JACKKNIFING IN NON-LINEAR REGRESSION

by

T. Fox, D.V. Hinkley and K. Larntz

Department of Applied Statistics, University of Minnesota

Technical Report No. 322

June 1978

University of Minnesota

St. Paul, Minnesota

* This research was supported in part by National Science Foundation Grant MCS77-00959 and National Institute of Education Grant G76-0094.

ABSTRACT

The standard jackknife and two linear jackknife methods based on a single fit are compared in the context of non-linear regression fitting. Emphasis is on determination of confidence regions for parameters, where we find that the standard jackknife may be inferior.

Key words: Jackknife; Non-linear Regression; Residual; Outlier; Likelihood; Confidence region.

4

1. INTRODUCTION

In a recent paper, Duncan [4] has discussed the application of the jackknife method to calculation of confidence regions for the parameters of a non-linear regression model. The full jackknife method requires the fitting of n + 1 non-linear regressions where n is the number of data vectors. In this paper we describe a "linear jackknife" procedure which requires only one non-linear fit. A corresponding "weighted jackknife," analogous to that defined by Jaeckel [10] and Hinkley [8], is also described.

The general problem we discuss is estimation for the non-linear regression model

$$y_j = f(x_j, \theta) + e_j$$
 (j = 1, ..., n), (1.1)

where $\theta^{T} = (\theta_{1}, \ldots, \theta_{t})$ is of primary interest. It is assumed in the estimation that $var(e_{j}) \equiv \sigma^{2}$, an unknown constant. The vector θ is estimated by least-squares, and we wish to set confidence limits on some or all of the components of θ . The jackknife procedure is distribution-free, not requiring a normal error distribution (or even homogeneous errors) for its approximate validity.

Section 2 recaps the definition of the usual "exact" jackknife, and Section 3 describes two linear jackknifes, one of which is weighted according to the independent-variable design. A simple example is given in Section 4, and some simulation results are presented and interpreted in Section 5.

-1-

2. THE EXACT JACKKNIFE

Basic theory for the jackknife technique has recently been outlined by Hinkley [7, 8, 9] and Duncan [4], the latter with special reference to nonlinear regression.

We define θ_{-i} (Duncan's θ_i) to be the least-squares estimate of θ when the ith data point (x_i, y_i) is deleted from the sample. Then the pseudo-values are

$$P_{i} = n\hat{\theta} - (n - 1)\hat{\theta}_{-i}$$
, $(i = 1, ..., n)$ (2.1)

9

with average

$$\overline{\mathbf{P}} = \hat{\boldsymbol{\theta}}_{\mathbf{J}} = \mathbf{n}^{-1} \sum_{i=1}^{n} \mathbf{P}_{i}$$
(2.2)

and variance

$$nV_{P} = \frac{1}{n-1} \sum_{i=1}^{n} (P_{i} - \overline{P}) (P_{i} - \overline{P})^{T} . \qquad (2.3)$$

The matrix V_{p} with elements $v_{p,jk}$ is the jackknife estimate of $Var(\theta)$ and $Var(\theta_{I})$. If, as is usual, $\hat{\theta}$ has bias of the form

$$E(\hat{\theta}) - \theta = n^{-1}a_1(\theta) + n^{-2}a_2(\theta) + \dots$$

then $\hat{\theta}_J$ has bias of order n^{-2} ; see Hinkley [8, Section 3] for discussion in the linear regression context.

For moderately large samples one will often assume an approximating normal distribution for $\hat{\theta}$ or $\hat{\theta}_J$, with variance matrix V_p . Then joint 1- α confidence regions for θ are ellipses, e.g.

$$\theta : (\theta - \hat{\theta}_{J})^{T} v_{P}^{-1} (\theta - \hat{\theta}_{J}) \leq \chi_{t}^{2} (1 - \alpha) . \qquad (2.4)$$

Individual confidence limits for component θ_k are of the form

$$\hat{\theta}_{J,k} \neq \sqrt{\{v_{P,kk} \chi_{1}^{2}(1-\alpha)\}}$$
(2.5)

-2-

As usual, the accuracy of the normal approximation will depend on the choice parametrization.

The advertised advantage of the jackknife procedures (2.4) and (2.5) is validity robustness: they are free of error distribution assumptions, and may even be reasonable under heterogeneity of error variance (Hinkley [8]).

In the non-linear regression case the jackknife procedure as described requires n + 1 non-linear fits; usually $\hat{\theta}_{-i}$ is computed by iteration from initial value $\hat{\theta}$. The next section describes a simpler jackknife requiring only one non-linear fit.

