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SURVEILLANCE PROBLEMS: WIENER PROCESSES

Gordon R. Antelmen and I. Richard Savage

INTRODUCTION

In [6], problems of determining optimel strategies for the surveillance of
production processes which behave as Poisson processes are studied. Some of these
problems are solved explicitly, and, for others, qualitative properties of optimal
strategies are derived. Analogous results are given here for the case of a produc-
tion process which behaves as a Wiener process. Some of the results proved in [6]
are directly applicable to the Wiener case as well as the Poisson case and are merely
stated here; others are easily extended to the present case. This paper is largely
self-contained, but for motivation, and some proofs, the reader is referred to [6].
The problems with which [6] is concerned are as follows: '

A production process produces output in a continuoﬁs stream when it is
not in the repair state. While producing, income (or expected income) per unit
of time depends on the state of the production process, which is assumed to
be a Poisson process x(t) where t denotes the elapsea production time
since the process last emerged from the repair state. The time intervals
defined by successive emergences from the repair state are called cycles.
Income per unit of time when x(t) = x is denoted by i(x), end i(x) 1is
assumed to be nonincreasing. If production is stopped with x(t) =x (x> 0),
repairs take m units of time and cost K per unit time; repairs enable the
next cycle to start at x(0) = 0.

Two kinds of surveillance are studied: continuous surveillance, in which

errorless observations of x(t) are immediately availeble at no cost at all
times of production (a constant cost can be incorporated into i(x)), and
costly surveillance, in which errorless and immediately available observations

of x(t) can be made at any times at a positive cost of L each. In either
case, the objective is the determination of a strategy which maximizes average
income per unit of time. For continuous surveillance, a strategy must specify
for every possible process history whether or not the production process should

be placed in the repair state. For costly surveillance, a strategy must specify,
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as a function of previous and current observations and observation times,
whether or not the production process should be placed in the repair

state and if not, when the next observation should be taken. The only
strategies which are considered, however, are those which depend only

on the last observation. These could be described as the stationary

Markov strategies. They appear to be the natural ones in view of the

fact that the process being considered is Markovian and the income function

is additive. Thﬁs, for continuous'surveillance, the only strategies considered
are: never placing the production process in the repair state, and placing
the process in the repair state as soon as x(t) = w+l (w > -1). For costly
sufveillance, the only strategies considered are those which are specified

by a continuation set W, a function T(x) defined on W, and the rule:

if x 4 W, ©place the production process in the repair state and if x € W,
take the next observation in T(x) time units. (It is assumed that an
observation must be mede immediately prior to starting repairs unless w = -1,
in which case the production process is always in the repair state.)

This paper considers exactly the same problems under the assumptions that
x(t) 1is a Wiener process with x(0) = O and variance parameter A end 1i(x) is

symmetric sbout x = 0, finite for x = 0, and nonincreasing in |x|.l

WIENER PROCESSES

The following properties of the Wiener process with variance paremeter A

will be used in this paper:2

Ithe case of 1(x) nonincressing in |x| but not symmetric involves the addi-
tional problem of determining the optimal point from which to start the process. For
the symmetric case it follows from PROPOSITION 8 that the optimel starting point
is 0.

2Properties (1)~(4) are basic (see, e.g., [5]). Properties (5)-(7) are proved
in the Appendix.
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For each finite set of values tl s coey tr, the random varisbles
x(tl) s eoey x(tr) have a multivariate normal distribution with mean vector
(0,0, ¢o., 0) and covariance metrix £ = [ajk] where Op = & min(tj, tk’

fOI‘ j, k=l, 2, ceoey Tr.
If x(tl) = a then E(x(tz)) =a for any t,>%t;.

If t, <t, <t

1 2 3 2)
and normally distributed with mean values O and variances A(tg'tl) and

<%, then x(% x(t,) end x(t)) -x(t3) are independent

A(th-t3) respectively.
With probability one, x(+) is a continuous function.

If x(t) =b and a <b <c then the expected amount of time that x(°) will
be in (y, y+dy), vwhere a <y <y + dy <c, before x(*) equals a or c

is given by
28" min(b-a, y-a)-(b-a)(y-a)/(c-a)lay.

