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Summary 

Large-sample methods of likelihood inference are examined for a 

simple model describing the spread of cancer cells. Attention focusses 

on the use of conditional methods which make appropriate use of the amount 

of information actually deliver•~d by an experiment. Numerical results are 

given to illustrate the performances of several methods of obtaining con­

fidence limits • 
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1. Introduction 

When likelihood methods are used to make inferences about parameters 

of a probability model, it is important to realise that the actual amount 

of information obtained in an experiment may differ appreciably from what 

is expected. This seems to have been duly noted by Fisher (1925), Bliss 

and James (1966) and a few others. Recently there has been theoretical 

research on the role of the observed information by Efron and Hinkley (1978), 

who consider in particular various "curved" exponential family models. One 

instance of such a model is given by Downham and Green (1976) in connexion 

with an experiment to measure the relative division rate of cancer cells. 

The purpose of the present paper is to describe and illustrate various 

likelihood methods of setting confidence limits for the unknown division 

rate in Downham and Green's model. One conclusion reached is that the 

likelihood ratio method is preferable, in the sense that it makes good 

use of the amount of information obtained and that reliable confidence 

coefficients are often obtained via the usual chi-square approximati~n. 

Section 2 outlines Downham and Green's sampling model and the associated 

likelihood. The sample information and approximat~ methods of using the 

information in obtaining con£ ide.nce limits are described in Section 3. 

Sections 4 and 5 deal with numerical results concerning the variability 

of information and performance c1f confidence limit methods for moderate 

sample sizes. 
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2. The Cancer Model and Its Likelihood 

Downham and Green (1976) describe a simple Markov model for the 

spread of cancer cells in a layer of competing normal cells, there being 

initially one cancer cell. According to the model, if Nt is the number 

of cancer cells after t cell divisions, irrespective of type, then 

N C N 1 + €t t t-
(t = 1,2, ••• ), 

where e:
1

, £
2

, • • • are independent ,md 

pr(E:t = +1) = n, pr(E:t = -1) = 1-n. 

(2.1) 

The ratio n/(1-n) = e is the relative division rate of cancer cells, and 

is the parameter of interest. If at some point N = O, then necessarily 
X 

Nt = 0 for t > x since no cancer •!ells can be produced thereafter. 

The unit experiment consider1~d by Downham and Green consists of observing 

{Nt} until either Nt = 0 or Nt = 1n, for some pre-assigned inte1~er m>2. This 

unit experiment is repea·ted n t:im,~s. The observations resulting from the 

replicated experiment are then (Xj,Yj), j=l, ••• n, where 

X = min{x:N = 0 or N = m} 
X X 

y = 

[

1 if Nx = m 

0 if N • 0 
X 

Note that if m = 2 then X = 1. 

(2.2) 

Elementary considerations show that the joint probability function of 

(X, Y) is 

f(x,y) = c(m,x,y)n½(x-l-+my) (1-n)½(x+l-my) , (2.3) 

since there must be a net gain of my-1 when we sum the x +1' s and -1' s. 

The model (2.3) is·a curved exponential family model (Efron & Hinkley, 1978, 

• 

,· ,-

-.. -
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Section 7) form> 2. The minimal sufficient statistic from then inde­

pendent unit experiments is then found to be 

(2.4) 

Notice that the likelihood for n, or 8, is the same as that for a simple 

binomial sample with 

number of trials• s 1 , number of +l's• ½(s1 + ms
2 

- n). 

Since S1 varies from sample to sample, the distribution of likelihoods is 

not the same as for simple binomial sampling, and the amount of information 

varies from sample to sample, as we shall see. 

Now consider inference about the parameter of interest, 8 ~ n/(1-n). 

