CONTRIBUTIONS TO THE THEORY OF RANK ORDER STATISTICS: Computation Rules for Probabilities of Rank Orders I. Richard Savage $\frac{1}{}$

Í

12

Technical Report No. 9

University of Minnesota Minneapolis, Minnesota

Reproduction in whole or in part is permitted for any purpose of the United States Government.

⊥/ Work done in part under contract Nonr 2582(00), Task NR 042-200 of the Office of Naval Research.

CONTRIBUTIONS TO THE THEORY OF RANK ORDER STATISTICS:

Computation Rules for Probabilities of Rank Orders

I. Richard Savage

1. Introduction.

4

تتح

For most distributions the computations of the probabilities of rank orders (non null case) involve either difficult multiple integrations or extensive Monte Carlo sampling [1,2,3]. In this note rules are given for computing the probabilities of rank orders for the one and two sample problems [1,2]. For the one-sample problem the rule permits the computations for samples of size n from the results with samples of n+1. For the twosample problem the rule permits the computations for samples of size m and n from the results with samples of m+1 and n (n and n+1). Since most computations done analytically are built up from smaller to larger sample sizes these results will, for that case, have limited value, e.g., in checking numerical work. For Monte Carlo sampling, however, there is no reason for starting with the smaller samples and in this case the rules will be of service.

2. One-Sample Rule.

Let $P_n(z)$ be the probability of the rank order $z = (z_1, \dots, z_n)$ where $z_i = 0$ (1) if the i-th smallest of the observed absolute values was from a negative (positive) observed value, e.g., if the observed values are (2.2, -.7, .5,-1.1,3.0) then z = (10011).

<u>Rule I.</u> To compute $P_n(z)$ add all [2(n+1) in number] the $P_{n+1}(z^{ij})$ and divide by (n+1) where

 $z^{ij} = (z_1, \dots, i, z_j, \dots, z_n)$ i = 0,1 and j = 1, ..., n+1.

Note a. z_{n+1} is undefined and actually is not used.

Note b. Several of the z^{ij} will be the same.

<u>Note c</u>. The rule can be obtained using the analytic expressions for $P_n(z)$ given in [2]. Another proof can be obtained from noting that after the sample of size n is formed an additional observation must fall either between existing observations or before them or after them.

Example I. Numerical results for the one-sample problem are not available. The following, however, suggests the kind of computing formulae that could be used. For n=3,

$$P_{3}(010) = [P_{4}(1010) + P_{4}(0010) + P_{4}(0110) + P_{4}(0100) + P_{4}(0100) + P_{4}(0100) + P_{4}(0100)]/4.$$

3. Two-Sample Rule.

4

Let $P_{m,n}(z)$ be the probability of the rank order $z = (z_1, \dots, z_{m+n})$ where $z_i=0$ (1) if the i-th smallest of the observed values was from the first (second) sample, e.g., if the observed values in the first sample were (-1.5, 2.6), in the second sample (3.4, -.9) then z = (0101).

<u>Rule II</u>. To compute $P_{m,n}(z)$ add all [(m+n+1) in number] of the $P_{m+1,n}(z^j)$ and divide by (m+1) where $z^j = (z_1, \dots, 0, z_j, \dots, z_{m+1})$ j=1, ..., (m+n+1).

Note a. z_{m+n+1} is undefined but is not ectually used.

Note b. Several of the z^j will be the same.

<u>Note c</u>. The roles of m and n can be interchanged in the obvious manner. <u>Note d</u>. The rule can be obtained using the analytic expression for $P_{m,n}(z)$ given in [1]. Another proof can be obtained by noting that after the samples of size m and n have been obtained an additional observation from the first population must either be between a pair of the observations of the original m+n or before or after them.

Example II. For the two-sample problem with m=3 and n=2, $P_{3,2}(00011)=[P_{3,3}(100011)+P_{3,3}(010011)+P_{3,3}(001011)+3P_{3,3}(000111)]/3.$ Teichroew [3] gives .0394 as the exact value, and .0410 as the Monte Carlo value (2000 samples) when the two populations are normal with means differing by 1/2 of the common standard deviation. Using Teichroew's [3] Monte Carlo results for m=3, n=3 (4000 samples) in the above formula one obtains $P_{3,2}(00011)=[.03250+.01825+.011875+3(.01675)]/3=.03992.$

Additional results for m=3, n=2 could be obtained from m=4, n=2 and from m=4, n=3 via m=3, n=3 [3].

