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INTRODUCTION 

SURVEILLANCE PROBLEMS: WIENER PROCESSES 

Gordon Ro Antelman and Io Richard Savage 

In [6], problems of determining optimal strategies for the surveillance of 

production processes which behave as Poisson processes are studiedo Some of these 

problems are solved explicitly, and, for others, qualitative properties of optimal 

strategies are derivedo Analogous results are given here for the case of a produc­

tion process which behaves as a Wiener proce&so Some of the results proved in [6] 

are directly applicable to the Wiener case as well as the Poisson case and are merely 

stated here; others are easily extended to the present caseo This paper is largely 

self-contained, but for motivation, and some proofs, the reader is referred to [6]. 

The problems with which [6] is concerned are as follows: 

A production process produces output in a continuous stream when it is 

not in the repair state. While producing, income (or expected income) per unit 

of time depends on the state of the production process, which is assumed to 

be a Poisson process x(t) where t denotes the elapsed production time 

since the process last emerged from the repair state. The time intervals 

defined by successive emergences from the repair state are called cycleso 

Income per unit of time when x(t) = x is denoted by i(x), and i(x) is 

assumed to be nonincreasingo If production is stopped with x(t) = x (x?:. O), 

repairs take m units of time and cost K per unit time; repairs enable the 

next cycle to start at x(O) = Oo 

Two kinds of surveillance are studied: continuous surveillance, in which 

errorless observations of x(t) are immediately available at no cost at all 

times of production {a constant cost can be incorporated into i{x)), and 

costly surveillance, in which errorless and innnediately available observations 

of x(t) can be made at any times at a positive cost of L each. In either 

case, the objective is the determination of a strategy which maximizes average 

income per unit of time o For continuous surveillance, a strategy must specify 

for every possible process history whether or not the production process should 

be placed in the repair state. For costly surveillance, a strategy must specify, 
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as a function of previous and current observations and observation times, 

whether or not the production process should be placed in the repair 

state and if not, when the next observation should be taken. The only 

strategies which are considered, however, are those which depend only 

on the last observation. These could be described as the stationary 

Markov strategies o They appear to be the natural ones in view of the 

fact that the process being considered is Markovian and the income function 

is additive·. Thus, for continuous surveillance, the only strategies considered 

are: never placing the production process in the repair state, and placing 

the process in the repair state as soon as x(t) = w+l (w 2: -1). For costly 

surveillance, the only strategies considered are those which are specified 

by a continuation set W, a function T(x) defined on W, and the rule: 

if x 4 W, place the production process in the repair state and if x €. w, 
take the n~xt observation in T(x) time units. (It is assumed that an 

observation mu.st be made immediately prior to starting repairs unless w = -1, 

in which case the production process is always in the repair state.) 

This paper considers exactly the same problems under the assumptions that 

x(t) is a Wiener process with x(O) = 0 and variance parameter A and i(x) is 

symmetric about x = o, finite for x = O, and nonincreasing in 

WIENER PROCFtSSES 

The following properties of the Wiener process with variance parameter A 

2 will be used in this paper: 

l.rhe case of i{x) nonincreasing in lxl but not symmetri~ involves the addi­
tional problem of determining the optimal point from which to start the process. For 
the symmetric case it follows from PROPOSITION 8 that the optimal starting point 
is o. 

2properties (1)-(4) are basic {see, e.g., [5]). Properties (5)-(7) are proved 
in the Appendix. 
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(1) For each finite set of values t 1, o••, tr, the random variables 

x(t1), ••• , x(tr) have a multivariate normal distribution with mean v~ctor 

(o,o, o••, o) and covariance matrix E = [ajk] where ajk = ll. min(tj, tk' 

for j, k=l, 2, ••• , r. 

(2) If x(t1) = a then E(x(t2)) = a for any t 2 > t 1 • 

(3) If t 1 < t 2 ~ t 3 
< t 4 then xtt2 ) -x(t1) and x(t4) -x(t

3
) are independent 

and normally distributed with mean values O and variances ll.(t2-t1) and 

ll.(t4-t
3

) respectively. 

( 4) With prob~bili ty one, x( ·} is a continuous function. 

