September 1, 1959

CONIRIBUTIONS TO THE THEORY OF RANK ORDER STATISIICS:

Computation Rules for Probabilities of Rank Orders

I. Richard Savage $\sqrt[1]{ }$

Technical Report No. 9

University of Minnesota
 Minneapolis, Minnesota

Reproduction in whole or in part is permitted for any purpose of the United States Govermment.

1/Work done in part under contract Nonr 2582(00), Task NR 042-200 of the OPfice of Naval Research.

CONIRIBUIIONS TO THE THIEORY OF RANK ORDER STATISIICS:
Computation Rules for Probabilities of Rank Orders

I. Richard Savage

1. Introduction.

For most distributions the computations of the probabilities of rank orders (non null case) involve either difficult multiple integrations or extensive Monte Carlo aampling [1,2,3]. In this note rules are given for computing the probabilities of rank orders for the one and two sample problems [1,2]. For the one-sample problem the rule permits the computations for samples of size n from the results with samples of $n+1$. For the twosample problem the rule permits the computations for samples of size m and n from the results with somples of $m+1$ and $n(m$ and $n+1)$. Since most computations done analytically are built up from smaller to larger sanple sizes these results will, for that case, have limited value, e.g., in checking numerical work. For Monte Carlo sampling, however, there is no reason for starting with the smaller samples and in this case the rules will be of service,
2. One-Sample Rule.

Let $P_{n}(z)$ be the probability of the rank order $z=\left(z_{1}, \ldots, z_{n}\right)$ where $z_{i}=0$ (1) if the i-th smallest of the observed absolute values was from a negative (positive) observed value, e.g., if the observed values are $(2.2,-.7, .5,-1.1,3.0)$ then $z=(10011)$.

Rule I. To compute $P_{n}(z)$ add all $[2(n+1)$ in number $]$ the $P_{n+1}\left(z^{i j}\right)$ and divide by ($n+1$) where

$$
z^{i j}=\left(z_{1}, \ldots, i, z_{j}, \ldots, z_{n}\right) \quad i=0,1 \text { and } j=1, \ldots, n+1
$$

Note a. z_{n+1} is undefined and actually is not used.
Note b. Severial of the $z^{i j}$ will be the same.
Note c. The rule can be obtained using the analytic expressions for $P_{n}(z)$ given in [2]. Another proof can be obtained from noting that after the sample of size n is formed an additional observation must fall either between existing observations or before them or after chem.

Example I. Numerical results for the one-sample problem are not available. The following, however, suggests the kind of computing formulae that could be used. For n=3,

$$
\begin{gathered}
P_{3}(010)=\left[P_{4}(1010)+P_{4}(0010)+P_{4}(0110)+P_{4}(0010)+P_{4}(0110)+P_{4}(0100)\right. \\
\left.+P_{4}(0101)+P_{4}(0100)\right] / 4
\end{gathered}
$$

3. Two-Sample Rule.

Let $P_{m, n}(z)$ be the probability of the rank order $z=\left(z_{1}, \ldots, z_{m+n}\right)$ where $z_{i}=0$ (1) if the i-th smallest of the observed values was from the first (second) sample, e.g., if the observed values in the first sample were ($-1.5,2.6$), in the second sample ($3.4,-.9$) then $z=$ (0101).

Rule II. To compute $P_{m, n}(z)$ add all [($\left.m+n+1\right)$ in number] of the $P_{m+1, n}\left(z^{j}\right)$ and divide by ($m+1$) where.
$z^{j}=\left(z_{1}, \ldots, 0, z_{j}, \ldots, z_{m+1}\right) \quad j=1, \ldots,(m+n+1)$.
Note a. z_{m+n+1} is undefined but is not ectually used.
Note b. Several of the z^{j} will be the same.
Note c. The roles of m and n can be interchanged in the obvious manner. Note d. The rule can be obtained using the analytic expression for $P_{m, n}(z)$ given in [1]. Another proof can be obtained by noting that after the samples of size m and n have been obtained an additional observation from the first
population must either be between a pair of the observations of the original m+n or before or after them.