If x(t) =b and a <b <c then the expected waiting time for x(:) to

reach either a or c is (c-b)(b-a)/A.

If x(t) =b and a <b <c, the probability that x(°) will reach a before
¢ is (c-b)/(c-a), eand the probebility that x(:) will reach c before a

is (b-a)/(c-a).

CONTINUOUS SURVEILLANCE

The theory for continuous surveillance of a Wiener process follows easily

from that given in [6] for Poisson processes. For the objective of meximizing

average Income per unit of time among the stationary Markov strategies being

considered, an optimal decision depends only on the current observation. Hence,

specification of an optimal stratégr is equivalent to the specification of an

optimal continuation set, i.e., a set of x values from which production is to

be continued.
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From the symmetry of the Wiener process and the assumed symmetry of the income
function, it is clear that we need only consider continuation sets symmetric about O
(including the empty set). Furthermore, since the sample paths are continuous with
probability one, consideration can be restricted to the empty set and continuation sets
of the form W = (-w, w) where O<w_§c:o.3

Let R, denote the strategy of using W = (-w, w), 1let t, denote the smallest
value of t for which x(t) € W, and let I(w) be the long run income per unit of
time if the strategy R, is used. For w < oo, it is noted in [6] and proved in

[3] (end [%4]) that with probability one
(8) I(w) = [EX(0, t,)-mK]/[Et +m]

where I(x, T) is defined to be the conditional expected income from production in
the interval (t, t+T) given that x(t) = x and that production is allowed to

continue to time T, i.e.,

T
(9) 1(x, T) = Elf 1i(x(s))ds|x(t) = x].
+

From (6) and (9), (8) can be written as

t
E[f"1(x(t))at|x(0) = 0]-mk
(10) I(w) = ————3
WA 4nm

vhere the expectation operates on -both tw end x(t). To compute

t
E[.fwi(x(t))dtlx(o) = 0], define the new stochastic process t(y) where t(y)dy
0

is the emount of time that x(t) satisfies y <x(t) <y + dy, given that x(0) = O,

before |x(°)| = w. Then from (5), with b =0, a=-w, and c¢c =W,

301early, we can consider either oben or closed intervals; for later convenience,
let them be open, and let the empty set be denoted by (-0, 0).
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t W W
(11) E{"i(x(t))dt Ef i)ty = [ 1(y)Ee(y)ay
. . . -Ww -W

w

[ i(y)(min(w, y+w)-(y+w)/2lay

-W

26-1

= %'lj; i(y)(v-y)ay.

Substitution of (11) into (10) results in

W
2a™ [ 1(y)(w-y)dy-mi
(12) I(W) = 0

waA-l-i-m

The following analysis of (12) shows that except for three particular cases, there
exists a unique finite value w* of w which maximizes I(w). First, since 1i(y) is
noninereasing for y.z 0, it cen be shown that I'(w) = dI(w)/dw exists for all

w> 0 and is given by I'(w) = N(w)(waA-l-t-m) 2 here

w . w
(13) N(w) = (v~ +m)2a™t fo 1(y)dy - 2w a"Y(2a™ fo 1(y) (w-y)ay-uK)

2, 2. -1\ R |
= 2A ~(v°A +m)(f i(y)dy - wI(w)).
o _
Routine computations yield

(14) ¥'(w) = 281 (wBa"Eem)1(w) - (ea’l}; $(3) (w-y)dy - uk)]

= oa™ (w2 hem)(1(w) - I(w)),

l‘LD:Lmens:lonal:l.y, m is timg , K and i(y) are money/time, and, if the dimension
a

of vy and w is d, A is d°/time. Thus, I(w) hes the dimension money/time, as
it should.
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: W
(15)  N"(w) = 2A (A m) 1°(w) + m‘lfo (1(w) - 1(y))ayl.”

Notice that N"(w) <0 for all w >0 and is O only if i(y) is constant for 0<y<w.
Notice also that I(0) = -K, N(0) = 0, N'(0) = 2a™% m(1(0)+K), end N"(0) = 2a™‘mi°(0).
The first of the three particular cases obtains if i(y) < -K for &1l y > O.