The various methods we shall cons:lder involve the maximum likelihood estimate 
,,.. 
6, which is the unique stationary point of the 

,,.. s 1 + ms2 - n 
~ e = . =- ---s

1 
- ms

2 
+ n o-

Reduction of the sufficient data (s
1
,s

2
) to 8 alone must involve a loss 

of information, unless m = 2, ·but we shall see that some methods recover 

this lost information in a useful way. An essential point is that different 

samples with the same 8 contain different amounts of information, and it 

seems sensible to condition inference on the amount of infonnation actually 
error,.. 

observed when computing the standard pf e. 
3. Information and Informative Inference. 

In order to condition our inference about 8 on the actual information 

obta~ned, we first need to define information quantitatively. Next we need 
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to find an ancillary statistic A, with distribution approximately independent 

of e, which measures information. Conditional inferences will then be drawn • 

from the distribution of 0 given the sample value of A. 

The log-likelihood obtained from the replicated experiment described 

in Section 2 is, from (2.3) and (2.4) 

R, = R, (S) = a e constant+ ½s1{log8 - 2log(l+8)} + ½Jn,s
2
log8 - ½nlog8 • 

Successive derivatives with respect to 6 will be denoted by i8,i8
, etc. 

(3.1) 

For the unit experiment, corresponding derivatives will be denoted by 

i8(X,Y), etc. Then the observed Fisher information for (3.1) is defined as 

:::::: (3.2) 
28(1+8) 

in contrast to the expe~ted, or a:\Terage, Fisher information 

(3.3) 

For our particular model one can see quite easily that the pair (8,I) is 

equivalent to S, and so contains all the experimental information about 8. 

Further, if we standardize the observed information I we obtain an approximately 

ancillary measure of t~e informativenes~ of the experiment, namely 

A • ✓n(l - (3.4) 

where • •• 2 
[Cov{t8(X,Y),t8(X,Y)}] (3.5) 

Var{i
8 

(X, Y)} 

Efron and Hinkley (1978) show that for large n, A is approximately a standard 

normal variable. As the standardization in (3.4) suggests, the coefricient 

of v:iriation of I is ap;,roximately Ye/ ✓n, which as we shall see can ~I~ ~t1ite 

larcie• 

,. 

., 
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The sufficient data (S1,s2) has now been successively transformed 

first to (8,I) and then to (8,A), no information having been lost. If we 
2 dropped I or A, we would lose approximately y
8

16 units of Fisher informa-

tion. To condition inference about eon the value of the ancillary "informa­

tion indicator" A requires, in principle, that we find the exact distribution 

of 8 given A. However, for moderately large n there are simple approximations 

available, as described by Efron and Hinkley (1978). 

First, the pivot 

A A 

p (8,0) C ✓1(6-8) (3.6) 
C 

is approximately standard normal .given A. Second, the pivot 

LR(6,8) 0 2(ie - ta) (3.7) 

2 . 
is approximately x

1 
given A •. Both pivots may be used to set confidence 

limits in the usual way; for example, approximate 95% limits are 

values of 0 such that P (8,8) = +l.96 
C 

on 
Notice that methods based/Pc and LR do not require calculation of A, and that 

both use only characteristics of the observed likelihood. 

The conditional pivot Pc is to be contrasted with the unconditional pivot 

(3.8) 

which is approximately standard normal unconditionally for large n. This 

pivot does not take account of the observed information I. 

The likelihood ratio pivot LR has a potential advantage in that the 

inference will not depend on the particular_parametr.l.zation employed, whereas 

Pc would produce different results if we worked with~ rather that 8, for 

example. The particular choice of working parameter can, in principle, 
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be chosen to make the standard no1~al approximation for P as accurate 
C 

as possible. If the working parar1eter is denoted by 111, then two suggestions 

for choice of 1" are ( i) to make I '(llJ) = -:i; a const~nt (Efron and Hinkley, 1978), 
... ' 

(ii) to make E(-11")or -1; zero (~>prott, 1975). These suggestfons correspond 1t 

to variance stabilization and symmetrization techniques. Note that (ii) 

would tend to produce best agreement between LR and P, because LR - P2 is 
C G 

approximately proportional to -1. 

