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ABSTRACT

Variable selection is primarially a global or aggregate statistical
procedure since the techniques used depend on functions of the sufficient
statistics, such as R2, F and t tests, and the Cp statistic. In other parts
of a regression analysis, it is common to examine an array of case statistics
that have values for each ﬁf the n cases in a study. Case statistics
include studentized residuals, fitted values, and various distance
or influence measures.

In this paper, a subdivision of the Cp statistic into n components (one
for each case) is developed, and the properties of this method are outlined.

An example is given.

Keywords: Variable selection, linear regression, subset regressiom,

Cp statistic, residual analysis.



Variable selection in multiple regression is fundamentally an aggregate
procedure, since one bases the selection of subsets on aggregate or global
statistics such as R?, F or t tests, adjusted R2, Cp statistics, or the like.
All of these have the common thread that they depend on the observed data
through sufficient statistics, and, in a sense, they model average behavior
of the fit of a model to tﬁe data. In recent years, there has been increasing
interest in the computation and use of "case statistics" --- statistics that
have computed value for each case in a problem (following a suggestion by
John Hartigan (1977), we use the word '"case'" rather than the ambiguous terms
"observation" or "point", to correspond to the rows of a data matrix; the

columns are called variables). The case statistics typically computed

include fitted values, residuals, and other statistics, such as

studentized residuals, various influence measures, including Cook's

distance (Cook 1977a, 1977b), and the variances of the fitted values or
Mahalanobis distances. The reason for examining case statistics is that global
or aggregate behavior modeled by the aggregate statistics may not accurately

portray the fit of a model in all regions of the observation space. In

this paper, we develop a case statistic version of the Cp statistic, and show

that this statistic can be used to help understand how the lack of

fit measured by Cp is reflected in the individual cases in the study.

1, The C statistic.
P

We consider the problem of comparing a full rank linear model with n

cases, given by

Y =XB + X262 + e (1)



where, in (1), X is n x p, X2 is n x q and Cov(e) = 021, to a fixed subset

model of the form
Y=XB +e'. (2)

We assume that the goal of regression is the estimation of fitted values for
the n cases. In general, (2) will provide biased estimates of fitted values
but, as is well known (Hocking 1973), (2) may have smaller mean square error
than (1) for estimating fitted values.

Suppose we let V = X(X'X)-IX', and define U by

X'X x'x2 X'
U= (X X)) (3)
1 | |
X,'X  X,'X, X -

The matrices U and V are fundamental in regression problems. Of particular
interest are the diagonal entries of U and V, which we will denote by

ug, and Vig respectively. For our purposes, it will be convenient to

apply a linear transformation to X, so that, in the resulting parameterization,

2

the variables not in the subset model are orthogonal to the variables in the

subset model. To this end, define
z=(1-W0X,, (4)

so that Z is the projection of X2 onto the orthogonal complement of X. The

full model (1) can be rewritten as
Y=XB+Zy+e, (5

where Y is an appropriately defined q x 1 parameter vector. All results in
this paper will be derived in terms of (5) rather than (1), although, in

practice, the transformation need not be computed.
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Suppose that we let W = Z(Z'Z)-lz'. Then, one can easily show that
U=V+W, or, for the purposes of computation, W = U - V, so that W need
not be found explicitly. If we let L be the diagonal elements of W,

then we will have that u,. - v,. =w_,. > 0, since w,, is a quadratic form.

ii ii ii ii
When considering the subset model, let the subscript "p" refer to

the use of the model (2), where p is the number of parameters. For example,
RSSp is the residual sum of squares for the subset model, RSSp = Y'(I-V)Y.
Fitted values for the subset model will be given by a lower case ?i. For
the full model (5), estimated quantities will have no subscripts, e.g.,