(5) If x(t) = b ana.· a< b < c then the expected amount of time that x(•) will 

be in (y, y+dy), where a~ y < y + dy ~ c, before x( ·) equals a or c 

is given by 

2ll.-1[min(b-a, y-a)-(,b-a)(y-a)/(c-e) ]dy. 

(6) If x(t) = b and a < b < c then the expected waiting time for x( ·) to 

reach either a or c is (c-b)(b-a)/ll.. 

(7) If x(t) = b and a < b < c, the probability that x( ·) will reach a before 

c is (c-b-}/(c-a), and the probability that x( •) will reach c before a 

is (b-a)/(c-a). 

CONTINUOUS SURVEILLANCE 

The theory for continuous surveillance of a Wiener process follows easily 

from that given in [6] for Poisson processes. For the objective of maximizing 

average income per unit of time among the stationary Markov strategies being 

considered, an optimal decision depends only on the current observation. Hence, 

specification of an optimal strategy is equivalent to the specification of an 

optimal-continuation set, Le., a set of x values from which production is to 

be continued. 
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From the symmetry of the Wiener process and the assumed symmetry of the income 

function, it is clear that we need only consider continuation sets symmetric about O 

(including the empty set). Furthermore, since the sample paths are continuous with 

probability one, consideration can be restricted to the empty set and continuation sets 

of the form W = ( -w, w) where O < w < co .3 
Let Rw denote the strategy of using W = ( -w, w), let tw denote the smallest 

value of t for which x( t) ~ W, and let I( w) be the long run income per unit of 

time if the strategy Rw is used. For w < oo, it is noted in [6] and proved in 

[3] {and [4]) that with probability one 

(.8) I(w) = [EI(O, t )-mK]/[Et +m] w w 

where I(x, T) is defined to be the conditional expected income from production in 

the interval ( t, t+T) given that x ( t) = x and that production is allowed to 

continue to time t+T, i.e., 

(9) 

(10) 

t.+T 
I(x, T) = E[f i(x(s))dslx(t) = x]. 

t 

From (6) and (9), (8) can be written as 

t 
E[Jwi(x(t))dtlx(O) = O]-mk 

0 
I(w) = ----------­

w2~-l+m 

where the expectation operates on both tw and x(t)o To compute 

t 
E[Jwi(x(t)}dtlx(O) = o], define the new stochastic process t(y) where t(y)d.y 

0 

is the ~ount of time that x(t) satisfies y < x(t) < y + d:y, given that x(O) = O, 

before lx( 0 )I = Wo Then from (5), with b = o, a= -w, and c = w, 

3c1early, we can consider either open or clqsed intervals; for later convenience, 
let them be open, and let the empty set be d~noted by (-0, O). 
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t w w 
(11) E Jwi(x(t) )dt = E J i(y)t(y)dy = f i(y)Et(y)dy 

0 . . -w -w 

lw 
= ~- f i(y)[min(w, y+w)-(y+w)/2]dy 

-w 

lw 
= ~- J. i(y)(w-y)dyo 

0 

Substitution of (11) into (10) results in 

(J2) 

1 w 4 
~- f i(y){w-y)dy-mk 

I(w) = 0 --~2~-1-----
w ~ +m 

The following analysis of (12) shows that except for three particular cases, there 

exists a uni~e finite value w* of w which maximizes I(w)o First, since i(y) is 

n~nincreasing for y·~ o, it c~ be shown ·that I 0 (w) = d.I(w)/dw exists for all 

w > 0 and is given by I'(w) = N(w)(w26-1+m)-2 where 

Routine computations yield 

w 
(14) N 8 {w) = ~-1 [{w2

6°'1+m)i(w) - ,~-l l i(y)(w-y)dy - mK)] 
0 

4nimensionally, m is tim~, K and i(y) are money/time, and, if the dimension 
of y and w is d, 6 is d: /timeo Thus, I(w) has the dimension money/t'iine, as 
it shouldo 
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(15) 

Ntj:tice that: N" ( w) :S · 0 for al.l · w > · Q. and is O only if i ( y) . _ is constant for O < _ y < w o 

