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ABSTRACT 

Variable selection is primarially a global or aggregate statistical 

procedure since the techniques used depend on functions of the sufficient 

statistics, such as R2 , F and t tests, and the C statistic. In other parts 
p 

of a regression analysis, it is common to examine an array of case statistics 

that have values for each of then cases in a study. Case statistics 

include studentized residuals, fitted values, and various distance 

or influence measures. 

In this paper, a subdivision of the Cp statistic into n components (one 

for each case) is developed, and the properties of this method are outlined. 

An example is given • 

Keywords: Variable selection, linear regression, subset regression, 

C statistic, residual analysis. 
p 
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Variable selection in multiple regression is fundamentally an aggregate 

procedure, since one bases the selection of subsets on aggregate or global 

statistics such as R
2

, Fort tests, adjusted R
2

, CP statistics, or the like. 

All of these have the connnon thread that they depend on the observed data 

through sufficient statistics, and, in a sense, they model average behavior 

of the fit of a model to the data. In recent years, there has been increasing 

interest in the computation and use of "case statistics" --- statistics that 
\ 

have computed value for each case in a problem (following a suggestion by 

John Hartigan (1977), we use the word "case" rather than the ambiguous terms 

"observation" or "point", to correspond to the rows of a data matrix; the 

columns are called variables). The case statistics typically computed 

include fitted values, residuals, and other statistics, such as 

studentized residuals, various influence measures, including Cook's 

distance (Cook 1977a, 1977b), and the variances of the fitted values or 

Mahalanobis distances. The reason for examining case statistics is that global 

or aggregate behavior modeled by the aggregate statistics may not accurately 

portray the fit of a model in all regions of the observation space. In 

this paper, we develop a case statistic version of the C statistic. and show 
p 

that this statistic can be used to help understand how the lack of 

fit measured by C is reflected in the individual cases in the study. 
p 

1. The C statistic. 
p 

We consider the problem of comparing a full rank linear model with n 

cases, given by 

Y = xa + x2a2 + e (1) 
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where, in (1), Xis n x p, x2 is n x q and Cov(e) 

model of the form 

y = xe + e'. 

2 
= a I, to a fixed subse~ 

(2) 

We assume that the goal of regression is the estimation of fitted values for 

then cases. In general, (2) will provide biased estimates of fitted values 

but, as is well known (Hocking 1973), (2) may have smaller mean square error 

than (1) for estimating fitted values. 

-1 Suppose we let V = X(X'X) X', and define U by 

( 

X'X 
U = (X X ) 

2 X 'X 
2 

The matrices U and V are fundament~l in regression problems. Of particular 

interest are the diagonal entries of U and V, which we will denote by 

uii and vii respectively. For our purposes, it will be convenient to 

(3) 

apply a linear transformation to x2 so that, in the resulting parameterization, 

the variables not in the subset model are orthogonal to the variables in the 

subset model. To this end, define 

Z = ( I - V) x
2 

, ( 4) 

so that Z is the projection of x2 onto the orthogonal complement of X. The 

full model (1) can be rewritten as 

Y = XB + Z y + e , (5) 

where y is an appropriately defined q x 1 parameter vector. All results in 

this paper will be derived in terms of (5) rather than (1), although, in 

practice, the transformation need not be computed. 

I 
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-1 Suppose that we let W = Z(Z'Z) Z'. Then, one can easily show that 

U = V + W, or, for the purposes of computation, W = U - V, so that W need 

not be found explicitly. If we let wii be the diagonal elements of W, 

then we will have that uii - vii= wii ~ O, since wii is a quadratic form. 

When considering the subset model, let the subscript "p" refer to 

the use of the model (2), where pis the number of parameters. For example, 

RSS is the residual sum of squares for the subset model, RSS = Y'(I-V)Y. 
p p 

Fitted values for the subset model will be given by a lower case yi. For 

the full model (5), estimated quantities will have no subscripts, e.g., 

"'2 a = Y'(I - U)Y/(n-p-q). The fitted values for the full model will be 

denoted by capital letters, Yi. 