82 = Y'(I - U)Y/(n-p-q). The fitted values for the full model will be

A

denoted by capital letters, Yi'
The fitted value for the i-th case is given by §i = xig for the subset

model and by §i = xig + zi? for the full model, where xi and z; are the

i-th rows of X and Z respectively. Because of the orthogonalization,

B (=(X'X)_1X'Y) the least squares estimate of B, is the same for models

(2) and (5); this is not true in general. Nevertheless, the estimates of the

fitted values Yi will be the same from model (1) or from model (5). The

expected bias in the subset model (assuming that the full model is correct,
with all relevant variables included in the proper scale) is given by
A A A ~ A A 2
- = ' —-x! -— ' = —z! i = .
E( vy Yi) E(xiB xiB ziY) ;Y- The variance of y; is Var(yi) (o] Vig
We now define the total expected squared standardized error, PP, to be
$z?  IvarG)  E(zy)?
= i i i

= + = +p (6)
P % o o>




since X Var(?i) = 02 Zvii = 02 trace (V) = 02 rank(V) = 02p. This is a
reasonable quantity to be interested in, as it measures the total expected
error in estimating the fitted values. The Cp statistic is found by

substituting estimates for Z(ziY)2 and 02 into (6). Now, an obvious estimate

N A ~ 2 N A ~ N
' Ty = - . = ' =zt =yt .
of z5Y is z23Y Yi ¥y but Z(ziy) E(Yziziy) Y'2'2Zy = Y'WY, which is

the sum of squares for regression on Z (in general, for Z after X) and
E(T'WY) = qo” + E(z, 1)’ S
Letting 02 = Y'(I-U)Y/(n-p-q) estimate 02, and replacing E(Y'WY) by
Z(;i - ;i)Z in (7), we substitute into (6) to get
P A 2
L(y, - Yi)

1
c =——1 4+,-q (8)
P 52 d -

The usual form of C is found by noting that Z(yi -y ) = RSS - (n~p—q)c
and, substituting for Z(yi Y ) in (8),
RSS

= 2P -
Cp 82 + 2p - n. 9)

The Cp statistic therefore estimates the total error‘(var;ance plus
bias) in estimating the fitted values corresponding to the n cases. It bears
a fundamental relationship to the F test (as noted by Spjotvoll (1977)) for the
hypothesis that y = 0 (in general, for B2 = 0 given B), where the test is given by
F = 2(;i - ;i)zlqu. Under normality and the null hypothesis, Fp is distributed

P
as central F, Fp ~F(q, n-p-q). Substituting into (8) one easily finds

Cp =p+ Q(F? -1 (10)

From (10) we have that FP <1 if and only if Cp f_b, Fp < 2 if and only if

P
be tested with critical value given by (10) with F* substituted for Fp, with

C <p+ q and, ignoring multiple test problems, the hypothesis H: Cp = p can

F* an appropriate percentage point of F(q, n-p-q).



The Cp statistic is widely used as a global measure of the adequacy of a
subset model. For more on its use, see Gorman and Toman (1966), Daniel and
Wood (1971), and Mallows (1973).

2. A Case version of C .
- - P

Now consider the i-th case. By analogy to the above development of C ,

Var(yi) = 02 v,., and the expected bias in the subset model for the i-th case

ii
is given by E(yi - Yi) = -z,Y. Define
A S \2 A~ 2
E(y; - Y)) Var(y,) (z;7)
Ti="" 3 — * —3— =5 tvy, ()
o] o o}

N

A A
Now, v, - Yi = ziY is the observed bias, and

A ! A 2
E(y; - Y))

Var(z;;) + (ziy)2 (12)

P lug) + (21

2 12

A el A 2 A A 2 .
Again replacing 02 by 02 in (11) and E(yi - Yi) by (yi - Yi) in (12), we

get
A A 2
(y; - 1) (13)
Cot = 3 v T Uy T vy
Thus, Cpi measures the standardized error in estimating the i-th fitted
n
value. Using (13) and (8), one can easily show that I Cpi = Cp’ since
i=1

Zvii = p and Z(uii - vii) = q.



