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ABSTRACT 

Traditional discussions of goodness-of-fit tests for multinomial 

data consider asymptotic chi-squared properties under the assumption that 

all expected cell frequencies become large. However, this condition is 

not always satisfied and other asymptotic theories must be considered. 

For testing a specified simple hypothesis, Morris gave conditions for 

the asymptotic normality of the Pearson and likelihood ratio statistics 

when both the sample size and number of cells become large (even if ·the 

expected cell frequencies remain small). Monte Carlo techniques are 

used to examine the applicability of the normal approximations for 

moderate sample sizes with moderate numbers of cells. 

KEY WORDS AND PHRASES: Asymptotic approximations, Likelihood ratio 

statistic, Pearson statistics, Chi-squared. 
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1. Introduction 

The use of chi-squared tests for goodness of fit has become 

widespread since their introduction by Karl Pearson in 1900. Tradi­

tional consideration of large sample properties has depended upon the 

assumption that all expected cell frequencies become large. It is our 

contention that in many applications cell selection is dependent upon 

the sample size in such a way as to violate these traditional asymptotic 

assumptions. In this paper we explore the practical importance of recent 

results of Morris as they relate to this statistical question. 

Let be a multinomial random vector with proba­
k 

bilitr parameter fa (p1, p2, ••• , pk) such that n = i:l Ni and 

1 • I pi. Consider the problem of testing the null hypothesis 
i•l 

H0: E • g, for some completely specified probability vector S, 
against all possible alternatives. The test most frequently used is the 

one suggested by Karl Pearson (1900) which rejects H0 for sufficiently 

large values of 

This statistic will be referred to as the Pearson goodness-of-fit 

statistic. 

The use of the likelihood ratio test statistic was proposed by 

(1.1) 

J. Neyman and E. Pearson (1926). The likelihood ratio statistic rejects 

H0 for large values of 

(1.2) 
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This statistic has become more popular as the availability of high-speed 

computers has increased. 

When a
0 

is true, both statistics are well known to have the same 

limiting central chi-squared distribution under the traditional limiting 

argument which requires that min np +~as n + m. Therefore, when 
l<i<k i . 

all expected frequencies are large the chi-squared distribution can be 

used to establish approximate critical regions for each test statistic. 

However, it is not uncommon in practice to use the sample size to deter­

mine the number of cells. Then the number of cells is generally increased 

2 2 when the sample is increased. In that case, both ~ and Gk can·be 

shown to have asymptotic normal distributions under conditions which allow 

both n and k to become large without necessarily requiring that 

min np + m • These conditions are reviewed in Section 2. Monte 
l<i<k i 
Carlo methods are used in Sections 4 and 5 to assess accuracy of the 

asymptotic normal and chi-squared approximations to the distributions of 

the Pearson and likelihood ratio teat statistics for moderate numbers of 

cells and moderate sample sizes. 

2~ Asymptotic Normality 

Several authors have demonstrated the asymptotic normality of certain 

goodness-of-fit statistics under conditions which do not require that all 

expected frequencies become large as the sample size increases. 

The number of cells must increase with the sample size. A simple 

example is the test for a uniform distribution on a fixed interval where 

the interval is partitioned into a number of subintervals of equal 

length. If it is desired to achieve a specified expected frequency 

e 
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A for each subinterval, then k subintervals are used for a sample 

size of n, where k is selected to make n/k close to A. If n 

is increased k would also be increased. 

This leads to the consideration of the limiting distributions of 

goodness-of-fit statistics for sequences of multinomials of increasing 

dimension. Consider the sequence of multinomial random vectors 

{(Nl,k(i)' N2,k(i)' 
m 

••• , Nk(i),k(i))}i=l 

where the i-th vector in the sequence has k(i) cells, with sample size 
k k 

~ a t Nj k and probability vector (plk' p2k, ••• , pkk) with 1 m t pjk. 
j•l ' j•l 

(The underlying subscript i is hereafter suppressed to simplify notation.) 

