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ABSTRACT 

On Inadmissibility of Variance Estimators 

In Unequal Probability Sampling 

Examples are given of sampling designs for which the Yates-Grundy 

and Ajgaonkar's va~iance estimators are nonnegative, but inadmissible in 

the class of nonnegative unbiased quadratic estimators. A non-trivial 

posterior lower bound can be obtained for any nonnegative definite 

quadratic function of a finite population. An example is given to show that 

the Yates-Grundy estimator can take values smaller than this bound, even 

when the estimator is non-negative. 

Key words: Finite population, Variance of Horvitz-Thompson estimator, 

Yates-Grundy Estimator, Inadmissibility • 
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1. Introduction 

Consider a finite population of N units labelled 1,2, ••• iN• 

Let y1,y
2

, ••• ,yN be the values of some characteristic y for the 

N units, respectively. Assume the range of Y. = (y
1

,y2, ••• ,yN) to 

be RN. 

For a given sampling design, let 1Ti denote the inclusion probability 

of a unit i, and 1Tij denote the joint inclusion probability of units i 

and j, 1 ~i,j ~N. In particular, 1Tii = 1Ti. The well known ]orvitz­

Thompson estimator of the population total is 

(1.1) 

Restricting the discussion to fixed sample size designs, the­

variance of eHT can be expressed as 

V ( e._) = ½ I: ( 1T. 1Tj - 1T .. ) (z . - z . ) 
ti'J: • • l. l.J l. J 

i,J e:s 

2 
(1.2) 

Two unbiased estimators of V(7iT), proposed by Horvitz and Thompson 

(1952) and Yates and Grundy (1953) respectively, are 

and (1.3) 

(1.4) 

The Yates-Grundy estimator is usually preferred to vHT on the grounds 
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that it can be prevented from taking negative values by choosing a design 

satisfying the condition 

(1.5) 

No comparable result is available for vHT• In fact, it can b1a shown (see 

Remark 1), that vHT can take negative values for all designs :for which vYG 

can, and many more. The Yates-Grundy estimator has two addit:lonal desirable 

properties not shared by vHT. First, when z1= z2= 

vanishes, and as one might expect, vYG is identically zero. Second, vYG is 

invariant under a shift of origin of the z's, i.e., a transformation of the 

form (z
1

, z2 , ••• , zN) --> (z
1
+c, z2+c, ••• , zN+c). However, Godambe and Joshi 

(1965) showed that vHT is admissible, with respect to squared error loss, in 

the class of unbiased estimators of V(~T). Of course, it is not admissible 

among all estimators, in general, as it can take negative values. But rather 

surprisingly, the only available admissibility result for vYG is due to Joshi 

(1970), for sample size two, in the class of unbiased estimators. Examples 

1 and 2 show that for higher sample sizes, vYG can be inadmissible even in the 

narrower class of non-negative unbiased quadratic estimators. In Example 2, 

another variance estimator due to Ajgaonkar (1967) is also shown to be inadmissible. 

In Example 3, vYG is shown to take values smaller than a lower bound for V(eHT) 

obtainable from the sample. This provides an example of inadmissibility of 

v for n=2, in the class of non-negative quadratic estimators. Some results 
YG 

useful in the construction of these examples are given below. • 
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2. Some Useful Results 

Theorem (Vijayan 1975): An unbiased polynomial estimator v of 

V(eHT) can be non-negative for all z, only if it is of the form 

v(s) = r bsij<Pij 
i,j e:s 

(2 .1) 

and cpij (z -
2 

where b 1· are constants = z.) 
s J i J 

Remark 1: In his Corollary 1, Vijayan has c:laimed without proof, 

that vHT can take negative values f~r any sampling design. However, this 
I 

is not true, for most of the well known equal probability designs, 

including simple random sampling (s.r.s.) and stratified sampling with 

s.r.s. within strata. For these designs, both vHT and vYG coincide with 

the usual estimators, which are nonnegative. However, we can see from 

the following argument, that vHT is nonnegative only if it coincides with 

vYG (and the latter is nonnegative). If vHT is to be nonnegative, then 

it must be of the form (2.1). 

-1 
E {ni · - ,ri1rJ.) 1Tij • 

i . c- J ,J ~s 

That is, for some constants b .j , 
Sl. 

z.z. = 
l. J 

2 r b .. (zi - z.) • 
i,je:s Sl.J J 

(2. 2) 

Equating the coefficients of zizj on both sides of (2.2) gives the desired 

conclusion. 

k 
LEMMA 1. Let c1,c2, ••• ,ck be constants such that L C = O, and 

2 i=l i 
let cp •• = (z. - z.) • Then 

l.J l. J 

k k 
r cicj'P-. ~ o, with equality if and only if r c.z. ::I o. 

i,j=l l.J i=l l. l. 
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k 2 2 k 
.E c1c.(z.+ z.) - 2 .E c.c.z.z .• 

··1 Ji J i"lJ..JJ..J J..,J= ,J= 

k 2 
The first sum vanishes by hypothesis, and the second sum is -2( .E c.z.) • 

i=l J.. l. 

