139 176 143 
197 167 200 158 
190 153 (163*) 187 150 

-.• 

.,. 
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LEGENDS FOR FIGHRES 

FIGURE 6.1 

Plot of CV rank trace for example 1, (a) Rao' s data·, and (b) corrected data, 

on heredity of headform in man (r = s = 2, n = 25). 

FIGURE 6.2 

Plot of CV rank trace for example 2 on U.S. and European temperature records 

(r = s = 5, n = 516). 

FIGURE 6.3 

Plot of CV rank trace for example 3 on L.A. heart study data (r = 6, s = 4, 

n = 174). 

FIGURE 6.4 

Plot of PC rank trace for example 4 on Fisher's iris versicolor data (r = 4, 

n ° 50). 

FIGURE 6.5 

Plot of PC rank trace for example 5 on Jarvik's smoking questionnaire data 

(r = 12, n = 110). 

FIGURE 7.1 

Gamma probability plots of observed residuals for example 3. 

FIGURE 7.2 

Gamma probability plots of observed residuals for example 3. 
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