3. THE LINEAR JACKKNIFE

The exact jackknife procedure of Section 2 is but one of several approximations, as Jaeckel [10], Hinkley [9] and Efron [5] point out. The methods to be described here are not necessarily inferior.

Linear approximations can be defined directly via estimates of the influence function for $\hat{\theta}$. Alternatively we can make a Taylor expansion of the least-squares estimating equation for $\hat{\theta}_{-i}$, assuming this to be a stationary point of

$$\sum_{\substack{j\neq i}} \{y_j - f(x_j, \theta)\}^2,$$

and pick off the linear term. The result is

$$\hat{\theta}_{-i} \doteq \hat{\theta} - (\hat{z}^T \hat{z})^{-1} \hat{z}_i \left(\frac{r_i}{1 - \hat{\omega}_i} \right), \qquad (i = 1, \dots, n) \qquad (3.1)$$

Ø

where

$$\hat{z}_{i} = \nabla f(x_{i}, \hat{\theta}) = \left(\frac{\partial}{\partial \theta_{1}} f(x_{i}, \theta), \dots, \frac{\partial}{\partial \theta_{t}} f(x_{i}, \theta)\right)_{\theta = \hat{\theta}}^{T}$$

$$\hat{z}^{T} = (\hat{z}_{1}, \dots, \hat{z}_{n}), \quad \hat{\omega}_{i} = \hat{z}_{i}^{T} (\hat{z}^{T} \hat{z})^{-1} \hat{z}_{i}$$

and

$$r_i = y_i - f(x_i, \theta)$$

The error of the linear approximation in (3.1) is of order $\|\hat{\theta} - \hat{\theta}_{-i}\|^2$, which typically implies a relative error of order n^{-1} .

Substitution of (3.1) in (2.1), and replacement of n - 1 by n, gives the linear pseudo-values

$$LP_{i} = \hat{\theta} + n(\hat{z}^{T}\hat{z})^{-1}\hat{z}_{i}\left(\frac{r_{i}}{1-\hat{\omega}_{i}}\right) , \qquad (3.2)$$

whose sample mean \overline{LP} and variance matrix nV_{LP} are equivalent to $\hat{\theta}_J$ and nV_p in (2.2) and (2.3). The calculation required is the original

-4-

non-linear fit to obtain θ , plus calculation of the ancillary quantities $\hat{z_i}, \hat{\omega_i}$ and $\hat{r_i}$.

Hinkley [8] suggests probable inaccuracy of the standard jackknife when linear regression design weights w_i are fairly unequal. An alternative weighted jackknife is defined here by replacing pseudo-values P_i or LP_i by

$$LQ_{i} = \hat{\theta} + n(\hat{Z}^{T}\hat{Z})^{-1}\hat{z}_{i}r_{i} \qquad (i = 1, ..., n) . \quad (3.3)$$

There is some evidence in the linear case that the average \overline{LQ} is less biased than \overline{LP} , and that the sample variance of the LQ_i leads to a better estimate of $Var(\hat{\theta})$.

Notice that when $\hat{\theta}$ is a stationary point of the residual sum of squares, $\overline{LQ} = \hat{\theta}$ because $\hat{\Sigma_{jj}} = 0$. Hence there is <u>no</u> bias reduction in replacing $\hat{\theta}$ by \overline{LQ} . The corresponding variance estimate V_{LQ} is given by

$$V_{LQ} = (\hat{z}^{T}\hat{z})^{-1} \begin{pmatrix} n & \hat{z} & \hat{z}^{T}\\ z & \hat{z}^{T}_{j}\hat{z}^{T}_{j}r^{2}_{j} \end{pmatrix} (\hat{z}^{T}\hat{z})^{-1} .$$
(3.4)

This may be compared to the standard parametric normal-theory estimate

$$V_{EI} = (Fisher information)^{-1} = \frac{1}{n} \sum r_j^2 (\widehat{Z}^T \widehat{Z})^{-1} , \qquad (3.5)$$

where EI stands for "Expected Information." These formulae are similar to those in Section 2 of Hinkley [8], but here \hat{Z} is a function of $\hat{\theta}$ and hence random.

In principle the expected values of the several variance estimates V_p , etc. can be obtained by expansion methods, but the results are extremely complicated and preclude simple general interpretations. Although all variance estimates are asymptotically equivalent, noticeable differences

-5-

may occur in moderately large samples. One obvious cause of difference between V_{ML} and V_{P} , etc. is lack of homogeneity among residuals, as the comparison between (3.4) and (3.5) will indicate. The example in Section 4 illustrates this.

