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SUMMARY 

This paper organizes in a ~ystematic manner the major features of a general 

theory of m-tone rows. A special case of this development is the twelve-tone 

row system of musical composition as introduced by Arnold Schoenberg and his 

Viennese school. The theory as outlined here applies to tone rows of arbitrary 

length, and can be applied to microtonal composition for electronic media. 

Key words: 12-tone rows, m-tone rows, inversion, retrograde, retrograde-inversion, 

transposition, set-complex, permutations. 

Short title: Schoenberg's Tone . Row System. 



. , 

- , -.-· 



~ 

.. 

1. Introduction. Musical composition in the twentieth century has been 

enlivened by Arnold Schoenberg's introduction of a structured system which em­

phasizes.its serial and atonal nature. Schoenberg called his system "A Method 

of Composing with Twelve Tones which are Related Only with One Another" (12, 

p. 107]. Although Schoenberg himself regarded his work as the logical outgrowth 

of tendencies inherent in the development of Austro-German music during the 

previous one hundred years, it has been criticized as purely "abstract and 

mathematical cerebration" and a certain amount of controversy still surrounds 

the method. 

The fundamental building-block in Schoenberg's system is the twelve-tone 

!2!!, a specific linear ordering of all twelve notes--C, CU, D, Eb, E, F, FU, 

G, G#, A, Bb, and B--of the equally tempered chromatic scale, each note 

appearing once and only once within the row. A work, or section of a work, 

based on a particular twelve-tone row (usually designated as the original or 

prime) is permitted to include all possible transpositions of the prime, 

together with those of its retrograde, its inversion, and its retrograde­

inversion. (See the next section for explanations of this terminology.) 

Furthermore, each note can be stated in any register. Theoretically, no 

note is more important than any other note, and none of the four forms has 

primacy over the other three. 

Although certain modifications have been made to this set of rules in 

recent years, the basic principles have been followed fairly faithfully. Notable 

composers who have used the twelve-tone row system in their musical compositions 

include Alban Berg, Anton Webern, Karlheinz Stockhausen; Pierre Boulez, Igor 

Stravinsky, and Milton Babbitt. A more detailed description and· a critical 

examination of the method may be found in Perle [11]. 
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The aim of this paper is to present the algebraic flavour and structure
1
of 

Schoenberg's system of musical composition. Numerous studies have appeared 

in the musical literature dealing with various music-analytic properties of 

twelve-tone rows, most notably those of Milton Babbitt ([1], [2], [3), (41, and 

[5]), who has given the subject a ~reat deal of its nomenclature. However, none 

of these studies has attempted to determine the number of twelve-tone rows which 

possess certain interesting properties, such as being invariant under any ofi 

I 
the operations of transposition, retrograde, inversion, or retrograde-invers!lon. 

I 

The interrelationships between the four forms of the prime twelve-tone row can 

be studied through the set-complex, an ingenious tool devised by Babbitt in l[l]. 

Each twelve-tone row generates its own set-complex which contains all of it~ 

various forms; it is of interest, therefore, to determine how many distinct 

set-complexes are generated by the complete set of all 12! twelve-tone rowsj 
I 

i 

Such questions are of considerable importance to the musician who wishfis 

i to compose in the twelve-tone row genre. In order to answer these questions, 
I 

we analyse the twelve-tone row system within the more general framework of J-tone 
I 

rows, where mis an arbitrary integer. The elements of such an m-tone row Jre 
-- I 

I 

some permutation of the notes of an m-tone scale. The advantages of such aj 

generalization are not only mathematical; with the advent of electronic music 

I produced by a suitably programmed computer or synthesizer, the study and co,position 
I 

of microtonal works in which intervals between notes are smaller than a semi-
I 

tone is now feasible. 

A list ot ~ll twelve~one com~ositions by Schoenberg 

associated twelve~tone rows may oe found in {10]. 
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2. Notation. For notational simplicity and technical ease, we shall 

substitute the integers 0 through m-1 for the ordered succession of m ascending 

notes that constitute the m-note scale in question. Such a representation is 

standard for twelve-tone row theory (where mm 12; see Chapter 1 of Perle (11]) 

and is probably necessary for the theory of microtonal composition. 

Let m > 2 be an integer and let 

(

0 1 2 
(1) ~ - . 