Now consider a test of the hypothesis of no bias for the i-th case,
H: ziY = 0. Under normality, the likelihood ratio statistic for this

. 2 _ ,a0\2,02 _ 2
hypothesis is given by tpi = (ziY) /o (uii vii)’ where tpi is distributed

as F(l1, n-p-q) (e.g. tpi is a t-statistic). Substituting tii into (13),

we can write (for ug g # vii)
C.=v .+ (u,, -v.2) (t2. -1) (14)
pi  Vdii i1~ Vii’ “tpi

as a striking parallel to (10) (if Ul T Vi then Cpi = vii)' As with the
2
<1 <

results following (10), we have Cpi'ﬁ v,q if and only if tpi'— | Cpi Sugy
if and only if t2 < 2, Also, the critical value for a test that C , = v

pi— pi ii
is given by

'C* =v,, + (u,, -V )(1:*2 -1 (15)
pi ii ii ii” Vp

where t*i is the appropriate percentage point of F(l,n-p-q), Cpi Z_C;i

indicating bias.

Properties gg.gpi. The statistic Cpi depends on Yyseees ¥y only through

the sufficient statistics Y'Y, Y'1 X°Y and Z°Y. Thus, Cpi is influenced by

A

outliers in Y only through the influence of the outlier on the estimates B,
Y and 82, and essentially measures the error at the point (x;,z;).

From (14) it is easy to find the mean and variance of Cpi’ since under

normality, tii is, in general, distributed as a non-central F. We find

= - 2 n-p-q n2
E(Cpi) vig t (uii vii) [n—p—q-Z + 2=p—q=2 (ziy) ] s (16)

or, ignoring terms of o™,

2 ’
E(Cpi) =vy t (uii - vii)(ziY) (17)



Hence, the excess of CPi over vii measures bias, but if (uii

small, even large bias may have little effect on Cpi' If C 1 is large,
P

(u,, = v,.) must also be examined. The variance of C
ii ii P

- vii) is

; is given, for n-p-q > 4,

by (18)

2.2
1+(z.v)")
= - 2 n-p-q 2 1 ( 1 “v)2
Var(Cpi) 2(ug; = vy,) (n—p-q-Z ) (n—p—q—4) n-p-q-2 +1+2(z)° |-

If we ignore terms of O(n-z), :

(n-p-q) Var(C ) = 2(u;; - v, )%(1 + 2(z;1)D). (19)

-

For a fixed value of Cp, we can find minimum and maximum possible values

~

i The minimum will occur when tii = (yi - Yi)2 = 0, which will happen

(using model (5)) only if z, = 0 or if Yy = 0. The case of 2z

for C

= (0 implies u,,6 = v

i ii ii

and C ., =v, .. If y=0, then C = (u which

pi ii

may be negative, Vig T (uii

subset model. The maximum value of Cpi is found by equating tii to its maximum

value of (Cp -p+ q)/(uii - vii)' Combining results, we find

pi is bounded below by Viy i - vii)’

- vii)_z—(n—Z)/n, if the constant is in the

). (20)

v,, - (u

i1 -vy) 2Cu < Cp - (p-9) + (vy; -(u

ii pi ii = Vi1

In particular, C_, may be greater than Cp if q > p. Thus, in some problems

pi
most or all of the lack of fit measured by Cp may be due to just a few
of the cases.

Consider, for example, the artificial data given in Table 1, n = 10,

P=2, q=1. Easy computations show that, using model (5) y = (y10 - yl)/2.

The values of Cpi for all cases are given in the table, and Cp = ZCPi =1

+ (y10 - y1)2/202. All of the increase of Cp over 1 can be attributed to the
difference (y10 - yl) and this increase will be reflected only in the Cpi

for the first and tenth cases.



Table 1 about here

3. The'\_rii and the Eii

By examination of (14), we see that Cpi depends on two fixed quantities,

v,, and (ui - Vii) and one random component, tii. The fixed quantities arise

ii i

in many contexts in case statistics, for example, Cook (1977b) derives a
distance measure to model the influence of the i-th case on the estimation of

62 in (1) that depends only on Q5 Vigs Uy = Voo and the i-th studentized

residual. The A also have interest in their own right (see, for example,

Bhenken and Draper (1972)).