We will require the sample size ~ to increase as k increases. Since 

the asymptotic moments for the statistics are derived from independent 

Poisson frequencies we need to define a corresponding sequence of Poisson 

random vectors. For each multinomial vector (Nlk' N2k, ••• , Nkk), let 

(Ylk' Y2k, ••• , Ykk) be a vector of independent Poisson random variables 

such that E(Yik) • E(Nik) • 

Morris (1966, 1975) generalized a conditioning argument given by 

Steck (1957) to obtain a central limit theorem for sums of functions of 

multinomial frequencies. The method requires that the sum of functions 

of independent Poisson frequencies has a limiting normal distribution. 

Then under mild conditions the asymptotic normality of the sum under the 

multinomial distribution can be obtained by conditioning on the sum of the 

independent Poisson frequencies. 

As special cases, Morris (1975) derived central limit theorems for 

the Pearson and likelihood ratio statistics. Although asymptot~c normality 

is valid for certain classes of alternatives we only consider the case 
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where the null hypothesis is true in this paper. In that case sufficient 

conditions for asymptotic normality as k + 00 are 

(1) max p • o(l) as k + oo 

l~i~k ik 
and 

(ii) 1,cPik is uniformly botmded below by some constant. 

These conditions are not necessary and other sets of sufficient conditions 

have been given by Steck (1957) and Holst (1972, 1976). 

When the null hypothesis is true the asymptotic mean and variance 

for the Pearson statistic are given by 

and 

However, it can be shown that Morris's central limit theorem for the 

2 Pearson statistic is valid when lJi,,k and aP,k are replaced by the 

corresponding exact moments. Exact moments for the Pearson statistic 

were derived by Haldane (1937) and it is easily seen that 

E{x;) • llP,k - 1 

and 

Var(,r2) • a.2 
- 2 rl + £:!] . 

~ P,k L ~ 

'11le effect on the accuracy of the normal approximation from replacing 

2 lJP, k and ap, k by the exact values is examined in Sections 4 and 5. 

that 2 2 
aP,k, and consequently Var(~) , can be much larger than the 

chi.-squared variance on k. - 1 degrees of freedom when the expected 

frequencies are not all equal. 

(2.1) 

{2.2) 

(2.3) 

(2.4) 

Note 
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The asymptotic moments for the likelihood ratio statistic are also 

derived from independent Poisson random variables. Define the Poisson 

information kernel by 

{ m

y 1,og(y/m) - y + m , 
I (y,m) m 

Then the first two asymptotic moments are given by 

k 
u..R k • 21: E[I(Yjk' n. pjk)] 
. L , j•l lt 

and 

where 

if y > 0 

if y • 0 

(2.5) 

(2.6) 

An examination of these asymptotic moments is useful in determining when 

the asymptotic chi-squared approximation is appropriate. A graph of 

E[I(Y, m)] is presented in Figure A for a Poisson random variable Y 

with mean m. The rapid decline of E[I(Y, m)] as m + 0 indicates that 

lltR,k can be much smaller than the chi-squared mean when many expected 

frequencies are smaller than one-half. However, the graph also shows · that 

llut,k is substantially larger than k - 1 when most expected frequencies 

are between one and five. The mean of the likelihood ratio statistic is 

close to k - 1 when almost all expected frequencies are large. 

-- Insert Figure A about here --

. J 
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The graphs of [Var I(Y, m)] and Cov[I(Y, m), Y] presented in 

2 Figures Band C give a good indication of the behavior of aLR,k The 

asymptotic variance can be much smaller than 2(k - 1) when most expected 

frequencies are smaller than one, but it is larger than 2(k - 1) when 

most expected frequencies are moderate. These figures indicate that the 

chi-squared approximation for the likelihood ratio statistic may give 

inflated critical levels when most expected frequencies are moderate and 

extremely conservative critical levels when most expected frequen~ies are 

smaller than one-half. 

Insert Figures Band C about here -

It is interesting to note that Pearson and likelihood ratio statis­

tics have different limiting normal .·· distributions as k + oo • The differ­

ence in behavior is largely due to the differing influence given to very 

small observed counts by the statistics. This effect was described by 

Larntz (1978) for expected frequencies in the range of 2.0-S.O. Here we 

examine the effect for smaller expected frequencies. Table 1 illustrates 

the general pattern. For a cell with an expected frequency larger than 

one an observed count of zero or one makes a larger minimum contribution 

2 2 to Gk than ~ • Consequently, when most expected cell frequencies are 

2 in the range of 1.0-5.0 the first two moments for Gk are larger than 

those for x;. However, the contribution to x; for a nonzero count 

can be quite large when the expected frequency ia less than one, and the 

2 first two moments for ~ are larger than the corresponding moments for 

~ when a sufficient number of expected frequencies are less than one.· 
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--- Insert Table 1 about here ---