4. Variation of I in the Example 

To return to our example, we wish to show how well the various pivots 

work in the context of obtaining confidence limits for a. In order to 

do this we need to be able to compute the ancillary A defined by (3.4), 

which involves both ie and Ye· These two quantities are determined from 

standard properties of the random walk {Nt}, as described in theA.?pendix. 

Table 1 shows the values of ie and y8 when e = 1 for various values of m, 

from which it is evident that the standard error for I can be large. For 

exa1nple, with 8 =- 1, m :s 4 and n • 20, an approximate 95% range for I is 

This implies possibly large differences between P and P. Figure 1 illus-c u 

trates Ye as 8 varies form= 3, 5 and 10 showing that y tends to be largest 

near 0 = 1, whence P and P will disagree most often when e ~ 1. By way 
C U 

of comparison, the value of y for a Cauchy error model is about 1.6. 

Table 1. Unit information 1 and curvature y when 8 = 1 

m 2 3 4 5 7 10 20 50 

i 0.2s a.so o.75 1.00 1.50 2.2s 3.75 12.2s 

y 0 0.67 0.86 1.00 1.22 1.47 2.66 3.33 

Figure 1 here 

,. 

,. 
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5. Numerical Performance of Confidence Limit Methods Based on Pivots 

To illustrate the properties of confidence limits based on P, LR and 
C 

P, we have generated 10,000 samples for several combinations of e, m and 
u 

n. In each case samples have been grouped by interval values of A, and for 

each interval we have computed the frequency with which confidence liI:its 

covered the true a. This then gives a crude picture of the conditional 

coverage frequency as A varies. 

Figure 2 shows the resultin&t graph for the case (6, m, n) = (1.5, 5, 20) 

when approximate 95% confidence limits are sought. In this graph, as in 

others, we have plotted error rate, i.e. one minus coverage frequency, 

versus mean A value for each group of samples. The graph illt!strates the 

general tendency for P and LR tc• yield accurate confidence li.mits ~or 
C . 

most values of A, whereas the method based on P has coverage deviating 
u 

considerably from the average 95,: when I deviates from ni0. Figure 3 

shows similar effects for the ca!le (8, m, n) == (2.33, 5, 20). 

To an approximate degree th•~ p.erformance of P is predictable, if the 
u 

standard normal approximations for P, P and A are accurate, since IP l>l.96 
C U u-

is nearly the same as 

as may be seen from (3.4), (3.6) and (3.8). Using the normal approximations 

we have computed what the conditional error rates would be for the 95% con­

fidence limit method based on P at the "outer limits" A• +2, for various 
u -

values of y 
0
/ ✓i;,-'. These are given in Table 2. 

Figures 2,3 here 
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Table 2. Approximate values of the conditional error rates of 

the 95% method based on P~ when A=± 2. 

y8/ ✓n = c.v.(I) 

error rate at A• -2 

error rate at A= +2 

0 

5 

5 

0.1 

3 

8 

0.2 

2 

13 

0.3 

1 

22 

0.4 

<l 

38 

These figures should only be taken as rough guides, of course, but they do 

seem to give accurate indications of what is observed in Figures 3 and 4, 

where y8/ ✓n is about 0.2. 

A word of caution is necessary at this point. The results shown so 

far have not been seriously affec!ted by the discreteness of the values of 

8 and I, but in some cases the nc)]:mal and chi-square approximations for 

P and LR can be very inaccurate~ This will typically happen when the vast 
C 

majority of experiments-end with N = O, i.e. Y = O, as is the case if 
X • 

-1 
8<1 and m is large; pr(Y=O) >m when 8<1. Figures 4 and 5 illustrate this 

effect for nominal 95% confidence~ limits by contrasting the cases (8, m, n) a 

(1, 10, 20) and (3, 10, 20); only 1,000 samples were used here. The per­

formances of P and P are quite similar in Figure 5 because y6/ ✓n is 
C U 

considerably lower than for the cases in Figures 2 and 3. 

