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In [1] the author and van Eeden considered, as prior distributions for

the cumulative, F, of the bio-assay problem, processes whose sample functions

are, with probability one, distribution functions.

The example we considered

there had the undesirable property that its mean, E(F), was singular with re-

spect to Lebesgue measure.

In fact, Dubin and Freedman [2] have shown that a

class of such processes, which includes the example we considered, has sample

functions F which are, with probability one, singular.

In this note, a class of such processes is given, which, with probability

one, have sample functions that are absolutely continuous with respect to

Lebesgue measure.
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With these definitions the following theorem, giving sufficient conditions

that F be absolutely continuous, can be stated.

Theorem. If there exists K < o, such that for every n,
1
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then, with probability one (P),
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i) and ii) hold.

Proof of i). Let Q = PXL on QXI (L = Lebesgue measure on I=[0, 1]).

Straight forward calculation establishes that, on QX[0, 1], fn is a

martingals (with respect to Q) such that Ean = 1. Therefore, by the
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martingale convergence theorem, Doob [3], £ = lim fn is defined, finite, with
n

probability one (Q). By Fubini's theorem i) follows.

The proof of ii) will be given in several steps.

A) [fn} is uniformly integrable (Q).

Proof.
1
/ £dQ = [dax [ £ I(f, > M)dP
[£ > M] 0o @
n
< f [ Ep(£2) ]zdx
1 2
< YK
v
1
B) [ f(x)dx s 1 with probability one (P).
0
1
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probability one (P), it must be that [ fdx = 1 with probability one(P).
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D) Forany t, Os ts1, F(t) = [ £(x)dx with probability one (P).
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Proof. f is a density since [ fdx = 1. By Scheffe's theorem
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This completes the proof of the theorem.

The corollary follows from the considerations,
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and, by hypothesis, this series converges uniformly in x. Therefore, EP[fi(x)]
1

converges uniformly in x, that is EP[fi(x)] <K and so is [ EP[fi(x)]dx.
0
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