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Summary 

We consider the Box-Cox model of power transformation with special 

reference to the comparison of two samples. For inferences about a 

linear model with transformed data we argue that one should behave as 

if the estimated power transformation were in fact correct, not random. 

The validity of such inferences is discussed mainly in terms of 

empirical results. 
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1. Introduction 

The scope of normal-theory statistical analysis is widened by 

allowing preliminary data transformation, based on informal or formal 

techniques for choice of working scale for the resronse variable. Among 

the formal techniques is the Box-Cox analysis, described in Box and 

Cox (1964), where an estimable transformation is included as one or more 

parameters of the statistical model. For response variable y and 

covariable is, Box and Cox considered models such as 

(1) 

y(O) = loge (y) , where A and the linear model p~.rameters t, a are 

unknown, and e is hypothetically sampled from a standard nonr.41 distri­

bution. Model (1) assumes three things: (i) normality of e, (ii) 

constant variance of y().) in repetitions, independent of ~, (iii) 

correctness of the mean form. Our interest will focus only on (i) • 

The maximum likelihood analysis of data (x. ,Y.) , j=l, ••• , n modelled 
J J 

,. 
by (1) may be viewed as first estimating A by A , and then estimating 

,.. 
! and a as if y(A) were normal. But there is an apparent difficulty: 

,. 
under model (1), ~ has an approximate normal distribution with variance 

in excess of that for known A • For example, consider the single-sample 

case with x. = 1 and 8 = E{Y (A)} • If A = 0 , then one can easily show 
1 

that 

(2) 
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see Hinkley (1975). A comprehensive theoretical and numerical study of this 

phenomenon has recently been carried out by Bickel and Doksum (1979), who 

confirm the potentially very large effect on Var(S) due to estimation of A. 

The purpose of this paper is to describe a conditional analysis of 

the transformed data which removes the "excess variance" phenomenon from 

consideration. We believe that in most cases (2) and its generalizations 

are irrelevant. 

To illustrate the essential point, consider two statisticians s1 

and s
2 

who are visited by a client C. C has two samples of· residual 

pesticide amounts y in oranges collected in two environments, and he 

asks s
1 

and s
2 

for their advice on an appropriate measure of the dif­

ference between the two environments. Before p~oceeding with their data 

analyses, s
1 

and s2 agree to use the two-sample case of model (1) -

barring lack of fit - and to use maximum likelihood estimation. The 

relative likelihood for A is given in Figure 1, from which s1 deduces 

that the maximum likelihood estimate (m.LeJ ~ ~ 0 • Therefore s
1 

decides 

_to take logs of the data, and is pleased to find that the transformed 

data looks normal and has homogeneous variance. At this point s1 

decides to treat logeY as normally distributed, with means µA and 

in the two sampled populations. Using the data summary 

sample A: 

sample B: 

mean(log y) = -5.325, s.d. (log y) = 2.03, sample size= 21 
e e 

mean(log y) = -1.820, s.d. (log y) = 2.09, sample size= 27 , 
e e 

s
1 

estimates the mean contrast by the 95% confidence interval 

UB 

;. 

\;;;I 
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UA - µB = -5.325 - (-1.820) ± 2 ~ ( 2. 03) 
2 

+ ( 2. 09 / 
21 27 

= -3.51 ± 1.20 

The report to C reads "The natural log of response was chosen as working 

scale, since the normality and variance homogeneity assumptions are valid 

on that scale. Then the contrast between the two environments may be 

measured by difference in means, for which the 95%confidence interval is 

-3.51 ± 1.20 • " 

s
2

, meanwhile, performs the same analysis except that allowance for 

phenomenon (2) is made in computing the standard error of the mean con­

trast estimate. This leads to 95% confidence interval 

SA - SB= -3.51 ± 3.19 

and s
2

•s report says "I cannot be sure of the response scale on which 

eA and SB are means for your two populations, but whatever it is their 

difference has 95% confidence interval -3.51 ± 3.19. P.S.: the scale is 

probably close to logarithmic." 

Of course one can criticize the choice of contrast measure, where C 

should have had some say. But given the same choice, the two statistici~ns 

give very different answers, and both are approximately correct. We 

believe that s
1 

gives the more useful answer. In Section 2 we discuss 

the validity of s1 's analysis using theoretical and empirical evidence. 