3. Monte Carlo Procedures 

A Monte Carlo study was performed to assess the accuracy of the 

asymptotic chi-squared and normal approximations for moderate cell sizes 

when most expected frequencies do not exceed five. The objectives were 

(a) to determine when the normal approximation is sufficiently more 

accurate to justify the additional computation, (b) to examine how the 

accuracy of the asymptotic approximations is affected by departures from 

· the conditions imposed by the central limit theorems, and (c) to deter­

m:lne when the use of exact means and variances provides better normal 

approximations. 

In this study values of ~ and 
2 Gk were simulated for multinomials 

with 3, 4, 10, 40, 100, 400, and 1000 cells. For each cell size, sample 

sizes were selected such that A• °k/k achieved the values 1/4, 1/2, 

1, 2, 3, and Sas closely as possible. Some cases with 400 and 1000 

cells were omitted because of the extreme computational cost. For each 

of the nine null hypotheses selected and each combination of A and k, 

2500 mult:lnomial random vectors were simulated. Each multinomial vector 

was used to produce a value for ~ 

G~ values are correlated.1 

2 Therefore, the ~ and 

1computa~ions were perfomed using FORTRAN programs on a CDC 6600 
computer. ··Multinomials were generated from uniform random numbers by 
classifying the uniforms into k categories [see Koehler (1977)]. The 
uniform random numbers werf produced by.a.multiflicat;f.v~ congruential 
generator using modulus 2 1 and multiplier S 1 • 
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Denote the probability simplex by 

and let 

k 
1: pika 1 and p:lk ~ 0 

i=-1 

for all 1 < 1 < k}, 
. - -

Any point in Tk can be obtained ~rom a permutation of the coordinates 

+ + of some point 1n Tk; therefore only null hypotheses in Tk need be 

considered. The nine null hypotheses examined in this study are labeled 

in Table 2. Null hypothesis 1 is the center of Tk and will be referred 

to as the hypothesis of symmetry. The other points were selected to 

cover a wide range of T: • Hypothesis 5 is the center of gravity of T: 

+ when mass is uniformly distributed over Tk. 

The accuracy of the asymptotic normal appro~imation was examined for 

2 2 three standardized versions of -~ and Gk. The first two exact moments 

2 for ~ were computed directly, but the first two exact moments for 

~ were estimated by a Monte Carlo procedure which uses ~ as a control 

variate. The standardized statistics are denoted by the following symbols. 

PE -- ~ standardized with E(~) and Var(~) • 

Liz - G; standardized with Monte Carlo estimates of the 

exact mean and standard deviation. 

standardized with llP,k and a;,k • 
2 

standardized with ULR,k and aLR,k • 

standardized with the mean and standard 

deviation of a chi-square random variable with 

! 
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k - 1 degrees of freedom. 

LRC --- G~ standardized in the same manner as Pc. 

Since a standardized chi-squared random variable converges in distribution 

to a standard noimal random variable as the degrees of freedom increase, 

PC and LRC will be well approximated by the standard normal distribution 

for large k when the chi-squared distribution·provides an adequate 

2 2 approximation for the distribution of ~ and Gk respectively. 

Rejection levels and percentiles were simulated for all s:Lx of the 

standardized statistics for nominal levels, .001, .005, .01, .025, .OS, 

.1(.1).9, .95, .975, .99, .995, .999. Complete tables for the .01 

and .OS levels are available from the authors. Some special cases are 

presented in the next two sections to illustrat~ general trends. 

4. The Symmetrical Case 

Small sample properties of goodness-of-fit statistics have been most 

frequently studied for the null hypothesis of equal cell probabilities. One 

reason is that many goodness-of-fit problems can be transformed into the 

problem of assessing the goodness-of-fit of the uniform distribution on 

the unit interval and in that case it is reasonable to select cells of 

equal widths. Second, the computation, of exact probability levels is 

2 2 relatively simple since ~ and Gk are invariant under pemutations of 

the observed frequencies when all cell probabilities are equal. In this 

section we examine the distributions of x;, and G~ under the null 

hypothesis of symmetry. 

