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ABSTRACT 

The standard jackknife and two linear jackknife methods based on a 

single fit are compared in the context of non-linear regression fitting. 

Emphasis is on determination of confidence regions for parameters, where 

we find that the standard jackknife may be inferior. 

Key words: Jackknife; Non-linear Regression; Residual; Outlier; 

Likelihood; Confidence region. 
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1. INTRODUCTION 

In a recent paper, Duncan [4] has discussed the application of the 

jackknife method to calculation of confidence regions for the parameters of 

a non-linear regression model. The full jackknife method requires the 

fitting of n + 1 non-linear regressions where n is the number of data 

vectors. In this paper we describe a "linear jackknife" procedure which 

requires only one non-linear fit. A;. corresponding "weighted jackknife," 

analogous to that defined by Jaeckel [10] and Hinkley [8], is also described. 

The general problem we discuss is estimation for the non-linear 

regression model 

yj = f(xj, 8) + ej (j = 1, ... , n), (l.l) 

where 8T = (81, •.• , et) is of primary interest. It is assumed in the 

estimation that 2 
var(e.) = cr 

J 
an unknown constant. The vector e is 

estimated by least-squares, and we wish to set confidence limits on some 

or all of the components of 8. The jackknife procedure is distribution­

free, not requiring a normal error distribution (or even homogeneous errors) 

for its approximate validity. 

Section 2 recaps the definition of the usual "exact" jackknife, and 

Section 3 describes two linear jackknifes, one of which is weighted 

according to the independent-variable design. A simple example is given in 

Section 4, and some simulation results are presented and interpreted in 

Section 5. 
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2. THE EXACT JACKKNIFE 

Basic theory for the jackknife technique has recently been outlined by 

Hinkley [7, 8, 9] and Duncan [4], the latter with special reference to non-

linear regression. 

We define 6 . (Duncan's ei) to be the least-squares estimate of 0 
-J. 

when the ith data point (x1,yi) is deleted from the sample. Then the 

pseudo-values are 

with average 

and variance 

"' "' P. = n0 - (n - 1)0 . 
l. -l. 

P = e 
J 

-1 n 
= n I: 

i=l 
P. 

l. 

, (i=l, ••• , n) 

n 
nV = _!_ I: (P - P)(P. - P) T • 

P n-1 i=l i i 

The matrix VP with elements is the jackknife estimate of 

and Var(8
3

) • If, as is usual, e has bias of the form 

"' -1 -2 
E (6 ) - 8 = n a

1 
(0 ) + n a

2 
(e ) + 

"' 

(2.1) 

(2.2) 

(2.3) 

Var(0) 

then e
3 

has bias of order -2 n see Hinkley (8, Section 3] for discussion 

in the linear regression context. 

For moderately large samples one will often assume an approximating 

"' "' normal distribution for 6 or e J , with variance matrix VP • Then 

joint 1 - a confidence regions for e are ellipses, e.g. 

a 2 
X t (1 - CL) • (2.4) 

Individual confidence limits for component 8 k are of the form 

(2.5) 
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As usual, the accuracy of the normal approximation will depend on the choice 

parametrization~ 

The advertised advantage of the jackknife procedures (2.4) and (2.5) 

is validity robustness: they are free of error distribution assumptions, and 

may even be reasonable under heterogeneity of error variance (Hinkley [8]). 

In the non-linear regression case the jackknife procedure as described 

requires n + 1 non-linear fits; usually 
" 

" a . 
-1 

is computed by iteration 

from initial value 8. The next section describes a simpler jackknife 

requiring only one non-linear fit. 
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3. THE LINEAR JACKKNIFE 

The exact jackknife procedure of Section 2 is but one of several 

appr4ximations, as Jaeckel [10], Hinkley [9] and Efron [5] point out. 

The methods to be described here are not necessarily inferior. 

Linear approximations can be qefined directly via estimates of the 

influence function for 0. Alternatively we can make a Taylor expansion 

of the least-squares estimating equation for 

a stationary point of 

6 . , assuming this to be 
-l. 

E {y. - f(x., 0)}
2

, 
j=#i J J 

and pick off the linear term. The result is 

6 . 
-1. 