Some further general remarks are made in Section 3. 
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relative likelihood 
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Figure 1. Relative likelihood of transformation 
power A for two samples of pesticide 
data provided by C. 
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2. Conditional Interpretation of Transformed Jata 

2.1 Theory 

The variance inflation illustrated in (2) may be explained in terms 

of a simple decomposition for 6 - 0 • For clarit!7 define 

e(m) = E(el~=m) 

and write 

e-e=a-e6)+8(~)-e (3) 

Then clearly 

Var(8) = E{Var(SI~)} + Var{S(~) - 8}, (4) 

where the final term is the variance inflation factor due to estimation of 

A • 
,., 

If we wish to condition analysis on the observed value of A, 

stand~rd asymptotic theory for maximum likelihoo~ estimation can be used 

as follows. Write ~T = (ST,o) and denote the total information matrix 

for (~T,A) and its inverse by 

I = 

Then asymptotically as ·,,-+ c:o , 0 - 8 behaves as N(O, I$$) , whereas 
A 

e-e 

given ~ = m behaves as 
- -1 -1 

N(-1 .. , .. ,A IH (m- A) , 1$$) ; see Cox and Hinkley 

(1974, §9.n That is, the appropriate approximate variance conditional 

on ~ = rn 
,. 

is computed by standard likelihood methods with A assumed 

known equal to rn ~ This was done by s
1 

in Section 1, whereas s
2 

used 
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ItlJtJ, • s1 was estimating 6(~ b) , which relates to the. 8 
0 S 

c~ model (1) 

by the approximation 

{6(m)\ fa) -1 
\cr(m)/ ;.~ \a + 1tl)A 1H (m- A) (5) 

In effect s
1 

was concluding that the relevant model for analysis is 

A T 
= {8(A b )} x + cre 

0 S 
(6) 

where e is standard normal, regardless of which A makes model (1) 

true ·in hypothetical repeated sampling. That is, the hypothetical popu­

lation defined by model (1) is effectively replaced by a more tangible 

reference population in which (6) holds - more tangible because the data 

conform to normality and because the linear model parameter_ is physically 

well defined. (Note that properties of normal-theory analysis are not 

affected by restriction to those normal samples which pass tests of 

normality based on standarized residuals.) 

2.2 Empirical Study 

To examine the conditional interpretation (6) empirically, we carried 

out a small-scale simulation study whose results we summarize here. The 

first set of results is for the two-sample problem with 6=6 -8 =l 
1 2 ' 

a= 1 and :\=0 in model (1). The two sample sizes were 
1 

n = n = -n = 20 
1 2 2 

and 10,000 pairs of samples were generated by standard system algorithm on 

a CYBER 74. To simulate conditional properties of estimates we grouped 

" samples by 25 interval values of A and calculated empirical properties 

within each group. Figure 2 shows the estimates of 6(X) = 61 (~) - e2(~) 
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and Figure. 3 shows the estimates of both v6) = Var(~j~) and 

Var{y(~) I~} The latter is actually the simulation mean of the pooled 

sample variance estimate 
... z ... 
a (A) , and the plotting scale is chosen so 

that the mean of the estimate of V(~) , namely 

(7) 

is on the same scale as V(~) The agreement i$ clearly good. Notice 

in Figure 1 that the approximation to 6(m) based on (5) is poor, pre­

sumably because it is only a local approximation. 

Standard 95% confidence limits for 6 were calculated assuming (6), 

that is the limits were 

(8) 

with V given by (7). The empirical coverage probabilities for (L,U) 
are shown in Figure 4 (see Appendix 1 for relevant methodology). 

Agreement with nominal 95% is good. 
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Figure 2. Conditional empirical mean of ~ = e
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In practice it would be quite usual to restrict A to a small discrete 

1 1 set, for example {-2, -1, - 2 , 0, 2 , 1, 2} • The following results were 

obtained from small simulations with this restriction, when the "true" A 

is -1, 0 or +1. The specific models simulated were again two-sample 

models with characteristics as given in Table 1. 