. .,r O ,r 1 ,r 2 

••• 

. . . 
'II m-!.) , 
m-1 

be a permutation of Z. • {o, 1, ..... , m-1}. 
m 

Then n is called an m-tone row 

(or m-phonic sequence). The set of all ml m-tone rows is denoted by P. 
m 

example, the twelve-tone row 

n - (: 
1 2 3 4 5 6 7 8 9 10 11), 

10 3 114601 7 8 2 5 

which can also be written in the familiar cycle notation as 

Il • (O 9 8 7 110 2 3 11 5 6)(4), 

appears in Schoenberg's Violin Concerto of 1936. 

(*) 

We now define three operations on n. Let a be the cyclic permutation 

For 

(0 1 ••• m-1), which corresponds to raising each tone by one unit. Then, the 

transposition of n by the integer a is them-tone row naa. Thus, the trans­

of n in(*) above by 3 yields the twelve-tone row 

3 (0 1 2 3 4 5 6 7 8 9 10 11) 
~ -

0 162793410 11 5 8 

a (0)(1)(2 6 3)(4 7)(5 9 11810). 

Next, let 8 be the permutatio~ (0 m-1)(1 m-2)(2 m-3)••••, which corresponds to 

~ reversing the order of the elements. Then, the retrograde (or crab) of Il is 

them-tone row sn. Thus, the regrograde of n in(*) above is 
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(

0 1 2 3 4 5 6 7 8 9 10 11) 
an -

5 2 8 7 106411310 9 

• (0 5)(12811 9 3 7 4)(6)(10). 

Note that s2 • 1. Finally, let y be the permutation (1 m-1)(2 m-2)(3 m-3)• ••.­

Then the negative of n is them-tone row Ily. The negative of n in(*) above 

is 

(

0 1 2 3 4 5 6 7 8 9 10 11) 
ny. 

3 2 9 1860115410 7 

• (0 3 1 2 9 4 8 5 6)(7 11)(10). 
' 

-1 Note that r,:y • ya • 
i 

The inversion of an m-tone row n is now them-tone ror 

Ila.;. 21r Oy ( • nya 211' O) • For then in (*).above, the inversion is 

6 (0 1 2 3 4 5 6 7 8. 9 10 11) 
Ila y m 

9 8 3 7 2 0 6 5 1110 4 1 

• (0 9 10 4 2 3 7 5)(1811)(6). 

It is worth noting that this last definition is not the usual way in which 

inversion is defined. Perle [11, p. 3], for example, calls the negative of. a 

tone row n the inversion of n. However, for certain reas~ns which will becpme 
• ! 

I 

apparent later, we wish to set the first element of the inversion of n equal 

to the first element of n itself. This requirement leads naturally to the ~bove 
I 

alternative definition. The retrograde-inversion (or crab-inversion) of nl is 

the retrograde of the inversion of n and is them-tone row ana-21r0y. Thus 

the retrograde-inversion of n in(*) above is 

6 (0 1 2 3 4 5 6 7 8 9 10 11) 
SIIa y • 

1410 11 5 6 0 2 7 3 8 9 

• (0 1456)(210_~ 7)(3 11 9). 

It will be convenient to use the following abbreviated version of an m-tone row 
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n in the discussion below. Instead of writing Il in the form (1) above, we shall 

henceforth write either 

or simply 

••• ff 1' m-

the permutational ordering of the elements being understood. 

The following results are now straightforward consequences of the above 

definitions. 

(i) The retrograde of a transposition is the same transposition of the 

retrograde; i.e., S(Ilaa) • (Bil)a8
• 

(ii) The inversion of a transposition is the same transposition of the 

inversion; i.e., (Ilaa)a-2(no+a)y = (Ila-2w0y)aa. 

(iii) The retrograde-inversion of a transposition is the same transposition· 

of the retrograde-inversion; i.e., 

B(Ilaa)a-2(no+a)y • (Sila-2w0y)aa. 

Furthermore, because of the way in which we have defined the inversion of Il, the 

retrograde of the inversion·of Il is not in general the same as the inversion of the 

retrograde of Il; i.e~, 

(iv) S(Ila-2w0y) • Silya2wo P Silya2wm-1 • (Bil)a-~wm-ly 

unless mis even and 1nm_1-n01 • m/2. On the other hand, however, the usual definition 

of the inversion of n, namely Ily, always results in their equality. 