Then I'(w) <O and I(w) <I(0) for all w >0, and the optimal continuation set
ﬁ* is empty. The second particular case obtains if the_re exists a Yo >0

(possibly co) such that i(y) = =K for 0<y < W, ‘while i(y) < -K for y > oo
In this case, it is easily seen that W* can be empty or any set of the form (~w¥*, w¥)

where O <w¥ <w The third particular case obtains if i(y) = c¢(> -K) for all

o°
Yy > 0. In this case, it can be seen from (13) that N(w), and hence I'(w), is
positive for all w > 0. Thus W* = (-00, ®). '

The alternative :bo the above_'three particular cases is that i(y) > -K for
some y >0 and i(y) is not constant. For this situation, N(0) = 0, N°(0) > 0,
N"(w) <0 for all w >0, and N"(w) is bounded away from O for ell w sufficiently
large. It follows that N(w) " and hence I'(w), has a unigque O at some w* such
that O < w* <o0o. From (13), it can be seen that w* must be such that |

o
(16) WK (w¥) ={) - i(y)ay.

EXAMPLE 1:

Let i(y) = -Ay2. From (12)

W
(a7) I(w) = -[2a™%a [ ya(w-y)d.yﬂnK]/ [weA-l+m] = -[A-lAwh/6 + mK]/ [A'lw2+m],
0

JSince i(y) 4is nonincreasing for y > 0, i'(w) exists almost everywhere.
If i°(w) does not exist, (14%) and (15) are still true if i(w), i°(w), N'(w),
and N"(w) are interpreted as left limits and derivatives or right limits and deriva-
tives.
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The maximizing value w¥ of w is given by

(18) we = {anl (1e6k/ann) /2.1 1) /2

and from (16), I* = -Aw*2/3. Note that I* is a decreasing function of m, K, A,
and A, i.e., thé optima:Ll income per unit <;f time decreases with the time and costs
for adjustment, with A, and with the variability of the process.

E;ALIPI.E 2:

Let i(y) =A for -1<y <1 and O otherwise. Then, from (12)

a2 -mK]/[A wotm) 0<w<1

(19) I(v) =
[2aa™ (w-l/2)-mK]/[A 2im]  1<w<oo.

The critical equation is

2Avm + 2wnK = O O0<w<1l
(20)

AA-:Lw2 -(AA-l+mK)w -Am =0 1<w<omw,

The first part of (20) has the root w = 0, which corresponds to & minimum. The

roots of the second part of (20) are
{AA-l + ok + [(Aa LmK)® + hAeA'lm]]'/ 2} [2an™t

The positive root is w¥, and it can be written as

2
(21) W =(1/2)(1 + }{1+[1 + Moo ]1/2}
- (A+ mKA)
From (16), I* = A/w*. Notice that repairs are not made as soon as |x(t)| > 1;
for 1 <x(t) <w* there remains a favorsble possibility that x(t) will wander
back inside the interval (-1, 1). Note also that I* is an increasing function of

A eand a decreasing function of m, K, and A.
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The following table gives values of w¥* (upper entries) and I* (lower entries)

for selected values of A, A, m, and K.

K=1 K=
A m= m=5 m=1 m=5

A 1 2 5 1 2 5 1. 2. 5 1 2 5
1 | 2.413.56 6.74% | 6.7% 11.84 26.93 | 4.2k 7.28 16.31 | 16.31 31.32 76.33
41 .28 .15 .15 .08 Ok 24 Ak .06 .06 .03 .01
5 1.77 2.28 3.45 | 3.5 5.00 T.74 | 2.08 2.89 5.00 5.00 8.22 16.51
2.83 2.19 1.45 | 1.5 1.00 56 | 2.40  1.73 1.00 1.00 .58 .29
10 1.69 2.1% 3.11 | 3.11 k.32 7.05 | 1.8% 2.42 3.81 3.81 5.77 10.81
5.91 4.68 3.22 | 3.22 2.32 1.2 | 5.43 4,12 2.62 2.62 1.74 .93
20 1.65 2.07 2.95 | 2.95 4.00 6.25 | 1.73 2.21 3.28 3.28 4,65 T.91
12.09 9.67 6.79 | 6.79 5.00 3.20 |11.57 9.06 6.10 | 6.10 4,30 2.53

COSTLY SURVEILLANCE-THEORY

The formulation presented in [6] of the problem of determining an optimal (sﬁationary
Markov) strategy for costiy survelllence of a Poisson process extends.easily to the
Wiener procesé case. Hence, only a brief summeary will be given here.