To understand the C__,, one should carefully examine the v,, and u,, - v, ..
‘ pi ii ii ii

Consider first v Suppose that the mean is included in the subset model and

ii’
let S be the (p-1) x (p~1) cross product matrix for the p-1 remaining variables

in X. Let x be the (p-1) x 1 vector of means of the (p-1) x's and redefine X,

to the (p-1) x 1 vector of x's for the i-th case (deleting the constant). Then,

we can rewrite

v =

gt s'l(xi-i) (22)

=B

Now, consider a spectral decomposition of S: Let S = P“A P, where
A= diag(kl,...,lp—l), such that Al_z AL-Z"'Z-Ap—l’ and PP = I. Then the

Aj's are the eigenvalues, and the columns of P, say P,, are the eigenvectors

j
of S. Since S-1 = p~ A—lP = ZPjPE/Aj, (22) can be rewritten as

PP’
_1 N -
P I §—§§J— (x; - %) (23)
P’ (x.-%) | 2
._-_._];+ Z_j_L___
n j /’X;



Let eji be the angle between the j-th eigenvector Pj and X, . Then (23)

becomes
v.. =t 4 B @-%) L cos?0,.) (24)
ii n i i j Aj ji
Thus, v,4 can be large if either (xi-i)'(xi-i) is large -~ that is,

the i-th case is far removed from the center of the rest of the data, or if
(xi#i) is nearly parallel to an eigenvector corresponding to a small eigenvalue
(Coszeji: 1 for j near p-1). Thus, cases in an "unusual" direction will have

large values of v If we consider only the (p-1) dimensional space spanned

ii’
by the p-1 variables in X, then Vii is related to the Mahalanolis distance,

in this space, MDi’ by the simple equation MDi = (n—l)(vii - %9.

Now consider the u e By the orthogonalization (1.4) we can find matrices

Q and A, with A = diag(ﬁl, ) Gq) and Q°Q = I such that Z°Z = Q“AQ and the

2,000

u can be written

ii ;
o = DD T L cesloy + ey s L cos2n.)  (25)
1i i i 5 1) 1247 2 3, N4
=1 7] =1 73
where nji is the angle between Qj and z;. Thus the difference U,y T Vg4 may

be large or small, relative to u i depending on whether or not the small

i

eigenvalues (if any) are in the (p-1) "in" variables or in the q "out"
variables, and depending on z;zi.
Further insight can be gained by considering a bivariate
regression model vy = Bo+61xii + 62x2i + e i=1,...n. Using model (1), contours
of constant u g dre given by ellipsoids in the (xl, XZ) space as shown. in

Figure 1. wu,, is essentially the squared distance from (xli’XZi) to (x1+, f2+)

ii
Now suppose we consider the subset model obtained by deleting X, from the model.
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The A corresponding to a given (x x21) pair is found by projecting

i 1i°

onto the x, axis: contours of co .
(xii’xii) t 1 nstant V4 DOW consist of two

points equidistant from X We can ‘distinguish those points with

1+°

fixed u, that will have relatively large u as shown in Figure 1.

i i1 Vid

It is interesting to note that the points with large Uiy - vii for one

subset model may be small for another subset model, as can be seen by

projecting in Figure 1 on the x, axis.

Figure 1 here
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Example. We illustrate the use of Cpi on a complex data set
given by Narula and ﬁellington (1977) . The data, reprinted here as
Table 2, relates selling price of n = 28 houses to 11 potential predictor
variables, with the eventual goal of developing a prediction equation based
on a subset. We will not give a complete analysis here, but merely indicate
possible uses of Cpi'
We begin by computing the regression for the full model, and then
examining several useful case statistics (the computations for the full
moéel given in Narula and Wellington are incorrect). Included in Table 3
are the studentized residual and its t-distribution transform, Cook's
distance Di

28 cases. While none of the cases appear to be outliers (in the sense of

, and the diagonal elements of U = x(x'x)'lx' for each of the

large t-values), the 28th case has D28 = 1.06, indicating that this cése is
relatively influential in estimating parameters. D28 is large because of
the unusual value of X1 ( = taxes) for this case. A prudent approach at
this point, therefore, is to do variable selection twice, once including
the 28-th case, and once excluding it. To this end, the 10 subsets with
the lowest values of Cp for the 28 case data set and for the 27 case data
set are given in Table 4. Computations were done using the Furnival and
Wilson (1974) algorithm. It is interesting to note that the best model
for the 27 case data is not among the best 10 for the 28 case data, and
the best two variable model for the 28 case data, (Xl’ Xa), is not among
the best models for the 27 case data. In the remainder of this discussion,
we will look only'at the models (Xl, Xz), (Xl, XA) and (Xl, XZ’ X4) for

the 27 and 28 case data sets.

