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A CIASS OF DISTRIBUTION FUNCTION PROCESSES WHICH HAVE.DERIVATIVES 

Charles H. Kraft 

In [1] the author and van Eeden considered, as prior distributions for 

the cumulative, F, of the bio-assay problem, processes whose sample functions 

are, with probability one, distribution functions. The example we considered 

there had the undesirable property that its mean, E(F), was singular with re­

spect to Lebesgue measure. In fact, Dubin and Freedman [2] have shown that a 

class of such processes, which includes the example we considered,.has sample 

functions F which are, with probability one, singular. 

In this note, a class of such processes is given, which, with probability 

one, have sample functions that are absolutely continuous with respect to 

Lebesgue measure. 

Let (Z(~); k e (l,3,5, ••• ,2n-1), n=l,2, .•• ) be a completely independ-
2n 

ent set of random variables defined on (n, A, P) and such that 

Let 

and F (x) 
n 

a) 0 ~ Z(~) ~ 1 
2n 

b) EZ(~) 1 = 2 • 
2n 

{F(x), O ~ x ~ 1) be the process defined by F(x) = lim F (x), where 
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k ) . k) = F (- + (x- · n 
2
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k F has, except at--, a derivative, f, whose value is 
n 

2
n n 

f (x) 
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If xis written as x = 
e. (x) 

E -
1

- and k (x) is defined by 
i=l 2i n 

k (x) k (x)+l 
n < x < n , ( in what follows, x f _!c_, and, e. (x), k (x), will be 
2

n 
2

n 
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written as ei, kn.) then this derivative can be written as 

n 

f (x) 
n 

k.+1 l k. 
= IT 2[Z(-1-. )] -ei (1-z(--=) Jei 

2]. 2i 
i=l 

With these definitions the following theorem, giving sufficient conditions 

that F be absolutely continuous, can be stated. 

Theorem. If there extsts K < co, such that for every n, 

1 
J E[f2 (x)]dx < K 

0 n 

then, with probability one (P), 

for almost all x in (0, 1], to a finite limit, f. i) F' = f converges, 
n n 

t 
ii) F(t) = f f(x)dx, 0~t~l. 

0 

Corollary. If sup 
0 < k < 2n 

~ b, and Eb < co then 
n n 

i) and ii) hold. 

Proof of i). Let Q = PXL on nxI (L = Lebesgue measure on I=[0, 1]). 

Straight forward calculation establishes that, on nx[0, l], f is a 
n 

martingale (with respect to Q) such that EQfn = 1. Therefore, by the 
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martingale convergence theorem, Doob [3], f = lim f is defined, finite, with 
n n 

probability one (Q). By Fubini's theorem i) follows. 

A) 

The proof of ii) will be given in several steps. 

(f} is uniformly integrable (Q). 
n 

Proof. 

I 
[f > M] 

n 

1 

1 
f dQ = n 

f dx ff I(f > M)dP 
0 n n n 

1 1 

~ f [ _! E ( f 2 ) ]2dx 
O M P n 

~ 

~ 

1 

VM 

IT 
nr 

r - -
~ f Ep{f!)dx 

B) J f(x)dx ~ 1 with probability one (P). 
0 

1 
Proof. Let T = [w: J f(x)dx > 1]. It follows from A) and the 

0 

martingale convergence theorem that fl£ - fldQ -+0, so that J £ dQ -+J fdQ. 
n A~ n A~ 

However, 

J £ dQ = f dP 
AXI n A 

and I fdQ = I dP 
AXI A 

Therefore, P(A) = O. 

1 

1 
J f dx = 

0 
n 

1 
I fdx > P(A) 

0 

C) f fdx = 1 with probability one (P). 
0 

P(A) 

if P(A) > 0. 

Proof. Since /lfn- fldQ -+0 and J £ dQ= 1 it follows that 

J fdQ = 1. However, 

n 

1 
f fdQ = f dP f fdx and since, by B) 

0 
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1 
probability one (P), it must be that J fdx = 1 with probability one(P). 

0 

t 
D) For any t, 0 ~ t ~ 1, F(t) = f f(x)dx with probability one (P). 

0 

1 
Proof. f is a density since f fdx = 1. By Scheffe's theorem 

0 

fl£ - fldx ~o n 
which implies that 

0 

t 
I f dx 

n 

This completes the proof of the theorem. 

t 
~ l 

0 
fdx. 

The corollary follows from the considerations, 

which converges if 

converges. 

k.+ 1 1-e. k. e. 
E{l-4[{E[Z2 (-

1
-.-)]} 1. {E[l-z(.....;)]2) 1. ]} 

21. 21. 

Since E[Z(~)] = ½ 
2n 

k.+ 1 1-e. 
4 I: a2 [ f z ( 1. ) ) 1. 

2i 

this last sum is 

k. e. 
{1-z(--;)J 1.J, 

21. 

t 
But I£ dx=F (t)~F(t). 

0 
n n 

and, by hypothesis, this series converges uniformly in x. Therefore, Ep[f!(x)] 

1 
converges uniformly in x, that is EP[f!(x)] <Kand so is f Ep[f:2 (x) ]dx. 

0 n 
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