Assume that an optimal strategy does exist and that the resulting long run average
income per unit of time is I*. Consider a new problem for which income per unit of
time is i%(x) = i(x)-I* (symmetric ebout O since i(x) is) and the repair cost per
unit of tiﬁe is K¥ = KI-?-I*o It is shown in [6] that the original and new problems
have the same optiﬁal strétegies, and that since the maximum expected income per cjcle
for the new problem is zero; the problem of finding an optimael strategy is equivalent
to finding the largeét value for I¥* for which the maximum expected income per cycle
for the new pfoblem is zero. This latter formulation introduces another unknown (I*)
but allows the consideration of a maximum expected value rather than the more diffiéﬁlt
maximum of a ratio of expected values.

It has beeq noted in the INTRODUCTION that for costly surveillance of a Poisson
process the natural strategies to consider are those which specify for each x whether

or not the process should be placed in the repair state and, if not, when the next
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observation should be teken. This is also true for the Wiener case since the Wiener
process is Markovien with stationary increments. Thus, consideration will be restricted
to strategies which specify a continuation set W and function T(x), defined on

W, giving the time to the next inspection if the process is observed at state x.

As in [6], it will be assumed that an inspection must be made immediately prior to
starting repairs unless the continuation set is empty, in which case no inspections are
necessary.

F&r the new problem, let 'F(x) denote the maximum expected income remaining in
the cycle 1f the process is in state x. ’Notice that F(0) = 0. A functional
equation for PF(x) developed in [6] for =x(t) a Poisson process extends easily to
any Markov process with stationary increments. For x(t) & Wiener process with

x(0) = 0 and variance parameter A, it is

-m[T%+K] , xgW
(22) F(x) = max

™(x), W | I(x, T(x))-I*T(x)-m-I; F(y)fy(vlx, ar(x))ay, xew

where fﬁ(ylx, AT(x)) denotes the normal density with mean x and variance AT(x).

The problem of determining an optimal strategy can now be stated as that of finding

a W, T(x), and I* satisfying (22) for a1l x, and the boundary condition F(0) = O.
Let W¥ and T*(x) .correspond to an optimal strategy.

No way of éolwing this problem analytically is known to the authors. Hence the
following series of qualitetive properties of an optimal strategy and related proposi-
tions are of interest.

PROPOSITION 1:

If i(x) is unbounded below, the strategy of never repairing need not
be considered.

PROOF:

This is an immediate consequence of the fact that

lim  P(x(t) > |x|) = 1 for a11 x.
t —>00



-10-
Let % be the maximum income per unit of time for phose strategies which have
at most k .inspect:lons per cycle. Let kI* be the maximm income per unit~of time
from those strategies (unfeasible) that involve at most k inspections, and are such
that when & ko2 inspection is used, it is mede precisely at the time that x(t)
leaves a continuation set which is op'l';imal for such strategies. The next six
PROPOSITIONS are merely stated here. For proofs of PROPOSITIONS 2 and 7, see [6];

the proofs of PROPOSITIONS 3-6 are obvious.

PROPOSITION 2:
For k>1

I'l_fﬁ:[as...s_lkf_l .SkI*S"_'SEI*S-lI*

PROPOSITION 3:

¢ '= mex [1(0, t)-L-uk]/[t+n].
£ >0

PROPOSITION 4:

[I* = m;x[EI(o, t,) -L-uK]/[Et_+m]

vhere t_  1is the first time that x(t) &W.
I
Expressions for the other bounds in PROPOSITION 2 are more complicated and

will not be given here. For the Poisson case, expressions for ‘ IEA and 21* are

given in [6]; they can easily be extended to the Wiéner case.
PROPOSITION 5:
If, for some Kk, Iﬁ is greater than the long run average income per
unit of time for the strategy éf never repairing, then an optimal strategy will involve
repairs. '

PROPOSITION 6:

If i(x) 1is constent then W* 1is either empty or the entire real line.
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If, for some x >0 and all y such that y >x, i(y) = i(x), then either xe: W
or W* is the entire reaLl line. ' ‘ '
PROPOSITION T:
For all x,

F(x) > -m(I*K) end I* > -K.