COROLLARY 1. <t>12 ~ 2(<t>13+ <t>23). 

This is a special case of Lemma 1 with k=3, c1 = c2 = 1, c3 = -2. 

that 

3. Inadmissibility Examples for n>2. 

Example 1: 

Let 3 ~ n ~ N/2. Consider a design p of f°ixed sample size n, such 

p(s) = a, ifs includes any of the units with labels 1, 2, ••• , n, 

= b otherwise, 

where a,b > 0 are to be suitably chosen subject to 

(N;n)·b + [<:) - <Nt>] a m 1, 

We have 

N-1 
1Ti = (n-1 )a, if i ~ n, 

= (N-n-l)b + fcN-1) _ (N-n-1)1 a, if i > n. 
n-1 tn-1 n-1 ~ 

1Tij 
= (N-2 n-2)a, if i or j ~ n, i :/: j , 

= (N-n-2)b + [<N-2) _ (N-n-
2

2~ a, if i and j > n, 1 f j. 
n-2 n-2 n- J 

(3.1) 

(3 .2) 

(3.3) 

' 

V 

~ . 

• 

.,.. 
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Choose 'aj, such that 

1T - 1T 1T = 0 for 1 < i r/: j < n. 
ij i j - -

a =- (N-2)/(N-1)2. 
n-2 n-1 

----

(3.4) 

N-n N / [ ] Frora (3.1) we get ( )(b-a) = 1 - ()a= (N-n) n(N-1) > Q. It follows 
n n ' 

that b-a>O, and hence b>O as required. 

It can be easily verified that (1.5) holds, and hence vYG is non­

negative. Irl pnrticular, for 1 ~ n and j > n, 

( -1 
1Ti1T j- ,rij) / 1Tij = (n-1) > O. 

Now consider another unbiased quadratic estimator vh defined a~ 

follows ( with h to be suitably chosen ) • 

Let s 1 = {1,2, ••• ,n }, s2 = {1,2, ••• ,n-1, n+l }, and 

vh{s) = vYG(s) + h~l2, if s=s1 , 

= VYG(s) - h$12, if s=s2 , 

:: vYG(s) otherwise. 

(3 .5) 

For any h, the unbiasedness of vh can be easily seen from E(vh- vYG) ~ O • 

V(vYG) - V(vh) =; p(s)[viG(s) - v!(s~ 

= = l: a rvYG(s} - vh (s)] [vYG(s) + vh (s)l 
s sl's2L1 'J 
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n-1 
V (s ) = L ( ' -1 d. 

YG 2 i=l Tri TTn+l - \, n+l J 1Ti, n+l • ,, i,n+l 

_1n-l 
= (n-1) i~l $i,n+l by (3.5) 

-1 
> (n-l) ($1,n+l + $2,n+l) 

~ $12' [2(n-l)] by Corollary 1. 

Hence, 

~ o, if O < h < 1/ [2 (n-1)] • 

Strict inequality holds whenever ct,, 2 ~ O, i.e., z
1 

~ z2 • 

Using Corollary 1, it is easy to see that for the above choice 

of h, v h is nonnegative. This shows that vYG is inadmissible among 

nonnegative unbiased quadratic estimators of V(~T), for the design in 

the example. 

The basic idea used in the example is simple. For the sample s1 , 

th,~ Yates- Grundy estimator has the value zero, which "common-sense" tells 

us to be too low. Hence, the alternative estimator increases the value of 

''YG for the sample s 1 and compensates for it elsewhere, to retain 

unbiasedness. A similar idea is used in the next example. 

, 

; 

• 

; 
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Example 2: 

Let N = 5, n = 4, and 

p(s) = 1/2, ifs= {1,2,3,4} 

= 1/8 otherwise. 

The following unbiased estimator of V(~) was proposed by 

Ajgaonkar (1967). 

[
N-2 ~ v A (s) • ½ ~ ( 1Ti ,rj- 1Tij) 4>1j / (n-2)p(s) • 

i,je: s 
(3. 6) 

For the above design, (1.5) holds, and hence vA and vYG are 

both nonnegative. However, both can be seen .to be inadmissible in the 

class of nonnegative unbiased quadratic estimators. 

Two estimators v1, v2 dominating vA and-vYG respectively, are 

given by 

v1(s)- vA(s) = v2(s)- vYG(s) = h¢>12, ifs= {1,2,3,4} 

and h>O to be suitably chosen. 

= -2h~12 , ifs= {1,2,3,5} or 

{1,2,4,5} 

= 0 otherwise,. 