" "' The fittei value for the i-th case is given by yi = xis for the subset 

"' "' "' 
model and by Yi= x~S + z~y for the full model, where x1 and z~ are the 

i-th rows of X and Z respectively. Because of the orthogonalization, 

" -1 S (=(X'X) X'Y) the least squares estimate of S, is the same for models 

(2) and (5); this is not true in general. Nevertheless, the estimates of the 

"' fitted values Y. will be the same from model (1) or from model (5). The 
1 

expected bias in the subset model (assuming that the full model is correct, 

with all relevant variables included in the proper scale) is given by 

" The variance of yi is Var(yi) 

We now define the total expected squared standardized error, r, to be 
p 

r = 
p 

= 

. 2 
E(ziy) 

2 +p 
a 

(6) 
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" 2 2 2 2 
since t Var(yi) = o tvii = o trace (V) = o rank(V) = cr p. This is a 

reasonable quantity to be interested in, as it measures the total expected 

error in estimating the fitted values. The C statistic is found by 
p 

substituting estimates for t(z~y) 2 and o2 
into (6). Now, an obvious estimate 

A A A A 2 A A A A 

of z'y is z'y = Y - yi; but t(z
1
.y) = t(yz.z'y) =y'Z'Zy = Y'WY, which is 

i i i · 1 i 

the sum of squares for regression on Z (in general, for Z after X) and 

E(Y'WY) = qcr
2 + t(z.y) 2 

l. 

"2 2 
Letting o = Y'(I-U)Y/(n-p-q) estimate o, and replacing E(Y'WY) by 

A A 2 
E(yi - yi) in (7), we substitute into (6) to get 

A A 2 
I:(yi - Yi) 

C = "2 + p - q. 
P cr 

(7) 

(8) 

A A 2 
The usual form of C is found by noting that I:(yi - Yi) = RSS 

p A A p 
"'2 (n-p-q)O 

and, substituting for E(yi - Yi) in (8), 

RSS 
C = ___:e. + 2p - n. 

p "2 cr 

The C statistic therefore estimates the total error (variance plus 
p 

(9) 

bias) in estimating the fitted values corresponding to then cases. It bears 

a fundamental relationship to the F test (as noted by Spjotvoll (1977)) for the 

hypothesis that y = 0 (in general, for a2 = 0 given B), where the test is given by 
A A 2 "'2 

I 

~ 

I 

i..,, 

i 

i..,, 

I 

--
F = t(y. - yi) /qo. Under normality and the null hypothesis, F is distributed 

p l. p ~ 

as central F, F -F(q, n-p-q). Substituting into (8) one easily finds 
p 

C = p + q(F - 1) 
p p (10) 

From (10) we have that F < 1 if and only if C < p, F < 2 if and only if p- p- p-

Cp ~ p + q and, ignoring multiple test problems, the hypothesis H: CP = p can 

be tested with critical value given by (10) with F* substituted for F, with 
p 

F* an appropriate percentage point of F(q, n-p-q). 
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The C statistic is widely used as a global measure of the adequacy of a 
p 

subset model. For more on its use, see Gorman and Toman (1966), Daniel and 

Wood (1971), and Mallows (1973). 

2. A Case version of C. 
--- --p 

Now consider the i-th case. By analogy to the above development of C, 
p 

A 2 . 
Var(yi) = a v .. and the expected bias in the subset model for the i-th case 

l.l. 
A A 

is given by E(yi - Yi)= -ziy. Define 

A A 2 A 2 E(y. - y.) Var(y.) (ziy) 
r . = l. l. l. 

02 
+ 2 = 2 + v.i pl. a (J l. 

(11) 

A A A 
Now, Yi - Yi= ziy is the observed bias, and 

A I ~ 2 A 2 
E(yi - Y.) = Var(z~y) + (z.y) . l. 1 l. 

(12) 

2 2 
= a (w .. ) + (ziy) 

11. 