One general point to note is that all variance estimates V considered so far are unconditional, as are resulting confidence regions

$$\theta : (\theta - \hat{\theta})^{\mathrm{T}} \mathrm{V}^{-1}(\theta - \hat{\theta}) \leq \chi_{\mathrm{t}}^{2}(1 - \alpha) \text{ or } \mathrm{F}_{\mathrm{t}, \mathrm{n-t}}(1 - \alpha)$$
(3.6)

These may be inaccurate due to non-normal shape of the likelihood function, and indeed the direct normal-theory likelihood confidence region

$$\theta : \frac{1}{\hat{\sigma}^2} \left\{ \Sigma(\mathbf{y}_j - f(\mathbf{x}_j, \theta))^2 - \Sigma(\mathbf{y}_j - f(\mathbf{x}_j, \hat{\theta}))^2 \right\} \le F_{t,n-t} \quad (3.7)$$

if often recommended (Beale, [1]); the latter method is also preferred on conditional grounds according to Efron and Hinkley [6]. A conditional replacement for $V_{\rm ET}$ in (3.5) is the inverse of observed information

$$\mathbf{v}_{0\mathbf{I}} = \hat{\sigma}^2 \{ \hat{\mathbf{z}}^{\mathrm{T}} \hat{\mathbf{z}} - \sum_{j=1}^{n} \nabla^2 \mathbf{f}(\mathbf{x}_j, \hat{\boldsymbol{\theta}}) \mathbf{r}_j \}^{-1} .$$
(3.8)

We shall not consider this further here. If (3.6) "fails" for $V = V_{OI}$ or $V = V_{EI}$, then the jackknife procedures are likely to fail also.

4. AN EXAMPLE

To compare the "exact" and "linear" jackknife methods, we continue the example given by Duncan [4] in his Tables 1 and 2. The model is

$$f(x, \theta) = \frac{\theta_1}{\theta_1 - \theta_2} \{ \exp(-\theta_1 x) - \exp(-\theta_2 x) \}$$

and the observations (x, y) are in columns 2 and 3 of Table 4.1 below. For these data

$$\hat{\theta}_1 = 0.21162$$
 and $\hat{\theta}_2 = 0.44614$.

The rest of Table 4.1 contains values of r, $\hat{z}^{T} = (\hat{z}_{1}, \hat{z}_{2}), \hat{\omega}, P^{T} = (P_{1}, P_{2}),$ $LP^{T} = (LP_{1}, LP_{2})$ and $LQ^{T} = (LQ_{1}, LQ_{2})$. Figure 4.1 plots LP_{i} and LQ_{i} versus P_{i} for i = 1, 2.

[Table 4.1 and Figure 4.1 about here.]

The jackknifed estimates, which are pseudo-value averages, are

		P	LP	LQ
θ	:	0.2103	0.2128	0.2116
θ,	:	0.4443	0.4655	0.4461

with corresponding estimated variance matrices, computed as in (2.3),

$$v_{\rm P} = 10^{-4} \begin{pmatrix} 8.43 & 6.40 \\ 6.40 & 26.84 \end{pmatrix}$$
, $v_{\rm LP} = 10^{-4} \begin{pmatrix} 8.60 & 3.76 \\ 3.76 & 20.35 \end{pmatrix}$, $v_{\rm LQ} = 10^{-4} \begin{pmatrix} 7.03 & 4.18 \\ 4.18 & 20.80 \end{pmatrix}$

A noteable feature of these estimates is the discrepancy among correlation estimates, which are 0.426, 0.284 and 0.346 for P, LP and LQ respectively. A bad estimate of $\operatorname{corr}(\hat{\theta}_1, \hat{\theta}_2)$ would lead to inaccurate joint confidence regions, even when separate confidence intervals are accurate. TABLE 4.1 DATA AND JACKKNIFE PSEUDOVALUES FOR DUNCAN'S EXAMPLE