After some simple algebra, we get 

V(vl) - V(vA) = ½h$12[ 3h$12- l/4s(3$12+<b13+4>23+$14+4>24-<P34) 

- l/ 6 <2$15+2$25+$35+$45)] • and 

V(v2) - V(vYG) = ½h$12 [ 3h$12+ l/4S($13+<l>23+$14+$24+2$34) 

- l/G(2$15+2$25+$35+$45)] • 
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It is easy to see that for h=l/72, 

V(v1) - V(vA).~ V(v2) - V(vYG) 

.~ 11144$12· 1124 [$12+<1>13+$23+$14+<1>24+<1>34 

-4($15+$25+$35+<1>45~ 

~ O, 

since the quantity inside the square brackets is nonpositive by Lemma 1, 

where. 

4. A Lower Bound For Nonnegative Definite Quadratic Forms. 

The following result from matrix algebra can be used to obtain a 

lower bound-for any nonnegative definite quadratic function of a finite 

population vector z, based on a sample of observations. 

Let z be a Nxl vector and A be an NxN symmetric nonnegative definite 

matrix. If z'= (yi, zi) and A is correspondingly partitioned as 

, then 

(4 .1) 

The result can be proved by veri~ying the identity 

t 

; 
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It may be noted that the bound given by (4.1) is the best possible, 

* based on y1 , because it is attained when z
2 

=- -A
22

A
21

z
1 

• 

Remark 2: If ,1.1 denotes the vector of the sample observations, then 

(4.1) provides a lower bound for z'Ay_, known after the sample is drawn. 

Thus it- seems reasonable to expect that any estimator of z' Az based on _y_
1 

·should be not only nonnegative, but also not smaller than the bound given by 

(4.1). Any estimator which fails to satisfy this would be inadmissible, not 

only with respect to "squared error loss", but with respect to any loss function 

which increases with the distance between the estimate and the "true value"·. 

The following example shows that the Yates-Grundy estimator can take 

values smaller than the lower bound obtainable from the sample. 

Example 3: 

Let N°3, n=2 and consider the design p, such that p({t,3}) = pti 2,3}) m 

• 2 and p ( { 1, 2 } ) = • 6 • _We have 1T 
1 

= 'IT 
2 

= • 8, 1T 
3 

= • 4, 7T 
12 

= • 6, 7T 
13 

= 7T 
23 

= • 2 • 

where 

Substituting in (1.2), we get 

2 2 2 
V(eHT) = .04(z1-z2) + .12(z1-z3) + .12(z2-z3) = Z' A~, 

The lower bound 

0.16 -.04 -.12 

and A= -.04 

-.12 

0.16 '-.12 

-.12 0.24 

for V(;iT) b~sed on the sample· { 1, 2} ~s, 

-:~:] -[=:~:] (0.24)-l (-.12,-121} [:~] 

-.10] [zl] 2 .10 Z2 • (Zl - Z2) /10 • 
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2 2 But, for s m' { 1,2}, vYG(s) • .04(z
1 

- z
2

) / .6 • (z
1 

- z
2

) /15, 

which is smaller than the above bound, except when z1 = z2• The estimator 

2 
which equals (z

1 
- z2) /10 for s =' { 1,2}, and agrees with vYG for other 

samples is uniformly better than vYG. This shows the inadmissibility of 

vYG for the above design, in the class of nonnegative quadratic estimators. 

5. Remarks 

Comparing expressions (1.2) and (1.4), we can see that the Yates-Grundy 

estimator is obtained by dividing the general term in the expression for 

V(71T) by the corresponding inclusion probability, and restricting the sum 

to the sample instead of the population. A similar process is used in con­

structing the H~rvitz-Thompson estimator 7iT of the populatio~ total. 

Although this is a neat way of constructing an unbiased estimator, the 

result may not always be a good estimator. We can rationalize 7iT with a 

superpopulation model under which the expected value of yi is proportional 

to ni. For example, Godmabe and Thompson (1973) have shown that eHT is 

optimal, in some sense, when y1/n1,y2/n2, ••• ,yN/nN are the realized values 

of exchangeable random variables. However, such a rationalization may not 

always be possible, and this is the case with vYG. It may be tempting to 

consider a model under which E [<ninj - nij)n~~~ij] is constant over all 

i~j. But such a model may not be consistent, because the~-- 's are subject 
1J 

to constraints such as given by Lemma 1. Thus the factors 
-1 

nij in case 

-1 
[p(s)] in case of vA are no more than arbitrary inflation 

factors, introduced to satisfy an algebraic relation (unbiasedness). Examples 

1 and 2 show that better unbiased estimators might exist for n>2. But 

for n=2, it is known (Lanke 1974) that vYG is the unique nonnegative unbiased 

estimator of V(~T). However·, in example 3, we see that vYG is not a reasonable 

estimator. This suggests that we must not restrict ourselves to estimators 

which are unbiased with respect to the sampling design. 

; 

• 
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