PROPOSITION 8:
W is an interval symmetric sbout O end F(x) 1is nonincreasing in |x]|.
If w* is ﬁnite, F(x) is strictly decreasing in |x| for x € W,
f’ROOF: o
Assume W* and T*(x) defining an optimal strategy are known. There
is nothing to prove 1f We is empty. Otherwise, there exists en x 4 O such that
x EW¥, and, since i(x)-= i(-x). W* cen be taken to be symmetric sbout O, and
X can be assumed to be positive. Let x' be such that 0 <x' <x and let
€ = (x=x')/2. Let p(t) denote an arbitrary path on [ty, t,] starting et x
denotes the first time at which' p(t) is observed, using

gt time +¢ vwhere t

0’ 1
an optimal strategy, to be out of W*. Such a path mey or majr not have assumed
the value € for one or more values of t & [to, tll. If it did, 1let t& denote thev
smallest value of t such that p(t) =€.

Note that the optimel strategy provides observations of x(t) only at isolated
t values, and hence, if p(tl) >E, we might not know whether or not t, even

exists and in no case would its value be known. Nevertheless, we cen consider the

one-to-one measure preserving transformation of the set of paths p(t) onto a set

of pat"hs p'(t) starting at x' at time t, defined by
if t; does not exist, let p'(t) = p(t)-2¢ to Sty
(23) p(t)-2¢ t < tg

if t, exists, let p'(t) =
reflection of p(t) sbout 0 t.<t <t
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Then for any path p(t) and the corresponding value of tl ,» the income associated
with p(t) is less than or equal to the income associated with the path p*(t)
during the interval [tg, t,]. ‘

Con‘s:lder the following nonfeasible, but suboptimal, strategy for x(t) having
just been observed at x' at time ty: act as if x(to) = x, i.e., continue
productic;n‘(since X € W*) and take the next observation et time to-l-T*(x). Suppose
that at time to+T*(x) s this observation (e point on & path p'(t) from x') is x".
Now assume that the entire history p°(t) of the process between t, end 'i'.o-t-T*(x).
becomes available. Because the process if Mafkovian, the optimal strategy for ;:" is
independent of this history. ILet p(to+'r*(x)) denote the value uniquely determined
by x" eand the inverse of the transforma{;ion (23). Let the strafegic decision for
the observaetion x" be that specified by an optimal strategy for p(t0+'1‘*(x)).
Continue this procedure until productiori is stopped. This suboptimal str;a.’izeé& for
x(to) = x' results in at least as large an'expected income to the end of the cycle
as does an optimal strategy for x(to) = x. Hence, x' e W% and F(x') > F(x).
If W*¢ 1is finite end not empty, it is easily shown from PROPOSITION 6 end the sbove
that -F(x') > F(x).

Thus, W¥ can be denoted by (~w*, w¥).

In the following PROPOSITIONS it is assumed that O < w* < oo.

PROPOSITION 9: ’

F(x) <0 for x # 0.
For PROPOSITION 10 it will be assumed that 1°(x) = di(x)/dx exists for x & W

: - - -6
and that F"(x) exists throughout W¥, except possibly at O.