3. The.set-complex. The four forms of an m-tone row and them transpositions 

of each form can be related to each other in the following useful way. The 

set-complex, C(Il), corresponding to a particular m-tone row Il is the set of 

a a -2Wn..
1 

a -2wn... a all m-tone rows of the four forms Ila ,sna 'Ila -ya' and sna --ya' and may 

6 



be represented as an m x m square (hence . the symbol C (Il)) whose entries ar~ ar­

ranged in a "checkerboard" fas?ion as follows. Along the top line write tne 

original m-tone row n. Next, write them-tone row corresponding to the inJJ

1

ersion 

-21Tn..~ of IT, namely l(Il) • Ila -~. down the first column; from the way we have d 
1
fined 

the inversion of II, the starting element of both IT and its inversion will ~e 
I 

the same. The square iscompleted by writing in each line the transpositio, of 

n which starts with the element of the inversion in the first column. As an 

example we give the set-complex of Schoenberg's Fourth String Quartet for Jbich 

ma 12: 
I 

0 1 2 3 4 s 6 7 8 9 10 11 

n 2 1 9 10 5 3 4 0 8 7 6 11 

Ila 3 2 10 11 6 4 5 1 9 8 7 0 

na5 7 6 2 3 10 8 9 5 1 0 11 4 

na4 
6 5 1 2 9 7 8 4 0 1110 3 

nag 1110 6 7 2 0 1 9 5 4 3 8 

nall 1 0 8 9 4 2 3 11 7 6 5 10 

nal0 0 11 7 8 3 1 2 10 6 5 4 9 

na2 4 3 11 0 7 5 6 2 10 9 8 1 

na6 8 7 3 4 11 9 10 6 2 1 0 5 

na7 
9 8 4 5 0 10 11 7 3 2 1 6 

na8 10 9 s 6 111 0 8 4 3 2 7 

na3 s 4 0 1 8 6 7 3 1110 9 2 

The rows reading from left to right give all 12 transpositions of IT; the co~umns 

,# 

· -21r0y I reading from top to bottom give all 12 transpositions of I(Il) • !Ia ; thi. • 

rows reading from ;righ~ to left give all 12 transpositions of R(Il) • SIT; ana the 

I -21J'n..~ columns reading from bottom to top give all 12 transpositions of RI(Il) a SIT~ ,. 
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Notice that the elements of such a "checkerboard" representation form a 

Latin Square (see [ 6]). However, this square array is just a convenient method 

of writing down all of the 4m possible m-tone rows that can be generated from a 

given m-tone row, and is not of any special interest by itself. The fact that 

C(Il) is a Latin Square is not used in the remaining sections of this paper. 

Duplications of m-tone rows within a given set-complex will now occur if 

any of the following relationships hold for some a: 

(1) a II • Ila 

(2) IT • arraa 

(3) Il • rra-2n0yaa 

(4) Il • srra-2n0yaa 

(S) SIT• Ila-2~0yaa 

(6) srr • srra-2n0yaa 

(7) na-2w0y a BIIa-2w0yaa. 

These relationships express the possible invariance properties of an m-tone row under the 

operations of transposition, retrograde, inversion, retrograde-inversion, and 

of all combinations of such operations. The question is now which of these 

invariances can occur and which cannot, and of these that can, to characterize 

them and determine their exact number. 

Clearly, an m-tone row can never be a nonzero transposition of itself; 

i.e. Il p Ilaa if a mod m; O. Moreover, an m-tone row can never be a transposition 

of its own inversion; i.e. for all a, Il p Ila-2n0yaa. For, if n = Ila-2n0yaa 

• Ilya2no+a, then ya a-2no-a, which is a contradiction. Relation 

(6) can also never occur since (3) can never occur. This eliminates the pos­

sibilities of (1), (3), and (6) above. 