Table 1. Cases of model (1) used in simulation 

61 02 a n = 
1 n2 II pairs of samples 

-1 -2 1 1 
20 1000 -2-6 6 

0 1 
0 1 20 1000 4 4 

+1 1 
0 1 20 1000 6 6 

The outcomes of these simulations are summarized in Table 2, including 
,. 

empirical frequencies for A For each characteristic the results are 

given in the vertical order A=-1,0,l. The entries for 
,.. 1 

A=l A=-, 2 

are a little peculiar - here the variance V(~) was unusually large, 

30% larger than the mean of V. Overall the results looK·very good for 

validity of confidence intervals based on (6). 
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... 
Table 2. Monte Carlo Estimates of Conditional ProEerties of A for Cases 

,., 
in Table 1. (Blank indicates values of A not allowed.) 

'vi 

-2 -1 
1 0 1 1 2 m -2 2 

,. 
pr(A = m) .227 .384 .193 .122 .074 

.068 .241 .394 .239 .058 

.on .118 .199 .385 .227 

A(m) = E(81-e 2 j~=m) .166 .171 .154 .155 .144 

.191 .241 .250 .271 .256 

.134 .162 .161 .169 .166 

Conditional .925 .932 .938 .951 .946 
coverage of .926 .954 .944 .937 .948 "95%" intervals 
for 6(m) .944 .983 .894 .948 .956 

Conditional .881 .904 .870 .910 .824 ,; 

coverage of .897 .913 .901 .870 .897 "90%" intervals 
for A(m) .915 .941 .854 .891 .907 

,.-
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2.3 Normality of Transformed Data 

Even if we regard the results of the simulations as convincing 

evidence that s1 gave a valid analysis, it is relevant to question the 

normality of y(~) , since the efficiency of s1 's analysis depends on it. 

One might take the view that if the y(~) look like normal data, then we 

are justified in assuming normality and rejecting the more abstract 

nodel (1). But there will be situations where model (1) holds - what of 
,. 

y(.:\) then? 

Our evidence suggests that the distribution of y(~) conditional on 

A will be close to. normal, deviating in the direction of shorter tails. 

This is to be expected because estimation of A is associated with 

shrinking of relatively large residuals: a single-sample configuration 

such as 

will be transformed to reduce the last, underlined gap. 

Our very limited empirical evidence comes from a single-sample Monte 

:arlo experiment with 5000 samples of the case n = 20, 9 = 0, a= 3 and 

A= 0 • Table 3 gives the estimated conditional standardized cumulants 
,. ,. 

of y(A) for 13 interval values of A. These results show significant 

evidence of small deviations from normality in conditional (and uncon­

ditional) distributions of y(~) • One can assess the approximate impact 

of these deviations on the efficiency of least-squares methods using the 

approximations given by Cox and Hinkley (1968, §4). For example, if 

standardized third and fourth cumulants are respectively 0.25 and 0.4, 

then the approximate efficiency of least squares is 92%. We stress that 
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this figure is based on assuming the truth of model (1), which is hypotheti­

cal, whereas we would argue that one should model the transformed data by 

(6). 

Within the hypothetical framework of model (1), the distribution of 
,. 

y(A) can be studied theoretically. Some thoughts on this are outlined 

in Appendix 2. 

I?' 

':I' 

"' 

. ...,,/ 



m -0.75 
,. 

pr(A = m) .0002* 

1st cur.ulant µ -.24 

2nd cumulart 2 
0.56 0 

3rd cumulant yl 0.74 

4th cumulart -Yz 

*only one sample 

I ,., 

Table 3. Estimates of Standardized Conditional Cumulants of y(~) 

in the Single-Sample Case e = 0, o = 0, A = 0, n = 20 (5000 samples). 

-0.5 -0.3 -0.2 -0.1 -.OS 0 .OS .1 .2 .3 

.0036 .0186 .0750 .. 1554 .1666 .1958 .1590 .1392 .0662 .0188 

-.51 -.80 -.61 -.45 -.22 .02 .25 .40 .80 .64 

1.95 3.93 5.40 7.30 8.54 8.87 8.62 7.21 5.92 3.40 

0.30 0.26 0.13 0.13 0.04 o.oo -0.04 -0.14 -0.14 -0.30 

+0.62 -0.25 -0.41 -0.40 -0.46 -0.39 -0.41 -0.43 -0.27 0.01 

.5 .75 

.0014 .0002* 

.34 .10 

1.98 0 .. 50 

0.74 0.02 

2.95 0.59 
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3. Further Remarks 

In the (real) data analysis problem of Section 1, the choice of com­

parative measure ·~.ight not be thought appropriate. For example, one might 

wish to compare means or medians on the original scale. With medians one 

can transform back from analyses on the y(~) scale, where mean=median, 

and the variance inflation effect can be ignored; see Ruppert and Carroll 

(1980). Comparison of means would be somewhat more difficult. 