GWhether or not any regularity conditions need to be imposed on i(x) to insure
the existence of F"(x) for x 4 O has not as yet been determined. The seme comment
epplies to the assumptions preceding PROPOSITION 11. ) :
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PROPOSITION 10:
i¥(x)+ F"(x)/2> 0 for x(40) € wx.
PROOF: | -
Let x and € >0 be such that x + ¢ € W¥. Consider the superoptimal
strategy for x(to) = x of observing the procéss continuously at no cost until
x(t) = x + ¢ and then proceeding with the optimal strategy. Let to"'te denote the
time at which x(t) first assumes either of the values x + £. Denote by Fs(x, £ )
the expected income (for the new problem) remaining in the cycle associated wi'Eh this
superoptimal strategy. Then
td+te
Fs(x, g) = E[{[ i*(x(s))dslx(to) = x] +(1/2[F(x- € )+F(x+£)].
0
If t(y) dy is defined to be the time that x(t) € (y, y+dy)

(vhere x-E<y <y + dy <x+¢E), glven that x(to) = x, before |x(t)-x| = €.,

then
t0+t£ X+E
ElS  ix(x(s))as|x(ty) =x]1 =€ /S ix(y) t(y)ay
to - ' X=£& .
X+E o 1 :
From (6), E J t(y)dy = €A ~. Hence, for some X5 Xp € [x-¢, x+e],
x=€ :
xr& 2 -1
E S 1x(y)t(y)dy = 1%(x,) €°A
‘X-€. . .
= [1%(x)(x, %)% (x,)] 6247

"

i%(x) £2a™t 4 o( e'-.3) .
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Thus
0 < F (x, £)-F(x) = a7 f1x(x) + 0;53) + 27 F(xe€) - 2F(x) + F(x-£)].
Letting €—> 0, we obtain
A ix(x) + 271F"(x) > 0.

If i*(x) has a discontinuity at x, the sbove proof can be extended to show
that (QA);l[i*(x"‘-) + i%(x") + F"(x)] > 0, where i%(x") and i*(x") are the right
end left hend iimits Qf. i*(y) as y epproaches Xx.

The final two PROPOSI&IONS involve .g(x,'t), which is defined as the meximum
expected income (for the ﬁew'prdblég) remaining‘in the.cycle; given that the
production process is at x at time— tq end that exactly t (>0) time units

must elapse before the next inspection, i.e.,

(24) g, 1) = Hx, )T+ S Pyl )y
. 3 =D . ) .
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where, recalling thet i%(x) = i(x)-I*,
. kgt
I*x, t) = I(x, t)-I% = E[ [ 1%(x(s))ds|x(t,) =

- to R

t oo
of S 1*(Y)fN(y[x,At')dydt'.
w -

Also, define

(25) g(x, 0) = 1lim S(X; t).
t—0

Note that g(x, T*(x)) = F(x) end g(x, 0)'= F(x)-L.

It will be assumed that the second partial derivetives of g(x, t) -are continuous
and that gtt(x R T*(x)), where T*(x) is defined in the proof of PROPOSITION 12, is
negative for all x &€ W¥. Also, for simplicity, let A=l.

- PROPOSITION 11:

]

(o o]
dg(x, 8)/ot = [ LiM(yl2 " (y) g (ylx, t)ay

-

S.b(x) t)

PROOF:

From (24), it is easily seen that
N -1 -1 2,1 _\q
& (%, #) = [ [i-(y)+2 -F(y)t ((y=x)"67"-D1 £ (v %, t)dy.

-Q0

Now, letting fN*(z) = fN(z|O, 1)
SR 0t g vl tay = 78 [ (e8P (R g (2)as
=0 ‘ =@ )
£t f F Rzt 2x) £n. (2)az

and integrating this expression by parts twice, we get

Q (]
[P @ Pt (e = [ F)nglyls, ta.
-0 =Q0



PROPOSITION 12:
T#(x) 1is unique and nonincreasing in |x| for x & wx.
PROOF': _

The proof will be divided into several lemmas. First, let

(26) h(y) = ¥(y}+F"(y)/2.
so that, from PROPOSITION 11,
.
(27) g (x, t) = [ n(y)f(ylx, t)ay.
. =00 | . -

Notice that h(y) = h(-y).

LEMMA 1:

For x € W¥, there exists a smallest optimal time T;(i(x) to the next

inspection, and Tli;(-l(x) > 0.
PROOF': .
Since x & W*, there exists at least one optimal time T*(x) to the
next inspection. The’assumed continuity of gt(x, t) insures the‘éxistence of
a smallest optimal time, T;(x), and, since g(x, T*#(x)) = F(x) and g(x, 0) = F(x)-L,

Tﬁ(x) > 0.