On the other hand, if an m-tone row IT is a nonzero transposition of its 

own retrograde (i.e. (2) holds), then mis even and n is the transposition of 
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that retrograde by m/2. For~suppose that Il • Bilaa. Then 8Il • Itaa, whence 

Il • Ita2a and 2a mod m • O. This last implies that m is even and that a mod 
1
- • m/2, 

as asserted. With regard to (4) above, an m-tone row will be a transpositidn 

C -of its own retrograde-inversion if and only if n • Bilya for some c e z; further-
m 

more, if mis even, then c will be odd. To see this, note that 

m-1 
l ffi • m(m-1)/2 = m/2 (mod m). 

iaO 

If Il • Bilyac holds, then ffi = c - nm-l-i (mod m), 0 ~ i ~ · (m/2)-1, and so 

m-1 
I ffi = mc/2 (mod m). 

i•O 

i 

Thus c is odd as asserted. Relation (5) follows directly from (4), while (1) (with a 

replaced by -a) follows from (2), Finally, statements (2) (that n is a tralsposition of 

its own retrcgrad8) and (4) (that n is a transposition of its own retrogradi-inversion), 

are mutually-exclusive by ~irtue of the fact that (3) can never occur. j 
From the above results, we make the following observations. The set-c,mplex 

i 
D(Il) corresponding to a particular m-tone row n by definition contains 4m 

m-tone rows. The above results suggest, however, that for certain rows n, the 

number of distinct m-tone rows contained inC(Il) may be smaller than 4m. 

i Indeed, we have seen that duplications will occur in [](Il) if and only if the m-tone 
I 

row n satisfies either of the following two conditions: ll 

m/2 (1) mis even and Il • ana , 
. C -(2) Il • Bilya, for some c e Z; and if mis even, then c mu t be odd. 

Sections 4 and 5 below are concerned with themdetermination of the exact nlber 
I 

I of m-tone rows for which conditions (1) or (2) hold. Moreover, the above remarks 
I 

allow us to examine cases (1) and (2) separately. 
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4. Results form even. Let m > 2 be an even integer throughout this section. 

We will sometimes write 2k form. 

THEOREM 4.1. There.!!.!. exactly 2~1 m-!2!!!, ~ n for which n • SIIak. 

Proof. k n - sna if and only if n is of the form 

Il • (,r0, 1r1, • •., 1Tk-l' ·c1rk_1+k)mod m, ••• , (1r1+k)mod m, (1r0+k)mod m). 

All such sequences may be generated without repetition according to the following 

two-step process. For each i • O, 1, ••• , k-1: (i) successively, for 

j•O, 1, ••• , k-1, choose the pair of positions 1r1 and 1r2k-l-i to be occupied 

by the pair of values j and j+k; then, (ii) for each j • 0, 1, ••• , k-1, decide 

whether 1r1 • j and 1r2k-l-i • j + k, or whether 1Ti • j + k and 1r2k-l-i • j. 

There are kl possible results of step (i), and for each of those there are 2k 

possible results of step (ii). a 
THEOREM 4.2. There~ exactly k2~1 m--™ ~ n for which there exists 

- C .!!!. odd constant c e: Zm such ~ JI a 81Iya • 

Proof. We first prove that there are 2~1 m-tone rows JI for which 

JI• BIIya. Now, this latter equality holds if and only if JI is of the form 

Il • (,r0, 1r1, ••• , ,rk-l' (1 - 1Tk_1)mod m, ••• , (1 - 1r1)mod m, (1 - ,r0)mod m). 

All such sequences may be generated without repetition according to the following 

two-step process. For each i • 0, 1, ••• , k-1, (i) successively, for 

j • 1, 2, ••• , k, choose the pair of positions 1r1 and 1r2k-l-i to be occupied 

by the pair of values j and (1 - j)mod m; then (ii) for each j • 1, 2, ••• , k, 

decide w~ether ,ri a j and 1r2k-l-i m (1 - j)mod m, or whether 1Ti • (1 - j)mod m 

and 1r2k-l-i • j. There are kl possible results of step (i), and for each of those 

there are 2k possible results of step (ii). To complete the proof, observe that 
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R • Bilyac holds if and only if na-d • BIIa-dya, where c • 2d + 1. 

for c (that is, ford) gives the factor of kin k2~1. • 

I 

-1 

I 

The k chbices 

An important example of a composition in which the prime twelve-tone tow 
I 

n is a transposition of its own retrograde-inversion is that of Schoenbergls 

Suite, Op. 29, written in 19i6. The twelve-tone row in question, transposed by 9 

! . so that its first note is C (or 0), is 

Ila (O, 1, 4, 5, 8, 9, 2, 3, 6, 7, 10, 11); 

in this case, ll • Silya11• (Note also that for this example the sequence oJ 11 
I 

intervals between the 12 notes, namely (1, 3, 1, 3, 1, S, 1, 3, 1, 3, 1), is 
I 

symmetric. Similar relationships between intervals and notes are explo~ed 11n 
detail in [ 7] • ) 