The distinction between conditional and unconditional methods is 

highlighted in Figure 4, where error rates vary from near 0% to about 

20% depending on A. The unconditional error rates are about 8%. Clearly 

in a case such as this there would need to be a rather detailE!,d evaluation 

of the conditional distribution 1)f 8 in order that erroneous conclusions 

be avoided. 

Figur~s 4,5 here 

,. 
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As we mentioned at the end of Section 3, the standard normal approxi­

mation for P can sometimes be i.I!lproved by suitable choice of working 
C 

parameter. Both suggestions that: we made there for transforming 6 are 

precluded here by mathematical complications, but inspection of 16 
1/3 ·~ 

suggests that for "1 1111 6 , the "skewness" E(-11") will be nearly zero. 

The pivot corresponding to P is 
C 

* Figure 6 compares the normal plots for P and P from 49 samples of the 
C C 

* case (6, m, n) = (1, 3, 20). Th:ls plot suggests superiority of P • Note 
C 

the evident bumpiness of the dis'tributions. For the difficult case~ 

* illustrated in Figure 4. results for P are very close to those for LR. This 
C 

should be true in general, since 

LR(8, 8) 

[Figure 6 here] 

In all of the cases illustrated above the observed distribution of A 

was very close to st_andard normal. 

6. Concluding Remarks 

For setting confidence limits, the use of the conditional pivotals 

P (8,8) and·LR(8,0) appears to give accurate results irrespective of the 
C 

actual information in the performed experiment. The same cannot be said 

of the unconditional pivot P (8,0). It is noteworthy that the condit!onal 
u 

methods agree with approximate Bayesian methods, and indeed share the pro-

perty that different sampling experiments with the same likelihood yield 
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,.. 
the same inferences. If confidence limits are to be based on a and 

an estimated standard error, thert it appears to be beneficial to choose 

the scale of 0 so that the third derivative of log likelihood is small; 

this choice is unnecessary when LR is used. 

It is interesting to note that the approximate normality of the 

pivotal P (0,8) may hold even whun P (0,8) is never approximately normal. 
C U 

This happens for long-term observation of the linear birth (Yule) process, 

as shown by Feigin and Reiser (1979). 

The approximate calculations of variability for observed information 

I (Section 4) may be of value in designing the experiment. For example, 

if in the cancer experiment all experiments with nm fixed were equally 

convenient (which is unlikely), then the choice mm 2 could.essentially 

guarantee the amount of information, since I has a very small standard 

error (y = 0). 

When discrete distributions are involved, as here, it is obviously 

important to learn as much as possible about the effect of the discrete­

n.ess on the large-sample approximations, no matter what method is used 

to obtain confidence limits. 

r 

,..-
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Appendix 

We outline here the derivations of various properties of the likeli-

hood 1
8 

(3.1). The main point to note is that successive deTivatives 

i
9

(x,Y), ••• are linear combinations of X and Y, which are defined in 

(2.2). Thus in computing 1
8 

and y8 
we need only to evaluate the joint 

first and second ~oments of (X,Y), which are well-known in the study of the 

simple random walk with absorbing barriers. The required moments can be 

obtained easily from the results 

and 

* and ~\ (z), A2 (z) are the solutions of zf (A) = l; see Cox and Miller (1965, 

Sections 2.2(ii) and 2.3{v)). Fo1t the special case 8 =· 1, i.e. ,r = 1/2, we 

find that 

E(X) = m-1, E(Y) 0 ;, Var(X) = m(m-l~ (m-2) 

m-1 Var(Y) = - 2-
m 

, Cov(X,Y) (m-1) (m-2) 
= --------3m ' 

The general moments are complicated and will not be given here. 
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