LEMMA 2:
As y > 0 increases from 0 to o0, h(y) changes sign exactly once, from
poéitive to negative.
PROOF:
PROPOSITION 10 is that h(y) >0 for yEW¢. For y > w¥, h(y) = ix(y),
which is nonincreasing and, by the assumption thd: w-;e <o, ultima'é.ely negativé. -
It remains only to show that for some yé& W* (¥ > 0); h(y) >0, end this is easily

proved by contradiction from (27) and the meesning of W.



LEMMA 3:
T (x) = dTI*;(x)/dx is continuous and nonincreasing in |x| for x € W*.
PROOF': ’
Let 0 <x, <w*. From (27)
© ®
1/2 =1/2
@) gz V) = [ HDErhg, Ve = [/ nlet /)2 (alxst Y2, 1)az.

By assumption, gt(xo, T;(xo)) =0 and gtt(xo, T;(xo)) < 0. From LEMMA 2, (28),

and Pcflya theory

>0 for O<x<xo

(29) g, (x, T*(x,))
LA Y <0 for x0<x.

Hence gxt(xo, T*m(xo)) < 0. Applying the implicit function theorem(see s €e8ey
(1, p. 114]) +to lgt(x, T;(x)) = 0, we can conclude that T;'(x) is continuous
and, for 0 <x < w¥ '

T*(x) = -g_(x, TX(x))/g,,(x, TA(x)) <O.

For x =0, it is easily seen that gxt(O, T;;(o)) = 0, and hence that T;;l'(o) = 0.
- ! ; = = ' . _
Since T;( -x) = T;(x) for 0 <x <w*, T¥ (=x) T* (x)

To cémplete the proof of PROPOSITION 12, note, from (28) and symmetry, that
o &
g,(0, t) =2 [ n(y)f(ylo, t)ay.
0 .

Since EfN(yIO, t) has a monotone likelihood ratio in t, gt(o, t) changes sign
at most once. Since h(y) >0 for some y > 0 and g, (0, T%(0)) <0, gt(O, t)
has & unique zero at t = TI'){(O). This shows that T*(0) = T;(Oj is unique. Now
consider an arbitrary positive X € W*. By LEMMA 3,‘ T;(xo)s T;(x) for all

x € [o, xo)., Suppose there exists a 'i‘*(xo) > T;(xo). Then there exists an € > 0

and an xlE[O, xo) such that St(xl’ T*(xo)) < - €. But then gt(x, 'T*(xo)) +& =
© ,

f (h(y)+ &)fN(ylx, T*(xo))dy, considered as a function of x for x > 0, changes
-0 .
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sign at least twice, which contradicts Pélya theory. Hence, T*(xo) is unique and

equal to T;;l(xo) .

COSTLY SURVEILLANCE-EXAMPLES
The two examples of this section illustrate only one of several possible first
steps towards the solution of the c_ostly surveillance problem for Wigéner processes.
EXAMPLE 3:
Let x(t) be a Wiéner process with x(0) = O eand variance parameter A.

Let i(x) =A(>0) for |x| <1 eamd O otherwise. Define Q(x) = f P (¥)
' . = .

Consider first I¥. From PROPOSITION 3 end (9)

i

1]

maxo{[I(O, T)-L-uk]/[T+m]}

mex {[A f f £, (x]0, At)axdt-L-uk]/ [T+m]}
T>0

(30)

mex {[A f Q( (At)-l/ a)dt-L-mK]/ [‘1‘+m]}
T>O0

The critical equation for the meximizing velue of T is
-1/2, , F -1/2
(T+m)AQ((aT) " <) -A S Q((at) " T)at+I4nK = O.
0]
Now, an integration by parts and a change of varisble yields

T y -1/2 _1/2 . =1 -1/2 O _3/2 -u
“at = TR 27tm :
{' Q((at) ™ )ae = ma((az) T )2 _/ )_lu e Vdu

Hence the critical equation can be written in the form

- o
(31) maQ( (ar)/2) 2" 1"f -1/2 (mj;j L w-3/2e e 1amk = 0.