Notice ~lso that I(O) = -K, N(O) = O, N'{O) = ~-l m(i(O)+K), and· N"{O);: ~-lmi~(O)o 

The first of the three particular cases obtains if -i(y) -< -K for ·all y > Oo 

Then I~ {w) < 0 and I(w) < I(O) for all w > o, and the optimal continuation set 

W* is emptyo The second particular case obtains if there exists a WO> 0 

{possibly oo) such that i{y) = -K for O < y <·w0 · 'while i(y) < -K for y > w
0

o 

In this case, it is easily seen that W* can be empty or any set of the form {-w*, w*) 

where O < w* ~ w0 • The third particular case obtains if i(y) = c{> -K) for all 

y > Oo In this case, it ca,n be seen from (13) that N{w), and hence I 9 (w), is 

positive for all w > O o Thus W* = ( -oo, oo). 

The alternative to the above three particular cases is that i(y) > -K for 

acme y > 0 and i(y) is not constant. For this situation, N(O) = o, N'(O) > o, 

N11 (w) ~ 0 for all w > o, and N''(w) is bounded away from O for all w sufficiently 

large o It follows that N( w), and hence I' ( w), has a uni gµe O at some w* such 

that O < w* < oo • From ( 13), 1 t can be seen that w* must be such that 

(16) 

EXAMPLE l: 

'w* 
w*I{w*) = J. i(y)dy. 

0 

Let i(y) = -Ay2 • From (12) 

-1 fw 2 / 2 -1 -1 4; J / c -1 2 J (17) I(w) = -[~ A y (w-y)dy+mK] [w 6 +m] = -[~ Aw 6 + mK h. w +m • 
0 

5since i(y) is nonincreasing for y ~ o, i 8 {w) exists almost everywhere. 
If i 9 (w) does not exist, (14) and (15) are still true if i(w), i 8 (w), N'(w), 
and N"(w) are interpreted as left limits and derivatives or right limits and deriva­
tives. 
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The maximizing value w*' of w is given by 

and from (16), I* = -Aw*2 /3 o Note that I* is a decreasing function of m, K, A, 

and A, ioe., the optimal income per unit of time decreases with the time and costs 

for adjustment, with A, and with the variability of the process. 

(19) 

EXAMPLE 2: 

Let i(y) = A for -1 < y < l and O otherwise. Then, from (12) 

{ 

-1 2 ]/[ -1 2 ] [M w -mK /! w +m 
I{w) = l 1 2 

[2AA- (w-1/2)-mK]/[l!- w +m] 

0 < w < 1 

l<w<oo. 

The critical equation is 

2Awm + 2wmK = O 0 < w < 1 

(20) 

-1 2 -1 M w - (M +mK) w - Am = 0 
I 

l<w<oo. 

The fi:i;-st part of (20) has the root w = o, which corresponds to a minimum. The 

roots of the second part of (20) are 

The positive root is w*, and it can be written as 

(21) 

From (16), I* = A/w*. Notice that repairs are not made as soon as lx(t) I > l; 
- . 

for 1 < x(t) <w* there remains a favorable possibility that x(t} will wander 

back inside the interval ( -1, 1) • Note al.so that I* is an increasing function of 

A and a decreasing function of m, K, and t:.. 
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The following table gives values of w* ( upper entries} and I* ( lower entries) 

for selected values of A, A, m, and K. 

=l K=3 
m=l m=5 m=l m=5 

1 2 5 1 2 1, 2· 5 l 2 

l 2.41 3.56 6.74 6.74 11.84 26.93 4.24 7.28 16.31 16.31 31.32 76.33 
.41 .28 .15 .15 .08 .o4 .24 .14 .06 .06 .03 .01 

5 1.77 2.28 3.45 3.45 5.00 7.74 2.08 2.89 5.00 5.00 8.22 16.51 
2.83 2.19 1.45 1.45 1.00 .56 2.40 1.73 1.00 1.00 .58 .29 

10 1.69 2.14 3.11 3.11 4.32 7.05 1.84 2.42 3.81 3.81 5.77 10.81 
5.91 4.68 3.22 3.22 2.32 1.42 5.43 4.12 2.62 2.62 1.74 .93 

20 1.65 2.07 2.95 ~.95 4.oo 6.25 1.73 2.21 3.28 3.28 4.65 7°91 
12.09 9.67 6.79 6.79 5.00 3.20 11.57 9.06 6.10 6.10 4.30 2.53 

COSTLY SURVEILLANCE-THEORY 

The formulation presented in [6] of the problem of determining an optimal (stationary 

Markov) strategy for costly surveillance of a Poisson process extends easily to the 

Wiener process case. Hence, only a brief summary will be given here. 