References

- [1] I. R. Savage, "Contributions to the theory of rank order statistics- the two-sample case," Ann. of Math. Stat., Vol. 27 (1956), pp. 590-615.
- [2] I. R. Savage, "Contributions to the theory of rank order statistics-the one-sample case,"--to be published.
- [3] D. Teichroew, "Empirical power functions for nonparametric two-sample tests for small samples," <u>Ann. of Math. Stat.</u>, Vol. 26 (1955), pp. 340-344.

-4-

~

Department of Statistics University of Minnesota

BASIC DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS

for contract Nonr 2582(00), Task NR 042-200

ADDRESS

.

-

ADDRESS

Head, Statistics Branch Office of Naval Research Washington 25, D. C.	2	Professor W.G. Cochran Department of Statistics Harvard University Cambridge, Massachusetts	l
Commanding Officer			
Office of Naval Research Branch	0444	Droposson Doniewin Enstatu	
	OTTTCE	Professor Benjamin Epstein	
Navy Nr. 100		Applied Mathematics and Statistics	Lab.
Fleet Post Office		Stanford University	
New York, New York	2	Stanford, California	1
ASTIA Document Service Center		Professor W. Hirsch	
Arlington Hall Station		Institute of Mathematical Sciences	
Arlington 12, Virginia	10	New York University	
WITTIR COU TC' ATTRITTA	TO		-
		New York 3, New York	1
Office of Technical Services			
Department of Commerce		Dr. Paul G. Hoel	
Washington 25, D. C.	1	Department of Mathematics	
		University of California	
Technical Information Officer		•	•
		Los Angeles 24, California	1
Naval Research Laboratory			
Washington 25, D. C.	6	Professor Harold Hotelling	
·		Associate Director	
Professor T. W. Anderson		Institute of Statistics	
Department of Mathematical Stati	etioe	University of North Carolina	
	DUTCD		•
Columbia University	-	Chapel Hill, North Carolina	1
New York 27, New York	1		
		Professor L. Hurwicz	
Professor Z. W. Birnbaum		School of Business Administration	
Laboratory of Statistical Research		University of Minnesota	
Department of Mathematics		Minneapolis 14, Minnesota	2
		Municahowan wal interessed	~ .
University of Washington	-	De la company de la Victoria	
Seattle 5, Washington	1	Professor Leo Katz	
		Department of Statistics	
Professor A. H. Bowker		Michigan State University	
Applied Mathematics and Statisti	cs Lab.	East Lansing, Michigan	1
Stanford University			
Stanford, California	1	Professor Oscar Kempthorne	
bramoru, carroma	46		
		Statistics Laboratory	
Professor Ralph A. Bradley		Iowa State College	-
Department of Statistics and		Ames, Iowa	l
Statistical Laboratory			
Virginia Polytechnic Institute		Dr. Carl F. Kossack	
Blacksburg, Virginia	1	Statistical Laboratory	
DTCOUDDATR ATTRTUTC	-		
· · · · · · · · · · ·		Engineering Administration Building	•
Professor Herman Chernoff		Purdue University	•
Applied Mathematics and Statisti	.cs Lab.	Lafayette, Indiana	1
Stanford University			
Stanford, California	1		

ADDRESS

a

£ .

-4

÷

Professor Gerald J. Lieberman Applied Mathematics and Statistics Laboratory	I
Stanford University	1
Professor William G. Madow Department of Statistics Stanford University	
	1
Professor J. Neyman Department of Statistics University of California Berkeley 4, California	1
Professor Herbert Robbins Mathematical Statistics Department	
Columbia University	1
Professor Murray Rosenblatt Department of Mathematics Indiana University Bloomington, Indiana	l
Professor L. J. Savage Statistical Research Laboratory Chicago University Chicago 37, Illinois	1
Dr. Herbert Solomon Teachers College Department of Statistics Columbia University New York 27, New York	1
Professor Frank Spitzer Department of Mathematics University of Minnesota Minneapolis 14, Minnesota	1
Professor S. S. Wilks Department of Mathematics Princeton University Princeton, New Jersey	1

ADDRESS

Professor Evan J. Williams	
Institute of Statistics	
State College Section	
North Carolina State College	
Raleigh, North Carolina	1
Professor J. Wolfowitz	
Department of Mathematics	
Cornell University	
Ithaca, New York	1