I¥ could be determined from (30) and (31).
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The problem of finding lI* is the same as the problem of EKAMPI..E 2 with

mK replaced by wmK+L. Hence

(AA'lw -mK-L)/ (A +m) for w <1
(32) (I = msx .
) w>0 (EAA (w-l/2)-mK-L)/(A +m) for w> 1,
* = é(_ﬂl 4A%Am - 1/2}
(33) w‘ = {l + }{l + [l + (A+A(mK+L)) ]
and
(34) [I* = Afwx.

. .
Letting FN(x|O, at) = j fN(yIO, At)dy, the functional equation for
=-Q0
determining an optimal strategy has the form
(35)  F@x) = fix, m-vers 4 j (1) 2y(ylx, am)ay

W, T(x) >0
-m(lcu*_*)y e{ wa(ny, | AT)ds;}

where

4 T 1 T
(36) I(x, T) = A of lf fN(ylx, At)dydt = A of FN(llx,At)-FN(-llx, At)lat
and F(0) =

EXAMPLE k:

Iet x(t) be a Wiener process with x(0) = O and variance parameter A.
Let i(x) = =°.
From PROPOSITION 3 and (9) it is easily shown that
(37) I¥ = {[-AT /2-L-nK)/ [T+m]}
; T >0

The meximizing value of T, call it T*, is given by
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(38) T* = m[(1+2(mK+L)/m2A)'l/ 2-1]
and
(39) I = -OT*.

The problem of finding lI* is the same as the problem of EXAMPLE 1 with A =
and mK replaced by mK+L, i.e.,
(40) I* = {[(-w /6)-A(nﬂ(+I.)]/[w +mA]}
_ 1 . W > 0

The desired root w¥ of the critical equation is given by

(k1) we = fmal (26 (ueer) /() 211} /2
and :
(42) I* = /3.

The functional equation for determining an optimel strategy is the same-as in

EXAMPLE 3 except thaf. a new expression is re_quired for I(x, T). It is
® 2 2 2 2
(43) I(x, T) = -'o} S (x+y) £, (v |x, at)dydt = - 0-(2x +at)dt = -(2x ™M+AT"/2).
-0 ) )
If, in this example, m=K=L=2, (38) becomes

2[(1+3/A)l/ 2

T*

and (41) becomes

w*

{eal(1e9/a)*/2-11} M2,
For A = .2, tl;xe specific results are
T™* =6 and I¥ = -1l.2’

w¥ = 1.52 and lI* = =TT,
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APPENDIX

. Proofs of properties (5)-(T7):
To prove (5), cons:ider‘a symmetric random walk over the integers starting
at b with absorbing barriers at ‘a and c¢ where a <b <c. Let Pyy be the

probebility of reaching y (a2 <y <c) before being sbsorbed. It is well known (see,

e.g., [2]) that

c=b
E_-i aSySb

Poy =

Let PW be the probability of a return to y before ebsorption if the random

walk starts at y. Then

c-a atl <y < c¢-1
2Zc-y53y-a5 _
1-P = c-a y=8al or y=c-1
Na's 2Zc-a-l$
1 y=a or y=c.

This can be shown by noting that a path starting at y must move to y-1 or w1,
each with probability 1/2, and then using the formula for pby with b =y-1 or
b =y+l, as is appropriate’.

Now, let the values of &, b, ¢, and y be held constant and the number of steps
in an interval increase by letting the size of each step be Ay (Ay <1). 1let the ’
time for each step be At. Then Ty, the expected time spent 'at ¥y béfore
absorption, equals At times the expected number of visits to y. For this new

random walk

at & k-1 At
Y x kil BoyFyy (l'Pyy) “ &y Pby/ (1-Pyy)-



It is easily verified theat

Ty =2 At2 IFmin(b-a, y-a) - %? ] éy‘.

(ay) T
If Ay and At approasch zero in such & way that (Ay)2/At approaches A,

the distribution of the displacement at time + approaéheé that for the Wiéner

process, and
T, ~ 28" [nin(b-a, y-a) - (b-a)(v-8)/(c-2)] Av.

This result was also derived directly by Professor Frank Spitzer (personal

communication).

Property (6) follows from integrating the expression in property (5). Property

(7) follows from the formula sbove for pby
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