Assume that an optimal strategy does exist and that the resulting long run average 

income per unit of time is I*. Consider a new problem for which income per unit of 

time is i*(x) = i(x}-I* (synunetric about O since i(x} is} and the repair cost per 

unit of time is K* = K+I*. It is shown in [6] that the original and new problems 

have the same optimal strategies, and that since the maximum expected income per cycle 

for the new problem is zero, the problem of finding an optimal strategy is equivalent 

to finding the largest value for I* for which the maximum expected income per cycle 

for the new problem is zero. This latter formulation introduces another unknown (I*) 

but allows the consideration of a maximum expected value rather than the more difficult 

maximum of a ratio of expected values. 

It has been noted in the INTRODUCTION that for costly surveillance of a Poisson 

process the natural strategies to consider are those which_specify for each x whether· 

or not the process should be placed in the repair state and, if not, when the next · 
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observation should be taken. This is al.so true for the Wiener case since the Wiener 

process is Markovian with stationary increments. Thus, consideration will be restricted 

to strategies which specify a continuation set W and :function T(x), defined on 

W, giving the time to the next inspection if the process is observed at state x. 

As in [6], it will be assumed that an inspection must be made immediately prior to 

starting repairs unless the continuation set is empty, in which case no inspections are 

necessary. 

For the new problem, let F(x) denote the maximum expected inco~e remaining in 

the cycle i~ the process is in state x. Notice that F(O) = o. A functional 

egµation for F(x} developed in [6] for x(t) a Poisson process extends easily to 

any Markov process with stationary iIICrements-. For x(t) a Wiener process with 

x(O) = 0 and variance parameter ~, it is 

(22) F(x) { 

-m[I*+K] , x f W 

= T(:r W I(x,. T(x))-I*T(x)-Lt J F(y)i'N(ylx, t.T(x))dy, x E. W 
-oo 

where fN(ylx, AT(x)) denotes the normal density with mean x and variance AT(x). 

The problem of determining an optimal strategy can now be stated as that of finding 

a W, T(x), and I* satisfying (22) for all x, and the boundary condition F(O) = o. 

Let W* and T*(x) correspond to an optimal strategy. 

No way of solving this problem analytically is lmown to the authors. Hence the 

following series of qualitative properties of an optimal strategy and related proposi­

tions are of interest. 

PROPOSITION 1: 

If i(x) is unbounded below, the strategy of never repairing need not 

be considered. 

PROOF: 

This is an immediate conse~ence of t~e fact that 

lim P(x(t) > lxl) = l for all x. 
t~oo 
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Let ~ be the maximum income per unit of time for those stra~egies whi<::h have 

at most k inspections per cycle. Let kI* be the max~ income per ~it_ of time 

from those s~rategies (unfeasible) that involve at most k inspections, and are such 

that when a kth inspec~ion is used, it is made precisely. at the time that x(t) 

leaves a cQntinuation set which is optimal for such strategies. The next six 

PRO~ITIONS are merely i;;tated here. For proofs of PROPOSITIONS 2 and 7, see [ 6]; 

the proofs of PROPOSITIONS 3-6 are obvious. 

PROPOSITION 2: 

For k> 1 

PROPOSITION 3: 
I 

I!= max [I(O, t)-L-mK]/[t+m]. 
- t>O 

PROPOSITION 4: . 

l I* = max[EI(O, t )-L-mK]/[Et +m] 
. w w w 

where tw is the first time that x(t) t W. 