'
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Tables 2, 3 and 4 about here

The Cpi and values of C;i from (15) with t;z equal to the .05

point of the appropriate F distribution are given in Table 5 for the
three models under consideration and both the 27 and 28 case data sets.
Consider first the model (xl, Xz). The relatively large value of Cp for
this model in the 28 case data is largely due to cases 12, 19 and 28,

exceeding C* Case 28 alone, with C

pi pi’ p,28
appears to dominate the lack of fit. The fit of this model to the 27 case

all of which have values of C

data is somewhat better although still not ideal: the Cp for case 21

i
is actually greater than the overall Cp,so that the fit of the model is

not uniform throughout the observation space even with case 28 excluded.

Table 5 about here

The model (Xl, X4) is more satisfactory overall than is the model

considered above, as none of the Cpi in either the 27 or 28 case data sets

are greater than the corresponding C;i

and 21 are somewhat large. The same qualitative judgements hold for the

although the values for cases 11

model (Xl’ XZ, XA)’ where case 21 remains troublesome. At this
point, the last two models should be examined in greater detail,
with careful attention given to case 21. Tentatively, one would wish to

leave case 28 in the data set to obtain estimates, since the C__, appear to

pi
be more uniform for the two models under consideration in the
28 case data.

I am indebted to Christopher Bingham and to R. Dennis Cook for many

illuminating discussions on case statistics. The data used in the example

was suggested by Kinley Larntz.

Y

= 4.40
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Figure 1. Contour of constant u,, for a bivariate regression
problem, The points 6n the contour within t.e
cross .atc.ied area will ..ave relatively small values of Vi
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- values of u. - vii'
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Table 1. Artificial Data

full model
ﬁ‘;g:ft YooV Y Cpi

1 4 |y | B o |- %)- * Gy - y1)2/432
1 3 oy, |8 0 22

1 -2 0 ys %% 0 -é—% |
1 -1 0| v, % 0 %

1 0 o v | 0 5

1 0 0 Y6 2—0 0 -363

11 ol y |6 0 | &

1 2 0| g -é-g- 0 ' %g

13 o oy |2 , 1s

1 4 1 Y10 —2—% 1/2 : - %5 + (y10 - yl)/4§2

- o2
cp 1+(y10 yl) /2

~2
o}

o
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= Taxes (100's of dollars)
= Lot size/1000 ft
Living space/1000 ft

n

]

Table

4,9176 1,
5,0208 1,
4,5429 1,
4,5573 1,
5.0597 1,
3.8910 1,
5.8980 1.
5,6039 1,0
15,4202 2.5
14,4598 2.5
5.,8282 1.0
543003 1,0
642712 1,0
5.9592 1.0
5.0500
54,6039
8.2464
66969
7.7841
9.,0384
5,9894
7.5422
8.7951
6.0931
8.3607
8.1400
9.1416
12,0000

R e o 3 o g S ST TP S Py S
* ® S & & ¢ S S S S O+ * o @

gquaocuunusosoNUa oo

No. of baths

No. of garages

No. of rooms

2. Data from Narula and

Variable Number

3

3.4720
3.5310
227350
4.0500
4,4550
4,4550
5.8500
?.5200
?.8000
12.800
644350
4,9883
5.5200
6+6660
5.0000
?.5200
5.1500
6.9020
7.1020
7.+8000
5.5200
4,0000
?.8900
67265
?.1500
8.0000
743262
5+0000

2
2

No. of bedrooms

Age of house

4

0.9980
1.5000
1.1750
1.2320
1.1210
0.9880
1.2400
1.5010
3.4200
3.0000
1.2230
1.5520
0.9750
1.1210
1.0200
1.5010
1.6640
1.4880
1.3760
1.35000
1.2560
1.6900
1.8200
1.6520
1.7770
1.5040
1.8310
1.2000

(%]
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el
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KoM M