(i 1, ..• , n) 

where 

(a:1 f(xi' 8), A A a 8)y A zi = Vf (x., 6) = ... ' as f (x.' l. t ]. 6=8 

"'T A "' A AT AT"' -lA 
z = (zl, ... , z ) w. = z.(Z Z) z. n ]. ]. ]. 

and 

The error of the linear approximation in (3.1) is of order 

which typically implies a relative error of order -1 
n 

(3.1) 

Substitution of (3.1) in (2.1), and replacement of n - 1 by n, 

gives the linear pseudo-values 

A "'TA A ( r. ) LP.= 8 + n(Z Z)-lz. 1 .,,. 
l. ]. 1 

- wi 
(3.2) 

A 

whose sample mean LP and variance matrix nVLP are equivalent to 

and nVP in (2.2) and (2.3). The calculation required is the original 

(I 
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" 
non-linear fit to obtain 0 , plus calculation of the ancillary quanti-

ties zi, wi and 
" 
r;. 

]. 

Hinkley [8] suggests probable inaccuracy of the standard jackknife 

when linear regression design weights wi are fairly unequal. An alter­

native weighted jackknife is defined here by replacing pseudo-values 

P. or LP. by 
i ]. 

(i = 1, ••• , n) • (3.3) 

There is some evidence in the linear case that the average LQ is less 

biased than LP, and that the sample variance of the LQ. 
]. 

leads to a 

" better estimate of Var(S). 

" Notice that when e is a stationary point of the residual sum of 

" 
squares, LQ = 8 because rz.r. = 0. Hence there is no bias reduction 

J J 

in replacing 6 by LQ. The corresponding variance estimate VLQ is 

given by 

~"' -1 ( n "' "T 2) VLQ = (Z Z) I: z.z.r. 
j=l J J J 

(3.4) 

This may be compared to the standard parametric normal-theory estimate 

(3.5) 

where EI stands for "Expected Information." These formulae are similar 

to those in Section 2 of Hinkley [8], but here Z is a function of 8 and 

hence random. 

In principle the expected values of the several variance estimates 

VP, etc. can be obtained by expansion methods, but the results are extremely 

complicated and preclude simple general interpretations. Although all 

variance estimates are asymptotically equivalent, noticeable differences 
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may occur in moderately large samples. One obvious cause of difference 

between VML and VP, etc. is lack of homogeneity among residuals, as 

the comparison between (3.4) and (3.5) will indicate. 

4 illustrates this. 

The example in Section 

One general point to note is that all variance estimates V considered 

so far are unconditional, as are resulting confidence regions 

e (3.6) 

These may be inaccurate due to non-normal shape of the likelihood function, 

and indeed the direct normal-theory likelihood confidence region 

(3. 7) 

if often recommended (Beale, [1]); the latter method is also preferred on 

conditional grounds according to Efron and Hinkley [6]. A conditional 

replacement for VEI in (3.5) is the inverse of observed information 

"'2 "T" 
V = cr {z Z -OI 

n 
E 

j=l 

2 A -1 
rJ f(x., 8)r.} 

J J 

We shall not consider this further here. If (3.6) "fails"·for V = v
O1 

or V = VEI, then the jackknife procedures are likely to fail also. 

(3.8) 

, 
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4. AN EXAMPLE 

To compare the "exact" and "linear" jackknife methods, we continue the 

example given by Duncan [4] in his Tables 1 and 2. The model is 

f (x, 0) 
81 

= e _ e { exp(- 8
1

x) - exp(- 82x)} , 
1 2 

and the observations (x, y) are in columns 2 and 3 of Table 4.1 below. 

For these data 

81 = o. 21162 and 

The rest of Table 4.1 contains values of 

62 = 0.44614 

"T 
r, z 

Figure 4.1 plots LP. and LQ. 
l. l. 

versus Pi for i = 1, 2. 

[ Table 4.1 and Figure 4.1 about here. ] 

The jackknifed estimates, which are pseudo-value averages, are 

p 

0.2103 

0.4443 

LP 

0.2128 

0.4655 

LQ 

0.2116 

0.4461 

with corresponding estimated variance matrices, computed as in (2.3), 

-4 (8.43 
V = 10 

p 6.40 

6.40) 
26.84 , 

. _ -4 (8.60 
VLP - 10 

3.76 

3.76) 

20.35 ' 

-4 (7 .03 
= 10 

4.18 

4.18) 

20.80 

A noteable feature of these estimates is the discrepancy among correlation 

estimates, which are 0.426, 0.284 and 0.346 for P, LP and LQ respectively. 