Expressions for the other bounds in PROPOSITION 2 are more ~omplicated and 

will not be ~ ven here. For the Poisson case, expressions for , I~. and 2I* are 

given in [6]; they can easily be extended to the Wiener case .• 

PROPOSITION 5: 

If, for some k, I' is greater than the long run avera~e income per 

unit of time for the strategy of never repairing, then an optimal strategy will involve 

repairs. 

PROPOSITION 6: 

If i(x) is constant then W* is either empty or the entire real line • 
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If, fqr some x > 0 and all y such that y > x, i(y) = i(x), then either x $ W* 

or W* is the entire real line. 

PROPOSITION 7: 

For all x, 

F(x) 2: -m(I*+K) and I*> -K. 

PROPOSITION 8: 

W* is an interval syrmnetric about O and F(x) is nonincreasing in lxl. 

If W* is finite, F(x) is strictly decreasing in lxl for x E. W*. 

PROOF: 

Assume W* and T*(x} defining an optimal strategy are known. There 
-

is nothing to prove if W* is empty. otherwise, there exists an x + 0 such that 

x E. W*, and, since i(x) = i(-x). W* can be taken to be syrmnetric about o, and 

x can be assumed to be positive. Let x' be such that O < x' < x and let 

£ = (x-x') /2. Let p( t) denote an arbitrary path on [ t
0

, t
1

] starting at x 

at time t
0

, where t
1 

denotes the first time at which p( t) is observed, using 

an optimal strategy, to' be out of' W*. Such a path may or may not have assumed 

the value E. for one or more values of t E [ t
0

, t 1 ] • If it did, let ts denote the 

smallest value of t such that p{ t) = e . 

Note that the optimal strategy provides observations of' x(t) only at isolated 

t values, and hence, if p( t
1

) > E , we might not know whethe:r or· not t £ even 

exists and in no case would its value be kn.own. Nevertheless, we can consider the 

one-~o-one measure preserving transformation of the set of paths p{t) onto a set 

' of paths p' ( t) starting at x' at time t
0 

defined by 

(23) 

if' t£ does not exist, let p'{t) = p(t)-2e 

{

p{t)-2£ · 

if ti exists, let p'{t) = 
reflection of p{t) about 0 
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Then f'or any path p(t) and the corresponding value of t 1 , the income associated 

with p(t) is less than or equal to the income associated with the path p'(t) 

during the interval [ t
0

, t 1 ] 0 

Consider the following nonf'easible, but suboptimal, strategy for x(t) having 
' 

just been observed at x' at time to: act as if' x(to) = x, ioeo, continue 

production-{since x c W*) and take the next observation at time t
0
+T*(x) o Suppose 

- -· ... .... 

that at time t
0
+T*{x), this observation (a point on a path p'(t) from x') is x". 

-
Now assume that the entire history p~ (t) of the process-between t 0 and t 0+T*(x) 

-
becomes available o Because the process if Markovian, the optimal strategy for x" is · 

independent of this history. Let p( t 0+T*(x)) denote the value uniquely determined 

by x" and the inverse of the transformation (23) 0 Let the strategic decision for 

the observation x" be that specified by an optimal strategy f'or p(t0+T*{x)). 

Continue this procedure lllltil prodµ.ction is stopped. This suboptimal strategy f'or 

x(t
0

) = x' results in at least as large an expected income to the end of' the cycle 

as does an optimal strategy for x{t0 ) = Xo Hence, x' e W* and F(x') ~ F{x) o 
,.. ~ - -

If' W* is finite and not empty, it is easily shown from PROPOSITION 6 and the above 

that F{x') > F(x) o 

Thus, W* can be denoted by ( -w*, w*) • 

In the following PROPOSITIONS · ~ t is as·sum~ that O < w* < oo o 

PROPOSITION 9: 

F{x) < 0 f'or x + Oo 

For PROPOSITION 10 it will be assumed that iv(x) = di(x)/dx exists f'or xE= W* 
. - 6 

and that F" (x) exists throughout W*, except possibly at O o 

6wiiether or not any regularity conditions need to be imposed on i(x) to insure 
the existence of F"(x) for x + 0 has not as yet been determined. The same cormnent 
applies to the assumptions preceding PROPOSITION 11. 
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PROPOSITION 10: 

i*(x) + F"(x)/2 ~ 0 for x(+o) E W*o 

PROOF: 