Exact probability levels for the Pearson statistic have been examined 

by Vessereau (19S8), Nass (19S8), Slakter (1966), Good, et. al (1970), 
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Zahn and Roberts (1971), and Katti (1973) for small numbers of cells with 

equal expectations. Their consensus opinion is that the traditional 

chi-squared approximation does not introduce serious absolute errors at 

nominal levels .OS and .01 in the upper tail when n~ 10. Zahn and 

Roberts recommend that n~ 25 when the chi-squared approximation is 

used at similar nominal levels in the lower tail. 

Citing Verrereau's work some authors have suggested that an appropriate 

2 rule for deciding when the chi-squared approximation for ~ is adequate 

is to use the chi-squared approximation whenever n ~ n0 ,-where n0 is a 

fixed positive integer. However, any fixed n0 will be inadequate when 

k is sufficiently large. A more appropriate criterion is to require 

2 2 n /k > c for some constant c. Unless n /k is sufficiently large, 

the Pearson statistic will have a high probability of assuming its 

minimum value and will not allow for an adequate continuous approximation. 

Our Monte Carlo results indicate that the chi-squared approx:lmation is 

reasonably adequate for the symmetrical case when k~ 3, n ~ 10, and 

2 
n /k ~ 10 • 

2 2 It should be noted that n /k + m is a necessary condition for ~ 

to have a limiting normal distribution as k + m under any null hypothesis. 

Therefore, the rule n2/k > c is also an appropriate guideline for the 

application of the normal approximation. 

The distribution of the likelihood ratio statistic is generally not 

well approximated by the chi-squared distribution when A ~ 5 • Unlike 

2 2 the moments of ~, the mean and variance of ~ do not closely match 

the corresponding moments of the chi-squared distribution with k - 1 

degrees of freedom. As noted in Section 2, the mean and variance of ~ 
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are smaller than the chi-squared moments when A< O.S and larger when 

A> 1. Hence the chi-squared approximation produces conservative 

critical levels in the first case and liberal critical levels in the 

latter case. The simulated critical levels for LRC presented in FiSU:res 

D, E, F, and G illustrate how extremely inaccurate the chi-squared 

approximation can be when the number of cells is moderately large. When 

2 A :a O.S , - l\.R,k =- (l.007)k and oLR,k m ( .S6)k and the estimated 

critical level drops to 0.0024 at k • 100 for the .OS nominal level. 

When A• 1, the estimated critical level is .9776 at k = 1000 for 

the .05 nominal level. Critical levels are most liberal when A is 

close to 2, but even when A• S the estimated critical level is 0.126 

at k a 100 for the .OS nominal level. 

The inadequacy of the chi-squared approximation was previously noticed 

by Good, et. al. (1970) who stated that "The distribution of the likelihood 

ratio statistic is by no means as well approximated by the chi-squared 

2 distribution as that of X when n/k < 1 ." Larntz (1978) observed 

that the likelihood ratio statistic yields exact levels in excess of the 

nominal levels when the minimum expected frequencies are between 2 and 4. 

Fortunately the standard normal distribution provides a good approxi­

mation for the right tail of the LRA distribution. The normal approximation 

for LRA is quite adequate at the .OS and .01 nqminal levels when k~ 3, 

n.?. 15, and n2/k > 10·. Figures ]), E, F, and G show that the normal 

approximation is appreciably more accurate for LRA than L~ at the .01 

nominal level. In addition, the normal approximation is generally more 

accurate for LB.A than either PA or PE for nominal levels smaller 

than .OS and moderate values of k • The estimated rejection levels for 
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PA and PE tend to be too large. The evaluation of the first four central 

moments indicates that the skewness converges to zero and the kurtosis 

converges to three faster for LRA than for either PA or PE ask+ 00 • 

--- Insert Figures D, E, F, and G about here --

Monte Carlo power comparisons showed ~hat for the null hypothesis of 

symmetry, x; is slightly more powerful for near alternatives. The 

Pearson test is decidedly dominant as the altemative moves toward a 

boundry of Tk which contains a high proportion of zeros and a few 

relatively large probabilities. The likelihood ratio test is dominant at 

alternatives which lie near boundries of Tk which contain a small 

proportion of near zero probabilities and have nearly equal probabilities in 

the remaining cells. This pattern agrees with observations made by West 

and Kempthorne (1971) from exact computations for 2, 3, and 4 cell examples. 