Example II. For the two-sample proinlem with $m=3$ and $n=2$, $P_{3,2}(00011)=\left\{P_{3,3}(100011)+P_{3,3}(010011)+P_{3,3}(001011)+3 P_{3,3}(000111)\right] / 3$. Teichroew [3] gives . 0394 as the exact value, and . 0410 as the Monte Carlo value (2000 samples) when the two populations are normal with means differing by $1 / 2$ of the common standard deviation. Using Teichroew's [3] Monte Carlo results for $m=3, n=3$ (4000 samples) in the above formula one obtains $P_{3,2}(00011)=[.03250+.01825+.011875+3(.01675)] / 3=.03992$.

Additional results for $m=3$, $n=2$ could be obtained from $m=4$, $n=2$ and from $m=4, n=3$ via $m=3, n=3$ [3].

References

[1] I. R. Savage, "Contributions to the theory of rank order statistics-the twowsample case, " Ann. of Math. Stat., Vol. 27 (1956), pp. 590-615.
[2] I. R. Savage, "Contributions to the theory of rank order statistics-the one-sample case,"--to be published.
[3] D. Teichroew, "Empirical power functions for nonparametric two-sample tests for small samples," Ann. of Math. Stat., Vol. 26 (1955), pp. 340-344.

BASIC DISTRIBUIION LIST FOR UNCLASSIFIED TECHNICAL REPORIS
for contract Nonr 2582(00), Task NR 042-200

ADDRESS

Head, Statistics Branch Office of Naval Research Washington 25, D. C.

Commanding Officer
Office of Naval Research Branch Office
Navy Nr. 100
Fleet Post Office
New York, New York
ASIIA Document Service Center Arlington Hall Station Arlington 12, Virginia

Office of Technical Services
Department of Commerce
Washington 25, D. C.
Technical Information Officer
Naval Research Laboratory
Washington 25, D. C.
Professor T. W. Anderson
Department of Mathematical Statistics Columbia University
New York 27, New York
Professor Z. W. Birnbaum Laboratory of Statistical Research Department of Mathematics University of Washington Seattle 5, Washington

Professor A. H. Bowker

Applied Mathematics and Statistics Lab. East Lansing, Michigan Stanford University Stanford, California

Professor Ralph A. Bradley
Department of Statistics and Statistical Laboratory
Virginia Polytechnic Institute
Blacksburg, Virginia
Professor Herman Chernoff
Applied Mathematics and Statistics Lab. LaPayette, Indiana Stanford University Stanford, Colifornia

ADDRESS

2 Department of Statistics
2 Harvard University

1 Professor Oscar Kempthorne Statistics Laboratory
Iowa State College Ames, Iowa Cambridge, Massachusetts

1
Professor Benjamin Epstein
Applied Mathematics and Statistics Lab.
Stanford University
Stanford, California
1
Professor W. Hirsch
Institute of Mathematical Sciences
10 New York University
New York 3, New York
Dr. Paul G. Hoel
1 Department of Mathematics
University of California
Los Angeles 24, Callfornia
1
6 Professor Harold Hotelling
Associate Director
Institute of Statistics
University of North Carolina
Chapel Hill, North Carolina
1
Professor L. Hurwicz
School of Business Administretion
University of Minnesota
Minneapolis 14, Minnesota
1 Professor Leo Katz
Department of Statistics
Michigan State University

Dr. Carl F. Kossack
1 Statistical Laboratory
Engineering Administration Building
Purdue University

ADDRESS

Professor Gerald J. Lieberman Applied Mathematics and Statistics Laboratory
Stanford University Stanford, California

Professor William G. Madow
Department of Statistics
Stanford University
Stanford, California
Professor J. Neyman
Department of Statistics University of California Berkeley 4, California.

Professor Herbert Robbins
Mathematical Statistics Department Columbia University
New York 27, New York
1

Professor Murray Rosenblatt
Department of Mathematics Indiana University
Bloomington, Indiana
Professor L. J. Savage
Statistical Research Laboratory
Chicago University
Chicago 37, Illinois
Dr. Herbert Solomon
Teachers College
Department of Statistics
Columbia University
New York 27, New York
1
Professor Frank Spitzer
Department of Mathematics University of Minnesota Minneapolis 14, Minnesota

Professor S. S. Wilks
Department of Mathematics Princeton University
Princeton, New Jersey

ADDRESS

Professor Evan J. Williams
Institute of Statistics State College Section North Carolina State College Raleigh, North Carolina

Professor J. Wolfowitz Department of Mathematics Cornell University Ithaca, New York