Let x and E. > 0 be such that x ±. e C:. W*o Consider the superoptimal 
-

strategy for x(t
0

) = x of observing the process continuously at no cost until 

x(t) = x ±. e and then proceeding with the optimal strategyo Let t
0
+t6 denote the 

time at which x ( t) first assumes either of the values x + £ o Denote by F (x, e ) 
- s 

the expected income (for the new problem) remaining in the cycle associated with this 

superoptimal strategy o Then 

to+te 
F (x, E) = E[ f i*(x(s))ds lx(t0 ) = x] +{1/2)[F(x- E )+F{x+ £ ) ] o 

s t 
0 

If t{y) dy is defined to be the time that x{t) € (y, y+dy) 

(where x- c ~ y < y + dy :5 x + E.), given that x(t0) = x, before lx(t)-x I = e~ , 

then 

to+tE x~e 
E[ J i*(x{s))ds lx(t

0
) = x] = E / i*(y) t(y)dy 

to - . x-E 

x+E 2 1 
From ( 6), E J t(y)dy = a Ii- o Hence, for some x1, ½ E [x- E, x+E J, 

x-,£ 

= [i*{x}+(xl-x)i* 
1 
(x2)] ·E 2.6-

1 
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Thus 

Letting E. ~ 0, we obtain 

If i*(x) has a discontinuity at x, the above proof can be extended to show 

that (~t1[ i*(x+) + i*(x-) + F"(x)] ?: O, where i*(x+) and i*(x-) are the right 

and left hand iimits 9f i*(y) ~s y approaches x. 

The final two PROPOSITIONS involve .g(x,· t), which is defined as the maximum 
. i 

expected in_come ( for the new prob le~) remaining in the cycle, given that the 

production process is at x at time t 0 and that exactly t (>O.) time units 

must elapse before the next inspection, i.e., 

(24) 
co 

g(x, t) = I*(x, t)-L + J F(y)fN(ylx, .6t)dy 
-oo 
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where, recalling that i*(x) = i(x)-I*, 

t 0+t 

I*(x, t) = I(x, t)-I*t = E[J. i*(x(s))dslx(t0) = x] 
- -to - .: . -

t 00 

= [ _£ i*(Y)fN(ylx.,At' )dydt'. 

Also, define 

(25) g(x, 0) = lim g(x, t). 
~ 

Note that g(x, T*(x)) = F(x) . and g(x, O)°'= F(x)-Lo 

It will be assumed that the second partial derivatives of g(x,' t) ·are continuous 

and that gtt(x, ~~x)), where T:(x) is defined in the proof of PROPOSITION 12, is 

negative for all Xe W*o . Also, for simplicity, let b=l. 

PROPOSITION 11: 
00 

~ (x, t) = &g{x,. t)/at = \./ [i*(Y)+2~~F"(y) ]fN(ylx, t)dy 
-oo 

PROOF: 

From (24), it is easily seen that 

00 ' 

¾(x, t) = /. [i*(y)+2-1F(y)t-1 ((y-x}2t-1-i.)] -~N(ylx, t)dy. 
. -CX> . ·. 

and_ integrating this expression by partp _twice, we get 
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PROPOSITION 12: 

T*(x} is unique and nonincreasing in lxl for x € W*. 

PROOF: 

(26) 

The proof' will be divided into several lemmas. First, let 

h(y) = i*(Y)~F~(y)/2: 

so that, from PROP9SITION ll, 

CD 

(27) ~(x, t) = f h(y)fN(ylx, t}dy. 
~CX) . . -

Notice t~at h(y) = h{-y). 

LEMMA 1: 

For x EW*, there exists a smallest optimal time 

inspection, 

PROOF: 

. 
and T*(x} > o. · 

m 

T*(x) m to the next 

Since x €. W*, there exists at 1e·ast. one optimal time T*(x) to the 

next inspection. The assumed continuity of' gt·{x, t) insures the existence of 
.. 

a smallest optimal time, ~(x}, and, since g(x, T*(x)) = F(x} and g{x, 0) = F(x)-L, 

~(x) > o. 