2 The boundries near which Gk is dominant become close to the symmetrical 

null hypothesis in the Euclidean sense as k becomes large, but the areas 

2 2 where ~ is more powerful may not. This indicates that ~ is more 

2 powerful than Gk for a very large portion of the simplex when k is 

moderately large. 

5. SOME UNSYMMETRICAL CASES 

General rules are more difficult to prescribe for unsymmetrical null 

hypotheses. In an extremely influential paper, Cochran (1954) gave a set 

of recommendations for the use of the chi-squared approximation for the 

Pearson statistic which generally require most expected frequencies to be 

at least five but allow a few to be between one and five. Vessereau found 

Cochran's recommendations to be stringent for the cases he considered, but 

he noticed that the chi-squared approximation for the Pearson statistic tends 
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to produce inflated critical regions when small unequal expected frequencies 

are present. This phenomenon was partially explained in Section 2 where it 

was noted that under a null hypothesis with many small, unequal frequencies 

2 the variance of ~ can be much larger than 2(k-l) but the mean is k-1. 

Roscoe and Byars (1971) examined the chi-squared approximation for 

the Pearson statistic for the hypthesis of symmetry and two levels of 

skewness. Under their most extreme level of skewness they recommend that 

the chi-squared approximation be used at the .05 level only when A~ 2 

and at the .01 level when A~ 4, where A• n/k. The rule proposed by 

Roscoe and Byars works for their special cases, but in general no rule based 

solely on a minimum value of A can hold under all unsymmetrical null 

hypotheses. 

Insert Figures Hand I about here ---

Monte Carlo rejection rates for all nine null hypothese are given in Figures 

Hand I. In this study null hypothese 2, J, and 4 all have at least one cell 
l 

probability which does not become small for large values of k, and at least 

k-2 cells with small, equal probabilities. The chi-squared approximation 

for ~ also gives very liberal critical regions under hypothesis 3, but 

they are not quite as bad as those under hypothesis 2. Hypothesis 4 is 

close enough to the center of the simplex so that the variance is not 

greatly inflated and, therefore, the chi-squared approximation is reasonably 

accurate for ~- These observations are supported by the summary of Monte 

Carlo results given in Figures A and B for the nominal .05 and .01 levels. 

2 Figures J and K show that the chi-squared approximation for Gk gives very 

conservative critical levels under hypothesis 2 when A~ 5. For this case 

2 the variance and mean of Gk are smaller than the chi-squared moments. 

However, the general behavior of the chi-squared approximation for G~ is 

exhibited under hypotheses 3 and 4. For those hypotheses the k-2 smallest 
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expected frequencies are identical. The chi-squared approximation gives 

conservative critical levels when these expected frequencies do not exceed 

0.5 and it gives quite liberal critical levels when these expected frequencies 

are between 1 and 5. The critical regions given by the chi-squared approxi­

mation are most liberal when these expected frequencies are near 2 and 

become increasingly conservative when the expected frequencies are made 

smaller 

insert Figures J and K about here ---

Figures J and K indicate that the nomal approximation is much more 

accurate than the chi-squared approximation under null hypotheses 2 when 

n2/k is sufficiently large. Standardization by the asymptotic moments 

seems to be best. The normal approximations for L~ and PE tend to give 

critical levels which are too large at the .05 and .01 nominal levels. This 

result was also observed under hypotheses 3 and 4. It is interesting to 

note that the nomal approximation is generally better for LRA than PA. 

The PA critical levels tend to be too large, especially at the .01 nominal 

level. As in the symmetric case, the skewness and kurtosis tend to the normal 

values faster for LRA than for PA as k becomes large. 

In general the normal approximation for LRA is less affected by the 

presence of one or two large cell probabilities than the normal approximation 

for PA. The Monte Carlo results for null hypotheses 2, 3, 4 suggest that 

the non1.al approximation for LRA are not seriously misleading if k~ 10, 

n .?_ ~O, and n2/k.?_ 100. These minimum values probably should be increased 

if a few cells contain more than ninety percent of the total probability. 
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Hypotheses 5 through 9 share the common property that no two cell 

probabilities are equal. For hypothesis 6 the behavior of the likelihood 

ratio and Pearson statistics is similar to their behavior under hypothesis 1 

(symmetry) and hypothesis 4. 