= o2(uii - vii)+ (z~y)2 

2 A2 A A 2 A A 2 
Again replacing o by a in (11) and E(yi - Yi) by (yi - Yi) in (12), we 

get 

C . = pl. A2 
a 

+ vii - (u .. - v .. ). 
l.1 l.1 

(13) 

Thus, Ci measures the standardized error in estimating the i-th fitted 
p n 

value. Using (13) and (8), one can easily show that EC i = C, since 
i=l p p 

Ev
1

. = p and E(u .. - v .. ) = q. 
l. l.l. l.l. 
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Now consider a test of the hypothesis of no bias for the i-th case, 

H: ziy = 0. Under normality, the likelihood ratio statistic for this 

2 A 2 A2 2 
hypothesis is given by tpi = (z~y) /cr (u11 - vii), where tpi is distributed 

as F(l, n-p-q) (e.g. t . is a t-statistic). Substituting t 2i into (13), pi p 

we can write (for u11 I v11) 

2 
Ci= v .. + (u

1
. - v

1
.) (t . - 1) p 11 1 1 pi 

(14) 

as a striking parallel to (10) (if u .. • v1 ., then Ci= vi.). As with the 
· 11 1 p 1 

2 results following (10), we have C. < v. 1 if and only if ti< 1; C. < uii pi - 1 p - pi -

if and only if t 2
1 < 2. Also, the critical value for a test that C. = vii 

p - pi 

is given by 

, 
2 

C*. = v. . + ( u. . - v .. ) ( t * - 1) 
pi 11 11 11 . p 

where t*
2 

is the appropriate percentage point of F(l,n-p-q), Ci> C*i 
p p - p 

indicating bias. 

(15) 

Properties of ~i· The statistic Cpi depends on y1, ••• , yn only through 

the sufficient statistics Y'Y, Y'l X'Y and z'Y. Thus, C. is influenced by 
pi 

A 

outliers in Y only through the influence of the outlier on the estimates B, 
A A2 , ') y and cr, and essentially measures the error at the point (xi,zi. 

From (14) it is easy to find the mean and variance of Cpi' since under 

normality, t;i is, in general, distributed as a non-central F. We find 

E(C i) = v .. + (u .. - v11) p 11 11 

-1 or, ignoring terms of 0 ( n ) , 

E(Cpi) =vii+ (uii - vii)(z;y)2 

n-p-g 
n-p-q-2 (zfr>2] , (16) 

(17) 
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Hence, the excess of Cpi over vii measures bias, but if (uii - vii) is 

small, even la_rge bias may have little effect on Cpi· If C is 1 pi arge, 

(uii - vii) must also be examined. 

by 

The variance of Cpi is given, for n-p-q > 4, 

( 
n-p-g ) 2 

n-p-q-2 ( 

2 2 (18) ) 
1 (l+(z.y)) 2 

( n-p-q-4) n-p-~-2 + 1 + 2(z~y) . ' 

-2 If we ignore terms of O(n ), 

(19) 

For a fixed value of C , we can find minimum and maximum possible values 
p 

2 A A 2 . 
for Cpi· The minimum will occur when tpi = (yi - Yi) = 0, which will happen 

A 

(using model (5)) only_ if zi = O or if y = O. The case of zi = 0 implies uii = vii 

A 

and Cpi = vii. If y = O, then Cpi is bounded below by vii - (uii - vii), which 

may be negative, vii - ·cuii - vii) ~-(n-2)/n, if the constant is in the 

subset model. 2 
The maximum value of Cpi is found by equating tpi to its maximum 

value of (Cp - p + q)/(uii - vii). Combining results, we find 

(20) 

In particular, Ci may be greater than C if q ~ p. Thus, in some problems 
p p 

most or all of the lack of fit measured by C may be due to just a few 
p 

of the cases. 

Consider, for example, the artificial data given in Table 1, n = 10, 
A 

p = 2, q = 1. Easy computations show that, using model (5) y = (y10 - y
1
)/2. 