LEMMA 2: 

As y > 0 increases from O to oo , h(y) changes sign exactly once, from 

positive to negative. 

PROOF: 

PROPOSITION 10 is that h(y) ~ 0 for YEW*. For y :> w*, h(y) = i*(y), 

which is nonincreasing and, by the assumption thEt w* < <D, ultimately negative. 
-

It remains only to show that f'or some y c W* (y > O), h(y) > o, and this is easily 

proved.by contradiction from (27) and the meaning of W*. 
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LEMMA 3: 

T*'(x) = dT*(x)/dx is continuous and nonincreasing in lxl for x E W*. m m 

PROOF: 

Let O < x
0 

< w*. From (27) 

By assumption, gt(x
0

, ~(x
0
)) = O and ~t(x0 , ~(x0 )) < o. From LEMMA 2, (28), 

and Pblya theory 

(29) 

for O < x < x0 

for x0 < x. 

Hence ~{x
0

, T*m(x0)) ~ o. Applying the implicit_ function theorem(see, e.g., 

(1, p. 114)) to ~(x, ~(x)) = o, we can conclude that T:'(x} is continuous 

and, for O < x < w* 

For x = o, it is easily seen that ~t(o, T:(o)) = o, and hence that T:'(O) = Oo 

Since T*(-x) = T*(x) for O < x <w*, T*'(-x) = -T*'{x). m m m m 

To complete the proof of PROPOSITION 12, note, from (28) and symmetry, that 

00 

gt(o, t) = 2 J h(y)fN(ylo, t)ay. 
0 . 

Since 2fN(ylo, t) has a monoton~ likelihood ratio in t, ~(o, t) changes sign 

at most once. Since h(y) > O for some y > O and ~t (o, ~(O)) < o, ~(o, t) 
-

has a unigµe zero at t = T*(O). This shows that T*(O)::;: T*(O) is unigµeo Now m m 

consider an arbitrary positive x0E W*. By LEMMA 3, T*(x-
0

) < T*{x) for all 
m - m 

x € [o, x0 ). Suppose there exists a T*(x0 ) > T:(x0). Then there exists an £ > O 

and an x1 E[o, x0) such that gt(x1, T*(x0)) < - £.. But then ~(x, 'T*(x0)) + e,. = 

00 J (h(y)+ c:)fN(ylx, T*(x0))ay, considered as a function of x for x 2: o, changes 
-oo . 
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... sign at least twice, which contradicts POJ.ya theory. Hence_, T*(x
0

) is unique and 

equal to ~(x0 ). 

-

COSTLY SURVEILTANCE-EXAMPLES 
. . 

The two examples of this section illustrate only one of several possible first 

steps towards the solution of the costly surveillance problem for Wiener processes. 

EXAMPLE 3: 

Let x(t) be a Wiener proce~s with x(O) = 0 and variance parameter 8. 
X 

Let i(x) = A(> O) for (xi< 1 and O otherwise. Define Q(x) = J fN*(y)dy. 
-x 

(30) 

Consider first I!. From PROPOSITION 3 and ( 9) 

I* -l -

= 

= 

max {[I(O, T)-L-mK]/[T+ml} 
T>O 

T 1 
max {CA f /'fN(xlo, 8t)dxdt-L-mK]/[T+m~ 

T > 0 ~o -J. . 

max {CA lQ( (At)-1/ 2 )dt-L-mK]/[T+m]J'. 
T > 0 0 · ·, 

The critical equation for the maximizing value of T is 

Now, an integration by parts and a_ change of variable yields 

Hence the critical equation can be written in the form 

(31) mAQ((AT)-1/2)-2-11i-1/2_A f _1u-3/2e -udu+Lt-mK = O. 
. . (2M) . 