A bad estimate of corr(8
1

, 82) would lead to inaccurate joint confidence 

regions, even when separate confidence intervals are accurate. 
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TABLE 4.1 DATA AND JACKKNIFE PSEUDOVALUES FOR DUNCAN'S EXAMPLE 

obs. II X y r zl z2 W· pl p2 LP1 
LP

2 LQl LQ2 

1 .5 .00530 -.0845 -.4015 .02202 .0305 .0395 .2907 .0445 .3007 .0496 .3052 
2 " .04356 -.0463 " " " .1187 .3620 .1202 .3666 .1230 .3690 
3 " .00603 -.0838 " " " .0411 .2921 .0460 .3020 .0510 .3063 
4 It .05198 -.0378 It It " .1359 .3775 .1368 .3810 .1391 .3830 

5 LO .15303 .0004 -.6421 .07335 .0709 .2126 .4466 .2128 .4469 .2127 .4468 
6 " .17526 .0226 " " " .2803 .4936 .2812 .4910 .2763 .4878 
7 " .15337 .0007 " " " .2134 .4471 .2138 .4476 .2137 .4475 
8 " .20580 .0531 " " " .3712 .5571 .3753 .5517 .3637 .5442 

9 2.0 .36962 .1486 -.8071 .2040 .1017 .6897 .4816 .7080 .4310 .6576 .4326 
10 " .18513 -.0361 " " " .0915 .4448 .0910 .4498 .1032 .4494 
11 " .25143 .0302 " " " .3108 .4492 .3124 .4431 .3021 .4434 
12 " .25610 .0348 " " " .3261 .4500 .3280 .4426 .3161 .4430 

13 4.0 .18093 -.0546 -.5694 .3985 .1102 .1661 .7626 .1651 .7870 .1702 .7494 
14 " .19627 -.0393 " " " .1793 .6762 .1781 .6913 .1818 .6643 

I 15 " .26221 .0267 " " " .2320 .2821 .2343 .2799 .2318 .2982 
C0 

I 16 " .15962 -.0759 II " " .1470 .8789 .1469 .9199 .1540 .8677 

17 8.0 .11619 -.0244 .0643 .3960 .1530 .2823 .6977 .2819 .7018 .2711 .6627 
18 II .20856 .0680 " " " .0026 -.2757 .0159 -.2665 .0458 -.1575 
19 " .18540 .0448 II " " .0756 -.0270 .0826 -.0237 .1023 .0482 
20 II .09583 -.0448 II " II .3392 .9037 .3405 .9153 .3208 .8435 

21 16.0 .05278 .0230 .2206 .1157 .0336 .1713 .3614 .1704 .3589 .1718 .3619 
22 II .01473 -.0151 II " " .2385 .5029 .2387 .5035 .2378 .5016 
23 II .05738 .0276 " " II .1629 .3440 .1622 .3415 .1638 .3450 
24 II .02519 -.0046 " " " .2198 .4635 .2199 .4638 .2197 .4632 
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FIGURE 4.1 Scatter plot of linear pseudo-values 
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FIGURE 4.1 (continued) 

(b) Second component 
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The plots of LP and LQ show that (i) P and LP are in close 

agreement, and (ii) that LQ matches P and LP except at the extremes. 

One might conclude that the linear pseudo-values LP are about as useful 

as the standard pseudo-values, but the potential advantage of LQ is not 

evidenced. 

An important aspect of pseudo-values is illustrated by the plots, namely 

their analogy to residuals (Devlin et al [3], Hinkley [9]). It is quite clear 

that observation 9 is an outlier for estimating e1
, also that observations 

18 and 19 may be outliers for estimating e2 • Cook's [2] distance measure 

would give essentially the same indications. Usually one would have performed 

a normal plot of the pseudo-values, and the above-mentioned points would show 

up clearly. 