Null hypotheses 5, 7, 8, and 9 all have some very small expected 

frequencies. The presence of small expected frequencies has little effect 

on the normal approximation for LRA, but the effect on the normal approxi­

mation ·for PA varies with the number of sm~ll expected frequencies. In 

general, the normal approximation for LRA is the most accurate at the .05 

and .01 critical levels. As in previous cases, the chi-squared approximation 

for G~ gives conservative critical levels when most expected frequencies 

are smaller than 0.5 and liberal levels when most expected frequencies are 

between 1 and 5. The chi-squared approximation for ~ yields liberal 

critical levels when most expected frequencies are less than one. 

Unlike the other cases, the presence of an extremely small expected 

frequency can cause the normal approximation for PA and PE to give very 

conservative critical regions. This is most dramatically illustrated by 

the estimated critical levels for hypothesis 9 presented in Figures Land 

and M. This hypothesis is close to hypothesis 1 in the sense that every 

cell but one has an expected frequency larger than (0.9)A. The k-th cell 

2 has-expected freqeuncy (.lA)/k. Hence the conditional distribution of ~ 

given that Nkk a O is well approximated by a chi-squared distribution with 

k-2 degrees of freedom. Furthermore, the probability that Nkk • 0 is 

(1 - .lk-2)k, which converges to 1 ask+ m. Hence the distribution of 

2 
~ severely deviates from the chi-squared distribution only in very extreme 

regions of the upper tail. However, the infrequent non-zero values of Nkk 
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2 2 aP,k and Var(Xk) to be much larger than 2(k-2). Therefore, the normal 

approximate for PA and PE is conservative at commonly used critical levels, 

but the chi-squared approximations with k-2 degrees of freedom is quite 

adequate. 

- Insert Figures Land M about here --

In general it was found that the normal approximation was more accurate 

for LRA than for PA. This is illustrated by the results in Figures Hand I. 

In fact, the normal approximation for LRA is even accurate when several 

very small expected frequencies are present. 

Monte Carlo power computations show that for unsymmetrical null 

hypotheses, either test may be dominant. The area of dominance for the 

Pearson statistic is generally not nearly as broad as it is for the 

symmetrical null hypothesis case. In fact for some null hypotheses the 

likelihood ratio test completely dominates the Pearson test along specific 

directions. 

As previously noted, Morris's central limit theorems are valid for a 

certain class of alternatives. Therefore, the normal approximations for 

x; and G! provide computationally inexpensive power approximations. 

However, Monte Carlo results indicate that it is not uncommon for these 

power approximations to be too large by as much as 20% for moderate power and 

moderate cell sizes. The discrepancy is generally sma~ler for G~ than for x;. 
6. SUMMARY AND RECOMMENDATIONS 

Clearly for the null hy~othesis of symmetry, the chi-squared approx­

imation for the Pearson statistic is quite adequate at the .05 and .01 

nominal levels for expected frequencies as low as .25 when k _?. 3 • 

V 

1• 

• 
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2 
n ~ 10, n /k ~ 10. The chi-squared approximation is generally easier to 

apply than the normal approximation since the former procedure does not 

require the calculation of a mean and standard deviation. Furthermore, the 

theoretical results of Holst, Morris and Stein and the numerical results 

summarized in Section 6 indicate that the Pearson test has some optimal local 

power properties in the symmetrical case when the number of cells is 

moderately large. Hence the Pearson goodness-of-fit test based on the 

traditional chi-squared approximation is preferred for the test of symmetry. 

In general, the normal approximation for LRA produces the most 

accurate critical regions for unsymmetrical hypotheses. The Monte Carlo 

results for null hypotheses 5, 6, 7, 8, and 9 suggest that the use of this 

approximation·will not be seriously misleading for a wide range of null 

2 hypotheses in the interior of the simplex when n ~ 15, n /k ~ 10 and k 

is selected so that most expected frequencies are less than 5. Unlike the 

normal approximations for PA and PE, the accuracy of the normal approxi­

mations for LRA is not seriously affected by the presence of a few 

extremely small expected frequencies. The chi-squared approximation for the 

Pearson statistic produces inflated rejection levels for unsymmetrical null 

hypotheses which contain many expected frequencies smaller than one. 

