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A CIASS OF DISTRIBUTION FUNCTION PROCESSES WHICH HAVE.DERIVATIVES 

Charles H. Kraft 

In [1] the author and van Eeden considered, as prior distributions for 

the cumulative, F, of the bio-assay problem, processes whose sample functions 

are, with probability one, distribution functions. The example we considered 

there had the undesirable property that its mean, E(F), was singular with re

spect to Lebesgue measure. In fact, Dubin and Freedman [2] have shown that a 

class of such processes, which includes the example we considered,.has sample 

functions F which are, with probability one, singular. 

In this note, a class of such processes is given, which, with probability 

one, have sample functions that are absolutely continuous with respect to 

Lebesgue measure. 

Let (Z(~); k e (l,3,5, ••• ,2n-1), n=l,2, .•• ) be a completely independ-
2n 

ent set of random variables defined on (n, A, P) and such that 

Let 

and F (x) 
n 

a) 0 ~ Z(~) ~ 1 
2n 

b) EZ(~) 1 = 2 • 
2n 

{F(x), O ~ x ~ 1) be the process defined by F(x) = lim F (x), where 
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k ) . k) = F (- + (x- · n 
2
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F (k+l) - F (~) 
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k F has, except at--, a derivative, f, whose value is 
n 

2
n n 

f (x) 
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If xis written as x = 
e. (x) 

E -
1

- and k (x) is defined by 
i=l 2i n 

k (x) k (x)+l 
n < x < n , ( in what follows, x f _!c_, and, e. (x), k (x), will be 
2

n 
2

n 
2
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written as ei, kn.) then this derivative can be written as 

n 

f (x) 
n 

k.+1 l k. 
= IT 2[Z(-1-. )] -ei (1-z(--=) Jei 

2]. 2i 
i=l 

With these definitions the following theorem, giving sufficient conditions 

that F be absolutely continuous, can be stated. 

Theorem. If there extsts K < co, such that for every n, 

1 
J E[f2 (x)]dx < K 

0 n 

then, with probability one (P), 

for almost all x in (0, 1], to a finite limit, f. i) F' = f converges, 
n n 

t 
ii) F(t) = f f(x)dx, 0~t~l. 

0 

Corollary. If sup 
0 < k < 2n 

~ b, and Eb < co then 
n n 

i) and ii) hold. 

Proof of i). Let Q = PXL on nxI (L = Lebesgue measure on I=[0, 1]). 

Straight forward calculation establishes that, on nx[0, l], f is a 
n 

martingale (with respect to Q) such that EQfn = 1. Therefore, by the 
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martingale convergence theorem, Doob [3], f = lim f is defined, finite, with 
n n 

probability one (Q). By Fubini's theorem i) follows. 

A) 

The proof of ii) will be given in several steps. 

(f} is uniformly integrable (Q). 
n 

Proof. 

I 
[f > M] 

n 

1 

1 
f dQ = n 

f dx ff I(f > M)dP 
0 n n n 

1 1 

~ f [ _! E ( f 2 ) ]2dx 
O M P n 

~ 

~ 

1 

VM 

IT 
nr 

r - -
~ f Ep{f!)dx 

B) J f(x)dx ~ 1 with probability one (P). 
0 

1 
Proof. Let T = [w: J f(x)dx > 1]. It follows from A) and the 

0 

martingale convergence theorem that fl£ - fldQ -+0, so that J £ dQ -+J fdQ. 
n A~ n A~ 

However, 

J £ dQ = f dP 
AXI n A 

and I fdQ = I dP 
AXI A 

Therefore, P(A) = O. 

1 

1 
J f dx = 

0 
n 

1 
I fdx > P(A) 

0 

C) f fdx = 1 with probability one (P). 
0 

P(A) 

if P(A) > 0. 

Proof. Since /lfn- fldQ -+0 and J £ dQ= 1 it follows that 

J fdQ = 1. However, 

n 

1 
f fdQ = f dP f fdx and since, by B) 

0 
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1 
probability one (P), it must be that J fdx = 1 with probability one(P). 

0 

t 
D) For any t, 0 ~ t ~ 1, F(t) = f f(x)dx with probability one (P). 

0 

1 
Proof. f is a density since f fdx = 1. By Scheffe's theorem 

0 

fl£ - fldx ~o n 
which implies that 

0 

t 
I f dx 

n 

This completes the proof of the theorem. 

t 
~ l 

0 
fdx. 

The corollary follows from the considerations, 

which converges if 

converges. 

k.+ 1 1-e. k. e. 
E{l-4[{E[Z2 (-

1
-.-)]} 1. {E[l-z(.....;)]2) 1. ]} 

21. 21. 

Since E[Z(~)] = ½ 
2n 

k.+ 1 1-e. 
4 I: a2 [ f z ( 1. ) ) 1. 

2i 

this last sum is 

k. e. 
{1-z(--;)J 1.J, 

21. 

t 
But I£ dx=F (t)~F(t). 

0 
n n 

and, by hypothesis, this series converges uniformly in x. Therefore, Ep[f!(x)] 

1 
converges uniformly in x, that is EP[f!(x)] <Kand so is f Ep[f:2 (x) ]dx. 

0 n 
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