•

O	bs.#	x	У	r	\mathbf{z}_{1}	^z 2	W ·	P 1	^Р 2	$^{LP}1$	LP ₂	lq ₁	LQ2
	1	.5	.00530	0845	4015	.02202	.0305	.0395	.2907	.0445	.3007	.0496	.3052
	2	11	.04356	0463	11	18	*1	.1187	.3620	.1202	.3666	.1230	.3690
	3	11	.00603	0838	11	11	11	.0411	.2921	.0460	.3020	.0510	.3063
	4	11	.05198	0378	ŧr	**	11	.1359	.3775	.1368	.3810	.1391	.3830
	5	1.0	.15303	.0004	6421	.07335	.0709	.2126	.4466	.2128	.4469	.2127	.4468
	6	**	.17526	.0226	11	11	11	.2803	.4936	.2812	.4910	.2763	.4878
	7	11	.15337	.0007	*1	' I	**	.2134	.4471	.2138	.4476	.2137	.4475
	8	"	.20580	.0531	11	19	t I	.3712	.5571	.3753	.5517	.3637	.5442
	9	2.0	.36962	.1486	8071	.2040	.1017	.6897	.4816	.7080	.4310	.6576	.4326
	10	11	.18513	0361	11	11	п	.0915	.4448	.0910	.4498	.1032	.4494
	11	11	.25143	.0302	11	11	11	.3108	.4492	.3124	.4431	.3021	.4434
	12	**	.25610	.0348	11	11	11	.3261	.4500	.3280	.4426	.3161	.4430
	13	4.0	.18093	0546	5694	.3985	.1102	.1661	.7626	.1651	.7870	.1702	.7494
	14	11	.19627	0393	11	17	**	.1793	.6762	.1781	.6913	.1818	.6643
4	15	11	.26221	.0267	**	11	11	.2320	.2821	.2343	.2799	.2318	.2982
ĩ	16	11	.15962	0759	11	"	11	.1470	.8789	.1469	.9199	.1540	.8677
	17	8.0	.11619	0244	.0643	.3960	.1530	.2823	.6977	.2819	.7018	.2711	.6627
	18	11	.20856	.0680	11	11	11	.0026	2757	.0159	2665	.0458	1575
	19	*1	.18540	.0448	11	11	11	.0756	0270	.0826	0237	.1023	.0482
	20	**	.09583	0448	11	98	11	.3392	.9037	.3405	.9153	.3208	.8435
	21	16.0	.05278	.0230	.2206	.1157	.0336	.1713	.3614	.1704	.3589	.1718	.3619
	22	11	.01473	0151	11	11	11	.2385	.5029	.2387	.5035	.2378	.5016
	23	11	.05738	.0276	11	11	11	.1629	.3440	.1622	.3415	.1638	.3450
	24	11	.02519	0046	11	11	11	.2198	.4635	.2199	.4638	.2197	.4632

 \rightarrow

а

(a) First component

FIGURE 4.1 (continued)

(b) Second component

-10-

The plots of LP and LQ show that (i) P and LP are in close agreement, and (ii) that LQ matches P and LP except at the extremes. One might conclude that the linear pseudo-values LP are about as useful as the standard pseudo-values, but the potential advantage of LQ is not evidenced.

An important aspect of pseudo-values is illustrated by the plots, namely their analogy to residuals (Devlin <u>et al</u> [3], Hinkley [9]). It is quite clear that observation 9 is an outlier for estimating θ_1 , also that observations 18 and 19 may be outliers for estimating θ_2 . Cook's [2] distance measure would give essentially the same indications. Usually one would have performed a normal plot of the pseudo-values, and the above-mentioned points would show up clearly.

If the data are re-analyzed with observations 9, 18, and 19 removed, then the estimates of θ_1 , θ_2 and their estimated variance matrices become as in Table 4.2. The estimates are now close to the supposed true values

TABLE 4.2 ESTIMATES AND VARIANCES FOR EXAMPLE WITH

DATA POINTS 9, 18, 19 OMITTED

				Jackknife		
	Method:	LS*	P	LP	LQ	
estima	$tes \begin{cases} \theta \\ 1 \\ \theta \\ 2 \end{cases}$	0.208 0.512	0.208 · 0.514	0.211 0.519	0.208 0.512	
estima varian	ted $\begin{cases} v_{11} \\ v_{12} \\ v_{22} \end{cases}$	5.08×10 ⁻⁴ 7.86×10 ⁻⁴ 33.49×10 ⁻⁴	5.46×10 ⁻⁴ 5.65×10 ⁻⁴ 24.23×10 ⁻⁴	5.67×10 ⁻⁴ 5.94×10 ⁴ 27.56×10 ⁴	5.08×10 ⁻⁴ 5.34×10 ⁻⁴ 22.08×10 ⁻⁴	-

* estimated variance matrix is V_{EI}

-11-

 $(\theta_1 = 0.2, \theta_2 = 0.5)$ used to generate the data. Also the estimates of $\hat{(\theta_1, \theta_2)}$ are much higher. The jackknife estimates of $var(\hat{\theta_2})$ have not decreased because observation 15 has somewhat discrepant values of P_1, LP_1 , LQ_1 . Figure 4.2 shows a normal plot of the values of LP_2 .