Contained in the above theorems is the following: 
· k I 

COROLLARY 4.3. There!!!_ exactly 2 (k+l) I m-!2!!!, ~ n for which 001) 

l!!! fewer El!!!!. 4m distinct members, ~in!!!£!!. cases, the cardinality~ I 

acn) is 2m. 

THEOREM 4. 4. If D (P. ) • { 0 (Il) : n e P } , then Cl (P ) has cardinal! ty1 
- m m- m -

1 

(ml+ 2k(k+l)l)/(4m). 

Proof. Let us say that two m-tone rows Il and Il~ are equivalent if 

Cl(R) • Cl(R~). The number of equivalence classes is then the cardinality lf 

Cl(Pm). Now, Il and n~ are equivalent if and only if (at least) one of the 

following four statements holds for some a e Z: (i) n~ • Ila8
; 

m 

(ii) Il~ m Bilaa; (iii) Il~ a Ila-2n0yaa; (iv) Il~ • Sila-2nOyaa. Let G be th~ 
I 

group of 4m different permutations a1 with 1 < l < 4 and a E Z given by ,a m 

a · II+ IIa
8 

1 . ,a 

a2 : II+ Bila8 

,a 
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The group operation here is composition of functions. It is easily verified that 

G is indeed a permutation group, and that the equivalence relation induced by G 

on P results in the equivalence of n and IT# if and only if O(Il) = [J(Il#). 
m 

According to Bumside's Lemma (cf. [ 9, p. 136]), the number of equivalence classes 

is 

I ,P(a)/ IGI, 
aeG 

where JGJ is the order of G (here IGI • 4m) and w(o) is the number of elements 

of P which are invariant under a. Clearly, ,P(a1 0) • IP I• ml and ,P(a
1 

) • 0 m , m ,a 

if a; O. Furthermore, w(o2 ) • 0 unless a• m/2, in which case ,P(a
2 

) ,a ,a 

• ,P(a2,m12) a 2~! by Theorem 4.1. Similarly, ,P(a3,a) • 0 for all a. Finally, 

m-1 
L ,P(a4 8) a k2~1 by Theorem 4.2. Thus, the number of equivalence classes is 

a•O ' 

I a(P >I· (ml + 2~! + 1t211t!)/(4m) • (ml + 2k(k+l) l)/(4m). • 
m 

THEOREM 4. 5. The cardinality of { CJ (Il) : II e Pm ~ ( 0 (Il) I < 4m} m { C (II): II e Pm 

and I [J(II)I • 2m} is 2k-l(k+l)l/m. 

Proof. Similar to that of Theorem 4.4. • 

5. Results form odd. Let m > 2 be an odd integer throughout this section. 

We shall sometimes write 2k+l form. 

THEOREM 5.1. There a~e precisely m2~1 m-tone !.2!! II for which there exists 

- C a constant Ce z such that n a BIIya. - . m----

Proof. We first prove that there are 2~! m-tone rows Il for which n a Bily. 

Indeed, Il • BIIy if and only if Il is of the form 
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All such sequences may be generated without repetition according to the following 
! 

two-step process. For each i • 0, 1, ••• , k-1: (i) successively, for 

I 

j • 1, 2, ••• , k, choose the pair of positions ,ni and ~m-l-i to be occupiel 

by the pair of values j and -j mod m; then, (ii) for each j • 1, 2, ••• , k, 

decide whether ,ri a j and ,rm-l-i • -j mod m, or whether ,ri • -j mod m and I 

,rm-l-i • j. There are kl possible results of step (1), and for each of thdse 

there are 2k poaaible results of step (ii), To complete the proof, notice I 

C -d -d I that II• SIIya if and only if na • ena Y, where c • 2d mod m. Them chofces 

ford (and hence for c) give the factor of min m2~1 • 

Corresponding to Corollary 4.3 we have: 

COROLLARY 5.2. There.!!! exactly m2~1 m-tone ~ II for which Cl(II) h!!, 

I fewer than 4m distinct members, and in ~ cases the cardinality of O (II) tl.s 2m. 

k "k-2 
THEOREM 5.3. D (l'm) has cardinality (ml + m2-ld)4m = (m - 1) !/4 + 2 ! kl. 