CONDOPIPOONITNOIUOGPUOTIORNTIIDEINN o

Wellington

7 8 91011 Y

442 31 0 25,9
462110 29,5
340 210 27,9
354410 25,9
342 310 29,9
356210 29,9
351211 30,9
332110 28,9
542 2 1 1 84,9
514 4 1 1 82,9
332110 35,9
330120 31,5
230120 31,0
332210 30,9
2 46 411 30,0
332110 28,9
450410 36,9
322111 41,9
317 2 1 0 40,5
323330 43,9
340 41 1 37,5
322110 37,9
450 111 44,5
344 4 1 0 37.9
448 1 1 1 38,9
3 3130 36,9
4 31 410 45,8
330311 41,0

Construction type (coded 1,2,3,4)
Style (coded 1,2,3) |
No. of fireplaces

Sale price (1000's of dollars)



CASE

CSUONON DN =

Y
25.90
29.350
27.90
25.90
29.90
29.90
30.90
28.90
84.90
82.90
33.90
31.50
31,00
30.90
30,00
28.90
36490
41.90
40,50
43,90
3750

3790 .

44,50
37.90
38,90
36.90
45.80
41.00

RESIDUAL SS

PRESS

n o

Table 3.

RESIDUAL STUD.

1.685
~+1648
1.170
~-2.947
2,296
6.998
+ 6188
‘10812
4,002
2.895
5.326
~2.532
2,620
+ 5920
+ 6312
"10812
-3.386
+ 5884
1.390
3.390
1.167
~3+439
~+9019
~3.791
“59621
~-3+434
-.1528
-3.380

266.8499856
1147.330450

Case statistics for the full model

6976
=+ 0555
+ 3249

“08143'

+3904
1.9910
+1918
-.5828
1.8457
1.2593
1.5937
‘07797
+8216
+1744
+2187
~+93828
~-1.,6595
+ 2251
+4054
1.1999
+ 4359
~1.0855
~e2736
~1.2766
~1.6577
~1,2091
-.0478
~1.8199

RES

u
+ 6503
+4720
$ 2222
+ 2145
+ 0931
2593
+ 3759
+4206
7181
+ 6832
+ 3302
v 3676
+ 3901
+ 3090
+ 5005
+4206
+ 3684
+ 0902
+ 29355
9215
+ 9701
+ 3994
+ 3486
4712
+ 3107
9164
+ 3876
7932

DISTANCE
+ 0754
+ 0002
+ 0025
+0151
+0030
+1157
+0018
+ 0205
7233
+ 2849
+1044
+ 0295

-+ 0360
+0011
+0040
+ 0205
+1339.
+ 0061
+ 0057
+1308
+ 0210
+ 0653
+0033
+1210
+1032
+1301
+0001

1.0587

T
69
-.05
+ 32
“081
58
2,22
.19
-057
" 2.01
1.28
1,68
"077
+81
«17
21
~+57
~1.77
22

+ 39
1.22
+42
~1.09
- 27
-1.30
~1.76
-1.23
‘005
-1.98



Table 4. 10 Best regressions for n = 28 and n = 27

n = 28 cases

BEST 10 REGRESSION WITH Y DEPENDENTs USING CP
F C(P) R2(ADJ) RXx2 RSS VARIAELES

3 X 2.620 +92180 +2241 410.6 1 4

4 X 1.940 + 9239 9324 365.9 1 2 4

4 % 3,013 9202 +92291 383.8 1 4 9

4 X 3,202 2195 +2285 387.0 1 4 11

5 X 3.026 9239 +9352 350.7 1 2 410

S5 X 3.134 + 2235 + 9349  352.5 1 2 4 7

9 X 3+147 + 2235 +92348 352.7 1 2 4 9

9 X 3+169 12234 + 9348 353.1 1 2 4 8

S X 3.187 9233 9347 353.4 1 2 4 11

6 X 3,283 9271 + 9406 321.6 i 4 8 911
CP TIME USED IS +031 SECONDS. : o

n = 27 cases (case #28 deleted.)