The C(m) approximation for the Pearson statistic for the case of 

just a few small expected frequencies was proposed by Cochran (1946) and 

further studied by Yarnold (1970). The application of this approximation 

is limited to the cases for one and two small expected frequencies covered 

by the tables of percentage points given in Cochran's paper •. Use of the 

normal approximation for LRA eliminates the need for extensive tables 

of the C(m) approximation. 
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2 Modern computer programs which provide values of Gk would have little 

trouble in.providing values of LRA. These values can be compared to 

readily available tables of the percentiles of the standard normal distri­

bution. 

• 
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FIGURE A 
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FIGURE B 
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FIGURE C . 
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FIGURED 
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FIGURE E 
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FIGURE F 
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FIGURE G 

Estim.a.ted Probability of ~ceeding z. 99 • 2.326 

Under Hypothesis 1, when n a k 
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H.. Monte Carlo Rejection Levels for the Nominal .05 Level 
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I. Monte Carlo Rejection Levels for the Nominal .01 Level -0 
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FIGURE J 

Estimated Probability of Exceeding z.95 • 1.645 

Under Hypothesis 2, nm k 
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FIGURE K 

Estimated Probability of Exceeding z.
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a 2.326 

· Under Hypothesia 2 when n • k 
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FIGURE L 

Estimated Probabi~ity of Exceeding z.95 = 1.645 

Under Hypothesis 9 when n a .5k 
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FIGURE M 

Estimated Probability of Exceeding z,
99 

a 2.326 

Uader Hypothesis 9 when n a_.5k 
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--
Table 1 

, ... 

MINIMUM CONTRIBUTIONS FOR OBSERVED 
COUNTS OF ZERO AND ONE 

Prob Prob 
Expected Count of Zero (Zero Count) Count of One (One Count) 

Frequency x2 G2 Under x2 G2 Under 
Poisson Poisson 

5.00 5.00 10.00 .00674 3.200 4.781 .03369 

3.00 3.00 6.00 .04979 1.333 1.803 .14936 

2.00 2.00 4.00 .13533 0.500 0.614 .27067 

1.50 1.50 3.00 .22313 0.167 0.189 .33470 

1.00 1.00 2.00 .36788 0.000 0.000 .36788 
. .,.. 

0.75 0.75 1.50 .47237 0.083 0.074 .35427 

a.so a.so 1.00 .60653 0.500 0.386 .30326 

0.25 0.25 0.50 .77880 2.250 1.273 .19470 

0.10 0.10 0.20 .90483 8.100 2.806 .09048 

o.os o.os 0.10 .95123 18.050 4.091 .04756 

O.Ol 0.01 0.02 .99004 98.010 7.230 .00990 

NOTE; ~..ir:imtr:! .::ontribution for G2 is limn~ 2nlog(n/(n-npj)) = 2npj for 

a z~ro count in the j-th cell, and · lim 2log(l/npj) + 2(n-l)log{(n-1)/(n-np.)) 
n-.a> J 

= <~lo~(npj) + Z(npj-1) for a count of one. It is interesting to note the values 

for G are limits of the OUTLIER values given by Gokhale and Kullback (1978, p. 64). 
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Table 2 

1ULt, HYPOl'HESES CONSIDERED IN THE STUDY 

Null H:ypotheses 

l l l (k, k' ... , k) 

l 1 l 
.l(i, k' ... , k) + .9(1, o, ... , 0) 

.3 1 l l 1 l 
( 8 + 2k , 8 + 2k' 2k' ••• , 2k ) 

l l l l l 
•9<i, k' •• . , k) + •1<21 2' o, .. . , O) 

·1 k l 
(c1, c2, ••• , ck), where c1 a k E j 

j::1 

.1( cl, c2, 

.l(cl, c2, 

.1( cl' c2, 

) l l l 
• • • 1 ck + .9(k, k' · · ., k) 

••• , ck)+ .9(1, 0, ••• , 0) 

l l 
• • ., ck)+ .9(2k, 2k, ... , 

l 2k' o, ... , 0) 

) l l 
.l( c1, c2, ••• , ~ + .9(k-l' ••• , k-1, 0) 
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