The situation that we have considered is that of a single analysis, as 

opposed to a series of analyses with similar data. If a series of analyses 

give an overall estimate r, then presumably the individual analyses would 

all be carried out using y('r) and not the separate transformations 
A 

y(A
1

), y(A 2),... In that sense, there is no operational meaning to a 
A A 

series of 8(A) estimates with A varying, in a manner determined by 

model (1). 

One standard alternative to y(A) is the transformed variable 

.A-1 A z(A) =y(A)/y , where y is the geometric mean. We found z(A) to be 

quite badly behaved, in the senses that (i) its conditional mean varied 

much more than that of y(~) and (ii) the conditional standard error of 

linear model parameters was poorly estimated using residual variance 

estimates. 
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Appendix 1: Computation of Coverage Frequencies 

When simulating the coverage probabilities (8), an initial small 

simulation was used to estimate Ll(m) = e
1 

(m) - e
2 

(m) • Denote this estimate 

by Ll
1 

(m) • Then the main large simulation gave relative frequencies of 

the event 
,. ,. 
L ~ Lll (m) < U 

and a second, very precise, estimate Ll2 (m) of Ll(m) • Denote the estimate 
,. 

of Ll(m) from a single pair of samples by Ll. Then we assume that, 

conditional on ~ = m , 

,. ,. 
is exactly normal. Therefore the relative frequence of L ~ 6

1
(m) < U 

estimates 

2 { Ll2 (m) - Ll
1 

(m)} 
2~(-2) - V(m) 2$(2) 

rather than 2~(-2) • Therefore we adjust the relative frequency of 

L ~ Lll (m) ~ 0 by adding the second term on the right of (Al). This 

adjustment is employed in Figure 3 and Table 2. 

(Al) 
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Appendix 2: Empirical Distribution of Transformed Data 

,.. 
Properties of the transformed variables Y(>.) can be determined 

approximately by use of a simple functional representation that we describe 

here. For simplicity we consider the single-sample situation. 

Let the empirical distribution function of sample 

F Cy) 
n 

1 
= -. n 

n 
I: 

j=l 
I (y - y.) 

J 

Y
1

, ••• , Y be 
11 

,.. ,. ,. 
where I(u) =1 (u > 0), O(u < 0) • Then, with A = A (F ) , lJ = lJ (F ) 

n n 

; = a(F) , let 
n 

G*(z; F) 
n 

1 = -n 

n 
I: 

j=l 

and 

the empirical distribution of the standardized transformed sample. The 

corresponding population functional, to which 

is easily seen to be 

G*(z· F) , n converges as n -+ 00 , 

* . _ f Jloge[l + A(F){µ(F) + z cr(F)}] _ L 
G (z, F) - IL A(F) YJ dF(y) • 

Here F is the c.d.f. of Y determined by model (1), and of course 

evaluation of G*(z; F) gives the standard normal c.d.f. 

What is of interest is the behavior of G*(z·F) , n relative to 

which involves the Taylor series expansion 

G*(z;F) , 
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G* ( z ; F n) Q G* ( z ; F) + JG• ( z ; F ; u) d cF n - F) ( u) -

1JJ··.,. ,.. ,. + 2 Gn(z;F;u,v)d(Fn - F)(u)d(Fn - F)(v) + ••• 

l:rith G* G*, etc. the successive von Mises derivatives of G (Reeds, 1976). 

F,·r example, one can compute series expansions for the mean of G*(z·F) , n or 

its moments. In order to determine the derivatives of G*, simple chain­

rule arguments and the derivatives i(F;u), u(F;u), ~(F;u) , etc. are used. 

In the context of Section 2, particular interest focusses on the 

behavior of G*(z·F) 
' n 

conditional on 

series expansion also. 

,.. 
A(F) , where 

n 
ACF) 

n 
has a Taylor 

• 
t 

~ 

. .,..- '-

ff_,_: 

7; 