If the data are re-analyzed with observations 9, 18, and 19 removed, 

then the estimates of e1 , e2 and their estimated variance matrices become 

as in T~ble 4.2. The estimates are now close to the supposed true values 

TABLE 4.2 ESTIMATES AND VARIANCES FOR EXAMPLE WITH 

DATA POINTS 9, 18, 19 OMITTED 

Method: LS* 

estimates{:: 0.208 

0.512 

5. Q8Xl0-4 

estimated 
7.86X10-4 

variances 
33.49Xl0-4 

p 

0.208 

0.514 

5.46Xl0-4 

5.65Xl0-4 

24.23xl0-4 

Jackknife 

LP 

0.211 

0.519 

5. 67XlQ-4 

5. 94x10···4 

27. 56x10 
-4 

* estimated variance matrix is VEI 

LQ 

0.208 

0.512 

5. osx10-4 

5. 34x10-4 

22. 08xl0 
-4 
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(8
1 

= 0.2, 8
2 

= 0.5) used to generate the data. Also the estimates· of 

corr(8
1

, 8
2

) are much higher. The jackknife estimates of var(8
2

) have not 

decreased because observation 15 has somewhat discrepant values of P1 , LP1., 

L<½... Figure 4.2 shows a normal plot of the values of LP2 . 

We have not pursued the analysis of the example to a final conclusion, 

but one reasonable interpretation of the pseudo-value analysis up to this 

point is that errors are non-homogeneous, as Duncan's Figure 1 suggests. 

[Figure 4.2 about here.] 

I 
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FIGURE 4.2 Normal plot of LP 2 values for analysis 

of data in Table 4.1 with observations 

9,18 and 19 removed 

0 
1.0 .. , 

0 
0 

0 

m l cu 0 

.:l 0 

aS 0000 > . 00 0 O 
N Q.5 . ' 
~ I 00 ,-::i 

0 
0 

"O I cu 0 0 

""" cu 
"O 

""" 0 

0 t__::· no. 15 

-2· ,,_ -1 0 1 2 

normal scores 



-14-

5. SOME SIMULATION RESULTS 

According to Duncan [4], the standard jackknife works quite well in ob­

taining separate confidence limits for components of 8, but misbehaves in 

joint confidence region procedures, as in (2.4). In the small-scale simula­

tions to be described here we have concentrated on comparisons among the jack­

knifes, but some attention has been given to Duncan's disturbing findings. 

The main simulations have been carried out for Duncan's Model II with 

additive error, that is (1.1) with 

f(x, 8) = (5.1) 

Note that e
1 

and 82 are interchangeable, so that estimation should strictly 

be confined to e1 ~ 82 • Likelihood contours have a tendency toward boomerang 

shape, rather than elliptical, when plotted in the full space. This is asso­

ciated with a breakdown of the elliptical confidence regions (2.4), as we shall 

see. 

The main set of results on model (5.1) was obtained with a
1 

= 0.2, 

a2 ~ 0.5, standard normal errors and the same x-design as in Table 4.1. 

Coverage frequencies of nominal 95% confidence regions in 100 simulated 

samples are given in Table 5.1. In the overlap with Duncan's results 

(4, Table 3] there is general agreement, although both studies are small. The 

general tentative conclusions that we would draw are: 

(i) the linear jackknife using LP is better than the standard 

jackknife and corresponds to the normal-theory maximum likeli­

hood method, i.e. (3.6) with V = VEI; 

(ii) all methods based on normal approximation (3.6) are poor for 

joint confidence regions, whereas the direct likelihood method 

(3.7) is reasonably good in this model. 

I 
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TABLE 5.1. COVERAGE OF NOMINAL 95% CONFIDENCE REGIONS* 

FOR MODEL (5 .1) WIT~ 0 l = 0. 2, 0 2 = 0. 5, 

AND DESIGN OF TABLE 4.1. 

~ 
Direct Normal approximation 
Likelihood 

Parameter(s) (3. 7) V=VEI V=V V=VLP V=VLQ p 

e1 94% 92% 84% 91% 88% 

82 91% 99% 89% 96% 96% 

(01, 82) 91% 79% 57% 73% 72% 

* In these calculations Student-t percentage points were 
used in confidence limit formula (2.5) for all V. 

A second set of results duplicated the first except that errors 

were simulated from a Student t
2 

distribution. The patterns were 

almost identical to those in Table 5.1, although the coverage rates 

were all higher. 
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