The values of Cpi. for all cases are given in the table, and C = EC = 1 p pi 
2 A2 

+ (ylO - yl) 120 • All of the increase of C over 1 can be attributed to the 
p 

difference (y10 - y
1
) and this increase will be reflected only in the Cpi 

for the first and tenth cases. 
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Table 1 about here 

3. The ~i and the u .• 
--~~ -----ii 

By examination of (14), we see that Cpi depends on two fixed quantities, 

2 
vii and (u.i - v .. ) and one random component, t .• The fixed quantities arise 

1 11 pi 

in many contexts in case statistics, for example, Cook (1977b) derives a 

distance measure to model the influence of the i-th case on the estimation of 

'3.i in (1) that depends only on q, vii' uii - vii and the i-th studentized 

residual. The vii also have interest in their own right (see, for example, 

Bhenken and Draper (1972)). 

To understand the Cpi, one should carefully examine the vii ·.arid uii - vii. 

Consider first vii• Suppose that the mean is included in the subset model and 

let S be the {p-1) x {p-1) cross product matrix for the p-1 remaining variables 

in X. Let i be the (p-1) x 1 vector of means of the (p-1) x's and redefine xi 

I 

'-' 

... 

to the (p-1) x 1 vector of x's for the i-th case (deleting the constant). Then, .-

we can rewrite 

1 - , -1 -
vii= - + (x

1
.-x) S (xi-x) n 

Now, consider a spectral decomposition of S: Let S = P'A P, where 

(22) 

A= diag(A1, ••• ,Ap-l), such that A1 ~AL~--·~ Ap-l' and p'p = I. Then the 

A.'s are the eigenvalues, and the columns of P, say P., are the eigenvectors 
J J 

-1 , -1 '/ of S. Since S = P A P = EPjPj Aj, (22) can be rewritten as 

1 
V =-+ ii n 

1 =-+ 
n 

( 
pp') 

(~i - i)' ~ i/ (x. - .i) 
1. 

( 

, - ) 2 P. (x .-x) 
I: J i 

j IT: 
J 

(23) 
I I 
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Let 0ji be the angle between the j-th eigenvector Pj and 

becomes 

x .• 
1 

Then (23) 

Thus, vii can be large if either (xi-x)'(xi-i) is large - that is, 

(24) 

the i-th case is far removed from the center of the rest of the data, or if 

(xi~i) is nearly parallel to an eigenvector corresponding to a small eigenvalue 

(Cos2e .. ~ 1 for j near p-1). Thus, cases in an "unusual" direction will have 
J1 

large values of vii. If we consider only the (p-1) dimensional space spanned 

by the p-1 variables in X, then v .. is related to the Mahalanolis distance, 
11 

in this space, MD., by the simple equation MD. = (n-1) (v .. - 1). 
1 1 11 n 

Now consider the u ..• By the orthogonalization (1.4) we can find matrices 
11 

Q and~, with~= diag(o1, 02 , ••• oq) and Q'Q = I such that z'z = Q'~Q and the 

uii can be written 

1 2 q 1 2 
).. Cos (0 .. ) + (zi'zi) I: d Cos (nji) 

j J 1 j=l j 
(25) 

where nji is the angle between Qj and zi. Thus the difference uii - vii may 

be large or small, relative to uii' depending on whether or not the small 

eigenvalues (if any) are in the (p-1) "in" variables or in the q "out" 

variables, and depending on z~z .• 
1 1 

Further insight can be gained by considering a bivariate 

regression model yi = S
0
+S1xii + a2x2i + ei, i = 1, ••• n. Using model (1), contours 

of constant uii are given by ellipsoids in the (x1, x2) space as shown in 

Figure 1. uii is essentially the squared distance from (~i,x2i) to (xl+' !2+) 

Now suppose we consider the subset model obtained by deleting x2 from the model. 
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The vii corresponding to a given (x1i,x2_i) pair is found by projecting 

(xii'xii) onto the x1 axis: contours of constant vii now consist of two 

points equidistant from x
1
+. We can ·distinguish those points with 

fixed uii that will have relatively large uii-vii as shown in Figure 1. 