BEST 10 REGRESSION WITH Y DEFENDENTy USING CF

F C(F) R2(AD) R%%2 RS VARIABLES
3 X% 1,535 + 9363 + 9412 317.9 1 2

4 X 2,293 + 9371 +?444 300.4 1 21

4 % 2.394 ¢ 9369 +?441 301.8 1 2 4

4 x 2.917 + 9353 +2428 309.2 1 2 .6

4 X 3.201 + 9345 + 2420 313.2 1 2 9

4 X 3.371 + 9340 +?416 315.6 i 2 7

o X 2.978 + 9383 2478 281.8 1 2 411
5 X 3.029 + 2382 9477 282.6 1 2 4 6
9 X 3:379 +9371 + 9468 287.5 1 2 611
6 X 3.029 2417 9529 254.3 1 2 4 611
CP TIME USED IS +479 SECONDS.



*
Table 5. C and C for 3 models
pi pi

(X5 X)) X5 %) ;5 X,, X,)
n = 28 n = 27 n = 28 n = 27 n = 28 n =

Case c_. ¢, * c., ¢ * *

ase pi pi pi Cpi pi pi cpi Cpi cpi cpi Cpi Pi
1 45 2.12 “012 2024 ~+37 2.10 -+46 2.20 -.18 2.07 —e27 2017
2 -e28 1,50 -,23 1.52 +30 1,40 =-,02 1.27 +03 1,34 -,09 1.19
3 -+05 059 ”007 059 -+07 +60 "006 +59 -+03 39 ~-+06 + 58
4 +05 «S57 001 Y- -+03 36 -+02 + 60 *004 056 -+02 + 60
9 +08 .18 +03 19 +02 .18 02 419 +03 .18 03 .19
6 +31 .64 27 463 =08 .69 -.08 .71 13 .60 +21 63
7 -+27 1,18 -.22 1.19 -+21 1,20 -.14 1.21 —+25 1.18 -.23 1.19
8 -e27 1.34 -+31 1043 +44 1,29 959 1.32 07 1.20 06 1.20
9 «32 1,58 +09 1.55 +72 1,30 +42 1.34 +55 1.28 32 1.32
10 76 1.30 +36 1,52 1.06 1,59 1.32 1.62 +S7 1,49 +63 1,52
11 =e22 1,02 =-.22 1.06 -.23 1,04 -.24 1,08 -+23 1,02 ~,22 1.06
12 1.18 1.15 ¢35 1.37 ~+17 1,04 -,12 1.11 -.00 .94 «14 .99
13 ¢25 1,21 -.23 1.66 -.18 1.11 -,15 1.37 -.18 1.,11 -,15.1.,37
14 -e20 095 -e22 1.02 ~+19 + 94 ~-+16 97 -+17 093 -+15 + 96
15 =+35 1.61 +09 1.81 +16 1.58 76 1,77 -.01 1,57 +41 1.75
16 -+27 1.34 -e31 1.43 +44 1,29 +995 1.32 +07 1020 +06 1,20
17 +07 1.16 +42 1.18 —-+27 1,18 -.09 1.18 ~-+15 1.14 23 1.13
i8 ~¢36 1,77 -.39 2.08 79 1.97 =-.18 2,30 106 1.69 ~.37 2.02
19 1.05 .88 +19 1.14 -.07 .89 +03 1.00 +04 65 +13 .73
20 ¢37 1.10 25 .93 -+11 1.60 +71 1,40 +17 1.05 24 .91
21 1.45 1.86 2.21 1.99 +73 1.88 1.60 2.02 1.17 1.85 2.24 1.99
22 ~-.08 1,22 ~-,30 1.37 -+31 1.29 -,20 1.44 =-e17 1.22 =-.29 1.37
23 ~-e24 1.10 -+19 1.13 -+21 1,10 -+22 1.13 -e21 1.10 -+21 1,12
24 +08 1,22 -+08 1062 +80 1.45 + 33 1.80 +18 1.22 ”013 1.60
25 “~+20 +96 =-.16 .98 =22 497 -.21 .98 —+20 96 -417 .97
26 1,22 1035 -+08 1,35 -e42 1,68 «19 1.72 32 1028 -+08 1.35
27 -+25 1.22 21 1.22 ~+19 1,22 +17 1.21 =22 1,22 +13 1.21
28 4,40 2.07 + 30 1,28 +958 1.27
p= 9.41 1.54 2.62 4,29 1.94 2.39