Proof. Use Burnside's Lemma as in the proof of Theorem 4.4. • 
I 

THEOREM 5. 4. The cardinality of { C] (II) : II e l' m and I Cl (II) J < 4m} • { D :en) : II e Pm 

and f O (II) I • 2m} is 2k-lkl • 

Proof. Similar to that of Theorem 4.5. • 

6. Examples. 

in Sections 4 and 5. 

In this section we illustrate the results of the theoresi:is 

Example 1: There are exactly 6 three-tone rows II for which II• 

for some a. They are (using the method of proof of Theorem 5.1): 

(2, O, 1), (2, 1, O), (O, 1, 2), (0, 2, 1), (1, 2, 0). These are all 

I 

ana-21rt°a 
(1, o, 2), 

the tliree-
1 

i 

tone rows. For ell 6 three-tone rows it is true (cf. corollary 5. 2) that Din) 
has 6, n~t 12, distinct members. According to Theorem 5.3, there is 

1-2 (3 - 1) 1 / 4 + 2 . 1 I • 1 set-complex in D (l' 3), and Theorem 5. 4 again assures 

us that it has only 6 members. Of course, the only set-complex is the abovl set of 
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6 three-tone rows. It may be written in the following form: 

0 1 2 

1 0 2 

2 1 0 

0 2 1 

Example 2: There are exactly 8 four-tone rows n for which n • BIIaa, and 

in all these cases a• 2. They are (using the method of proof of Theorem 4.1): 

j Ill - (0,1,J,2), II • (0,3,1,2), II3 a (2,1,3,0), II4 • (2,3,1,0), 
(1) 2 

tn - (l,0,2,3), n6. (3,0,2,1), II • (1,2,0,3), II • (3,2,0,1). 
5 7 8 

There are exactly 16 four-tone rows II for which n = -21r0y a ena a for some a. They 

are (using the method of proof of Theorem 4.2): 

(2) 

co,2,3,1), n10 - co,J,2,1), rr11 - c1,2,3,o), n12 - c1,3,2,o), 

(2,0,1,3), II14 a (3,0,1,2), IIlS a (2,1,0,3), n16 • (3,1,0,2), 

(1,3,0,2), n18 • (l,0,3,2), rr19 • (2,3,0,1), rr20 • (2,0,3,1), 

(J,1,2,0), n22 - co,1,2,J), n23 - (J,2,1,0), n24 - co,2,1,J). 

Notice that the set (1) of four-tone rows is disjoint from the set (2). For 

all 24 four-tone rows II, it is true (cf. Corollary 4.3) that IJ(II) has 8, not 16, 

distinct members. According to Theorem 4.4, there are (41 + 22(2+1)1)/4•4 • 3 

distinct set-complexes in O(P4), and Theorem 4.5 again assures us that each 

of the three has 8, rather than 16, distinct members. The· three set-complexes 

are those sequences in (1) plus 

{II9,II17'Il13'II21'II24'II12'Il20'II16} and {IllO'Ill8'IllS'n23'Il22'Illl'lI19'Il14}. 

These three set-complexes can be written in the following form: 

14 



0 1 2 3 

0 1 3 2 

3 0 2 1 

l 2 0 3 

0 1 2 3 

0 2 3 1 

2 0 1 3 

l 3 0 2 

0 1 2 3 

0 3 2 1 

1 0 3 2 

2 1 0 3 

2 3 1 0 3 1 2 0 
i 

!x!!!9:!le 3: There are exactly 121 • 479,001,600 twelve-tone rows. Of jhese 

(1) 26•6! • 46,080 are transpositions of their own retrogrades (in each caJe, 
I 

3 2 l 0 

transposition by 6); (2) 6•26•61 m 276,480 are transpositions of their own/retro-