It is interesting to note that the points with large u
11 

- vii for one 

subset model may be small for another subset model, as can be seen by 

projecting in Figure 1 on the x2 axis. 

Figure 1 here 
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Example. We illustrate·the use of Cpi on a complex data set 

given by Narula and Wellington (1977). The data, reprinted here as 

Table 2, relates selling price of n = 28 houses to 11 potential predictor 

variables, with the eventual goal of developing a prediction equation based 

on a subset. We will not give a complete analysis here, but merely indicate 

possible uses of Cpi· 

We begin by computing the regression for the full model, and then 

examining several useful case statistics (the computations for the full 

model given in Narula and Wellington are incorrect). Included in Table 3 

are the studentized residua~ and its t-distribution transform, Cook's 

-1 distance Di, and the diagonal elements of U = X(X'X) X' for each of the 

28 cases. While none of the cases appear to be outliers (in the sense of 

large t-values), ·the 28th case has n
28 

= 1.06, indicating that this case is 

relatively influential in estimating parameters. n28 is large because of 

the unusual value of x
1 

(=taxes) for this case. A prudent approach at 

this point, therefore, is to do variable selection twice, once including 

the 28-th case, and once excluding it. To this end, the 10 subsets with 

the lowest values of C for the 28 case data set and for the 27 case data 
p 

set are given in Table 4. Computations were done using the Furnival and 

Wilson (1974) algorithm. It is interesting to note that the best model 

for the 27 case data is not among the best 10 for the 28 case data, and 

the best two variable model for the 28 case data, (x1, x4), is not among 

the best models for the 27 case data. In the remainder of this discussion, 

we will look only at the models (x1, x2), (x1, x4) and (x1, x2, x4) for 

the 27 and 28 case data sets. 
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Tables 2, 3 and 4 about here 

2 
The Ci and values of C*i from (15) with t* equal to the .05 p p p 

point of the appropriate F distribution are given in Table 5 for the 

three models under consideration and both the 27 and 28 case data sets. 

Consider first the model (X
1

, x
2
). The relatively large value of C for 

p 

this model in the 28 case data is largely due to cases 12, 19 and 28, 

all of which have values of Cpi exceeding c;i• Case 28 alone, with cp, 28 ° 4.40 

appears to dominate the lack of f·it. The fit of this model to the 27 case 

data is somewhat better although still not ideal: the Ci for case 21 p . 

is actually greater than the overall C ,so that the fit of the model is 
p 

not uniform throughout the observation space even with case 28 excluded. 

Table 5 about here 

The model (X
1

, x4) is more satisfactory overall than is the model 

considered above, as none of the Cpi in either the 27 or 28 case data sets 

are greater than the corresponding c;1 although the values for cases 11 

and 21 are somewhat large. The same qualitative judgements hold for the 

model (x
1

, x
2

, x
4
), where case 21 remains troublesome. At this 

point, the last two models shoul4 be examined in greater detail, 

with careful attention given to case 21. Tentatively, one would wish to 

leave case 28 in the data set to obtain estimates, since the Cpi appear to 

be mo.re uni£ orm for the two models under consideration in the 

28 case data. 

I am indebted to Christopher Bingham and to R. Dennis Cook for many 

illuminating discussions on case statistics. The data used in the example 

was suggested by Kinley Larntz. 

.... 
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Table 1. Artificial Data 

y vii wii 

22 1/2 Y1 60 

15 0 Y2 60 

10 
Y3 60 0 

7 0 Y4 60 

6 
0 Y5 60 

6 0 y6 60 

7 0 Y7 60 

10 
Ya 60 0 

15 0 Yg 60 

22 
Y10 60 1/2 
··----'-'-··· .. -··---· 

cpi 

8 2 A2 
- 60 + (ylO - yl) / 4a 

15 
60 

10 I 

60 

7 
I 60 
I 

I 6 
60 

I 
I 6 i 
I 

60 I 
I 
I 7 

! 60 
I 

10 
60 

15 
60 

8 A2 
, - 60 + (ylO - Y1)/4a 
I 

2 A2 
C = 1 + (y1 - y) /2a 

p O 1 
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Table 2. Data from Narula and Wellington 

