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Summary 

The dual role of ancillary statistics in conditional inference 
and in goodness of fit tests is noted, with special reference to curved 
exponential families. 
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In the conditional approach to parametric statistical inference, 

when a sufficient statistic S includes an ancillary component A, inference 

is carried out via the conditional probability distribution of S given 

the value of A. Ancillary statistics, because they are distributed 

independently of the parameter, play a dual role as components of goodness 

of fit statistics. This was pointed out by R.A. Fisher (1928) in connexion 

with likelihood estimation for a multinomial linkage model. 

Suppose that x
1 , ••• , xn are· independently distributed according to 

a curved exponential family of densities 

which is a one-dimensional subset of the unrestricted family of densities 

- -1 For both f and g the average x = n Ex. is minimal sufficient. Let 
J 

6 = E(x) and E = var(x), with added subscript 8 when restricted to f
9 • 

Then maximum likelihood estimates are obtained by solving 

A 

f3 = X 

f"aAelT (i - fVi = 0 taeJe=e e 
n 

for (2) and (1) respectively. Now write 1A = log n gA(x.), with 
j=l J 

(1) 

(2) 

(3) 

1A = 1~ denoting the loglikelihood of 6 for model (1). Then the likelihood 
e 

ratio test statistic for testing the fit of model (1) within model (2) is 

W = 2(i"' - i*) 
A § 
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which may be shown to have asymptotic expansion 

The second term in (4) is asymptotically O (n-½), while the first term, 
p 

subject to (3), is asymptotically ~-l under model (1). See Aitchison and 

Silvey (1960). In the multinomial case, the quadratic form in (4) is the 

Pearson chi-square statistic. 

In the theory of approximate conditional inference for 8, given model 

(1), the vector x - a8 whose Mahalanobis• length appears in (4) may be used 

to determine k-1 approximate ancillaries·. Some details are given by 

Efron and Hinkley (1978). The dominant ancillary is determined by the 

observed information 

I =[-L i~ A. 
d8

2 ~ 8=8 

and is 

(4) 

(5) 

The relevant conditional 

~ -1 
normal approximation for 8 has variance I , as opposed to the unconditional 

-1 variance J 6 . The statistic Q1 measures the discrepancy between conditional 

and unconditional normal approximations, but only relative to the statistical 

curvature y6. 
For general k, further approximate ancillaries Q2, ••• , Qk-l may be 

constructed from x - f3§ in such a way as to be asymptotically independent 

N(O,l) variates. This corresponds to a partition of the dominant part of 

.~ 
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the goodness of fit statistic W, by (4); that is, 

2 
Q •• 

J 

The larger is W, the more discrepancy is likely between conditional and 
A 

unconditional inference based on 8. (The two agree exactly only if 

i = a8, when W = O.) The magnitude of the discrepancy depends on invariants 

such as y, as is seen in (5). It may sometimes be informative to effect 

this decomposition of W, for example splitting off Qi and testing the 

remainder. The next component Q
2 presumably affects bias of 8, as well 

as skewness of distribution, being a standardized form of the third 

derivative of ti; further theoretical analysis is required to determine 

the exact form and effects of Q2, Q3 , •••• 

As a simple example, consider Fisher's (1928) multinomial model with 

reduced cell probabilities 

a8 = ~<2 + e, 2 - 20, e). 

A 

Herek= 2, 6 = .0357 2 -1 2 , Ye= 5.643n , n = 3839 and q1 = 2.013. The 

data do not deviate significantly from the model, but with the high 

curvature there might be a sizeable difference between I and J 8. In 

fact I/J6 = 0.938, so that only a 3% error would be made in computing 
A 

standard error for 6 as 1//J e . 2 Had q1 been the same at n = 250, the 

error would have been 11%. Thus modest lack of fit can indicate appreciable 

difference between conditional and unconditional analysis. 

Note that the goodness of fit of a specific value 8 is measured by 
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with Was in (4), which is a decomposition into asymptotically independent 

x!_1 and xf variates. This suggests the approximate conditional validity 

of the likelihood ratio method of setting confidence limits for 9; that is 

(6) 

Easterling (1976) has suggested setting confidence limits for 9 from 

(6), in which case a larger W would result in narrower confidence limits. 

This is unwise from the conditional viewpoint, because the value of Q
1 

leading to large W might be positive, corresponding to I< J 6, in which case 

wider confidence limits would be appropriate. 
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