We have not pursued the analysis of the example to a final conclusion, but one reasonable interpretation of the pseudo-value analysis up to this point is that errors are non-homogeneous, as Duncan's Figure 1 suggests.

[Figure 4.2 about here.]

ĩ

Υ,

5. SOME SIMULATION RESULTS

According to Duncan [4], the standard jackknife works quite well in obtaining separate confidence limits for components of θ , but misbehaves in joint confidence region procedures, as in (2.4). In the small-scale simulations to be described here we have concentrated on comparisons among the jackknifes, but some attention has been given to Duncan's disturbing findings.

The main simulations have been carried out for Duncan's Model II with additive error, that is (1.1) with

$$f(\mathbf{x}, \theta) = 1 - \frac{1}{\theta_1 - \theta_2} \left(\theta_1 e^{-\theta_2 \mathbf{x}} - \theta_2 e^{-\theta_1 \mathbf{x}} \right); \quad \theta_1, \theta_2 \ge 0. \quad (5.1)$$

Note that θ_1 and θ_2 are interchangeable, so that estimation should strictly be confined to $\theta_1 \geq \theta_2$. Likelihood contours have a tendency toward boomerang shape, rather than elliptical, when plotted in the full space. This is associated with a breakdown of the elliptical confidence regions (2.4), as we shall see.

The main set of results on model (5.1) was obtained with $\theta_1 = 0.2$, $\theta_2 = 0.5$, standard normal errors and the same x-design as in Table 4.1. Coverage frequencies of nominal 95% confidence regions in 100 simulated samples are given in Table 5.1. In the overlap with Duncan's results [4, Table 3] there is general agreement, although both studies are small. The general tentative conclusions that we would draw are:

- (i) the linear jackknife using LP is better than the standard jackknife and corresponds to the normal-theory maximum likelihood method, i.e. (3.6) with $V = V_{FT}$;
- (ii) all methods based on normal approximation (3.6) are poor for joint confidence regions, whereas the direct likelihood method(3.7) is reasonably good in this model.

-14-

TABLE 5.1.	COVERAGE OF NOMINAL 95% CONFIDENCE REGIONS *
	FOR MODEL (5.1) WITH $\theta_1 = 0.2, \theta_2 = 0.5$,
	AND DESIGN OF TABLE 4.1.

Method	Direct Likelihood	Normal approximation				
Parameter(s)	(3.7)	V=V _{EI}	v=v _p	v=v lp	v=v _{lq}	
θ	94%	92%	84%	91%	88%	
θ ₂	91%	99%	89%	96%	96%	
(θ_1, θ_2)	91%	79%	57%	73%	72%	

* In these calculations Student-t percentage points were used in confidence limit formula (2.5) for all V.

)

A second set of results duplicated the first except that errors were simulated from a Student t distribution. The patterns were almost identical to those in Table 5.1, although the coverage rates were all higher.

REFERENCES

[1] Beale, M.L. (1960) Confidence regions in non-linear estimation (with discussion). J. Roy. Statist. Soc. B, 22, 41-88.

1

į

l

- [2] Cook, R.D. (1977) Detection of influential observations in linear regression. <u>Technometrics</u> 19, 15-18.
- [3] Devlin, S. and Gnanadesikan, R. (1975) Robust estimation and outlier detection with correlation coefficients. <u>Biometrika</u> 62, 531-545.
- [4] Duncan, G.T. (1978) An empirical study of jackknife-constructed confidence regions in nonlinear regression. <u>Technometrics</u> 20, 123-129.
- [5] Efron, B. (1978) Bootstrap methods: another look at the jackknife. <u>Ann. Statist.</u> <u>6</u> (to appear).
- [6] Efron, B. and Hinkley, D.V. (1978) Assessing the accuracy of the maximum likelihood estimate: observed versus expected information. <u>Biometrika</u> <u>65</u> (to appear).
- [7] Hinkley, D.V. (1977) Jackknife confidence limits using Student t approximations. <u>Biometrika</u> 64, 21-8.
- [8] Hinkley, D.V. (1977) Jackknifing in unbalanced situations. <u>Technometrics</u> <u>19</u>, 285-292.
- [9] Hinkley, D.V. (1978) Improving the jackknife with special reference to correlation estimation. <u>Biometrika</u> 65, 13-21.
- [10] Jaeckel, L.A. (1972) The infinitesmal jackknife. Unpublished Bell Labs. Memorandum.