IJ could be determined from (30) and (31). 
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The problem of' finding 1I* is the same as the problem of EXAMPLE,_2 w~th 

mK replaced by mK+L. Hence 

{' -12 )/( -1 2 ) f'or w<l AA w -mK-L A w +m 
(32) 

........ 
I* = max 1 · · ·12 1 w > O _(2AA- (w-1/2)-rnK.-L)/(A- w +m) for w > 1, 

(33) w* = { 1 + .O.(l!IK+L} }f1 + [i + . 4n.2/\UU . 2 ] 1/2} 
, A .. , . (A+A(mK+L)) 

, 

and 

X 

Letting FN(xlo, At) = .. / fN(ylO, At)dy, the functional equation f'or 
-oo 

, 
determining an optimal. strategy has the form 

(35) 
w 

F(x) =. max {1(x, T)-I*T-L + jF(y)fN(ylx, AT)dy 
w, T(x) > 0 -w . 

-m(K+I*) f f'N(ylx, M)eyL 
-Y$W · · _ 'J 

where 

T 1 T 
(36) I(x, T) = A f f f'N(y Ix, At )dydt = A f FN( l lx,At )-FN( -1 Ix, At} ]dt 

0 -1 · 0 

and F(O) = .O. 

EXAMPLE 4: 

Let x(t) be a Wiener process with x(O) = O and variance parameter A·· 

Let i(x) = -x
2

• 

From PROPOSITION 3 and (9) it is easily shown.that 

(37) IJ = max {[-M2 
/2-L-mK]/[T+m]} • 

. T > 0 

The maximizing value of' T, call it T*, is given by 



.. 

-

{38) 

and 

{39) 11 = ~-

The problem of finding 1I* is the same as the problem of EXAMPLE 1 with A= 1 

and mK replaced by mK+L, i.e., 

(40) 1I* = max {[(-w4/6)....e,.(mK+L)]/[w2+~]}, 
. w>O . . . · _ · - · 

The desired root w* of the critical equation is given by 

{41) 

and 

The functional equation for determining ~- optimal ·strategy is -the same- as in 

EXAMPll: 3 except that a new expression is required ~or I{x, T). It is 

( 43) I(x, T) = -J .l (x+y/tN(ylx, .6t )dydt = -/ ('a.2+At)dt = -(-a.2•J!.+-u/'f2). 
0 -CD . 0 . . . 

If, in this example, m=K=L=2, (38) becomes 

and {41) becomes 

w* = (2A[{1+9/A)l/2_1]}1/2. 

For A= .2, the specific results are 

T* = 6 and If= -1.2· 

w* = 1.52 and 1I* = -.77. 
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APPENDIX 

. Proofs of properties (5)-(7): 
. -

To prove (5), consider a symmetric random walk over the integers starting 

at b with absorb_ing barriers at · a and c where a < b :S c. Let l\,y be the 

probability of reachi~g y (a ~ y ~ c) before being absorbed. It is well known (see, 

e.g., [2]) that 

b;5y~c. 

Let PY'Y be the probability of a return to y before absorption if the random 

walk starts at y. Then 

1-P = yy 

c-a 
2( c-y) (y-a) 

c-a 
2(c-a ... 1) 

1 

a+l < y < c-1 

y = a+l or y = c-1 

y = a or y = c. 

This can be shown by noting that a path starting at y must move to y-1 or y+l, 

each with probability 1/2, and then using the formula for %y with b = y-1 or 

b = y+l, a~ is appropriate. 

Now, let the values of a, b, c, and y be held constant and the number of steps 

in an interval increase by letting the size of each step be ey (AY < 1) • Let the 

' 
time for each step be 6t. Then Ty' the expected time spent at y before 

absorption, equals At· times the expected number of visits to y. For this new 

random walk 

6t CD k-1 At / 
TY = A~r E ~YpYY {1-P ) = An.r % (1-P ) • 

-., k=l ~ -., y yy . 
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It is easily verified that 

At [ ( ) (b-a)(ra) ] T = 2 2 min b-a, y-a - ( fly'. 
y (fly') . . - . C ':'e. ~ . 

-
~ - 2 

If fly' and At approach zero in such a way that (fly') / At approaches A, 

the distribution of the displacement at time t approaches that for the Wiener 

process, and 

T ,_ 2A-1 [min(b-a, y-a) - (b-a)(y-a)/(c-a)] fly'. y - . 

This result was also derived directly by Professor Frank Spitzer (personal 

communication). 

Property (6) follows from integrating the expression in property (5). Property 

(7) follows from the formula above for 1by·· · 
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