grade-inversions (for each c • 1, 3, 5, 7, 9, and 11, there are 46,080 twelve­

tone rows which are transpositions of their own retrograde-inversion by c).; 
I 

I According to Corollary 4.3 there are, therefore, 322,560 twelve-tone rows II I 

for ~hich D(Il) has 24, rather than 48, dis:inct members. The number of di,tinct 

O(II) is, by Theorem 4.4, equal to (121 + 2 •(6+1)1)/(4•12) • 9,985,920. By· 
I 

6-1 i Theorem 4.5, 2 •(6+1)!/12 • 13,440 of these have 24, rather than 48, distinct 

members. Note that 

(13,440 X 24) + (9,972,480 X 48) • 479,001,600. I 

Table I sets out, for each m between 3 and 15, the appropriate number Jf ml 

m-tone rows which are either transpositions of their own retrogrades or of Jheir 

I own retrograde-inversions. Also included in Table I is the number of distinct 
I 
I 

I 

set-complexes, divided according to whether the set-complex contains 2m or 4m 

distinct m-tone rows. It is worth noting the following identity: 

ml • ((#{ D (II): I D (II) I • 2m}) x (2m)) 

+ ((II{ D (II): I D (II) I • 4m}) x (4m)), 

a special case of which is illustrated at the end of Example 3. 
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I IIIl: /Ill: II D(Il): II O(II): 
m m-tone rows naana8 n=ana-2n0yaa I O(J>m) I I O(II) l=2m I O(Il) l•4m 

3 6 0 6 1 1 0 

4 24 8 16 3 3 0 

5 120 0 40 8 4 4 

6 720 48 144 38 16 22 

7 5,040 0 336 192 24 168 

8 40,320 384 1,536 1,320 120 1,200 

9 362,880 0 3,456 10,176 192 9,984 

10 3,628,800 3,840 19,200 91,296 1,152 90,144 

11 39,916,800 0 42,240 908,160 1,920 906,240 

12 479,001,600 46,080 276,480 9,985,920 13,440 9,972,480 

13 6,227,020,800 0 599,040 119,761,920 23,040 119,738,880 

14 87,178,291,200 645,120 4,515,840 1,556,847,360 184,320 1,556,663,040 

15 l,307,674,368,000 0 9,676,800 21,794,734,080 322,560 21,794,411,520 

Table I. The number of invariant m-tone rows and distinct set-complexes for each m. 



7. Results for large m. Form> 15, the values that would appear in ~able I are 

too large to print exactly or even to comprehend easily. However, using sJirling's 
I 

I formula for ml we can make several simple approximations for the entries wifh 

large values of m. The most interesting results are the following. The prrofs 

are omit t·ed. 
I 

their 

times 

(1) The square of the n)llllber of m-tone rows which are transpositions if 

own retrogrades behaves asymptotically like the total number of m-tone rows 

(mn/2)112 f~r m even and is exactly O form odd; I 

I (2) The square of the number of m-tone rows which are transpositions 

of their 

of m-tone 

own retrograde-inversions behaves asymptotically like the total nlber 

rows times (mn
3 /2)112£ , where f is m/ 4 if m is even and is 1 if i m m 

is odd; 
I 

(3) The number of distinct set-complexes behaves asymptotically. like I 

(m-1)1/4 for all m; 

(4) The square of the number of set-complexes with 2m distinct m-tone! 

rows behaves asymptotically like the number of distinct set-complexes times! 

(mn/2)112£, where f is defined in (2). m m 
I a. Additional remarks. It is important to note that the results of this 

paper apply not only tom-tone rows I constructed from a single m-tonal scale'(that 

is, from a single octave), but also to compositions in which each note of J m-tone 

row can be stated in any octave that the composer desires; indeed, this is Jart 

of the Schoenberg system. The extension is straightforward: the composer Jtates 

the number of octaves that he is willing to consider in his choice of notes,! 
I 

say five; since there are ml distinct m-tone rows that can be obtained from la single 

17 



m octave, there must be 5 ml m-tone rows that can be obtained from five octaves. 

Similar modifications apply to each of the results of Sections 4 and 5. 

In a further paper (see [7]) the authors present an efficient method for 

generating all twelve-tone rows which are transpositions of their own retrograde­

inversions. This is an altemative procedure to that outlined in the proof of 

Theorem 4.2. The method also applies to deriving all tone rows of even length 

which are transpositions of their own retrograde-inversions. 

A related subject to that presented here concems the medieval art of change-

• ringing on church bells. We refer the interested reader to reference [8]. 
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