Variable Number 

Case 1 2 3 4 5 6 7 8 9 1011 y 

1 4.9176 1.0 3.4720 o.99Bo 
2 5.0208 1 .o 3.5310 1.5000 
3 4.5429 1.0 2.2750 1.1750 
4 4.5573 1.0 4.0500 1.2320 
5 5.0597 1.0 4.4550 1.1210 
6 3.8910 1.0 4.4550 o.9aao 
7 5.8980 1.0 5.8500 1.2400 
8 5.6039 1.0 9+5200 1.5010 
9 15.4202 2.5 9.8000 3.4200 

10 14.4598 2.5 12.000 3.0000 
11 5.8282 1.0 6.4350 1.2250 
12 5.3003 1.0 4.9883 1.5520 
13 6.2712 1.0 5.5200 0.9750 
14 5.9592 1.0 6.6660 1.1210 
15 5.0500 1.0 5.oooo 1.0200 
16 5.6039 1 .o 9.5200 1.5010 
17 a.2464 ~.5 5.1500 1.6640 
18 6.6969 1.5 6.9020 1+4880 
19 7+7841 1.5 7.1020 1.3760 
20 9.0384 1.0 7.8000 1.5000 
21 5.9894 1.0 5.5200 1.2560 
22 7.5422 1.5 4.0000 1.6900 
23 8.7951 1 .5 9.8900 1.0200 
24 6.0931 1.5 6.7265 1.6520 
25 8.3607 1.5 9.1500 1.7770 
26 8.1400 1.0 0.0000 1.5040 
27 9.1416 1.5 7+3262 1.8310 
28 12.0000 1.5 s.0000 1.2000 

xl = Taxes (lOO's of dollars) 

x2 =No.of baths 

X3 = Lot size/1000 ft 2 

X4 = Living space/1000 ft2 

XS = No. of garages 

x6 = No. of rooms 

X7 = No. of bedrooms 

XS = Age of house 

1.0 7 4 42 3 1 0 25.9 
2.0 7 4 62 1 1 0 29.5 
1.0 6 3 40 2 1 0 27.9 
1.0 6 3 54 4 1 0 25.9 
1.0 6 3 42 3 1 0 29.9 
1 .o 6 3 56 2 1 0 29.9 
1.0 7 3 51 2 1 1 30.9 
o.o 6 3 32 1 1 0 28.9 
2.0 10 5 42 2 1 1 84.9 
2.0 9 5 14 4 1 1 82.9 
2.0 6 3 32 1 1 0 35.9 
1.0 6 3 30 1 2 0 31.5 
1 .o 5 2 30 1 2 0 31.0 
2.0 6 3 32 2 1 0 30.9 
o.o 5 2 46 4 1 1 30.0 
o.o 6 3 32 1·1 0 28.9 
2.0 8 4 50 4 1 0 36.9 
1.5 7 3 22 1 1 1 41.9 
1.0 6 3 17 2 1 0 40.5 
1.5 7 3 23 3 3 0 43.9 
2.0 6 3 40 4 1 1 37.5 
1.0 q 3 22 1 1 0 37.9 
2.0 8 4 50 1 1 1 44.5 
1.0 6 3 44 4 1 0 37.9 
2.0 8 4 48 1 1 1 38.9 
2.0 7 3 3 1 3 0 36.9 
1.5 8 4 31 4 1 0 45.8 
2.0 6 3 30 3 1 1 41.0 

x9 = Construction type (coded 1,2,3,4) 

x10 = Style (coded 1,2,3) 

x11 = No. of fireplaces 

Y = Sale price (lOOO's of dollars) 
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Table 3. Case statistics for the full model 

... 
CASE y RESIDUAL STUD+ RES u DISTANCE T 

1 25.90 1.685 +6976 .6503 .0754 .69 
2 29.50 -.1648 -.0555 +4720 .0002 -~o5 
3 27.90 1.170 +3249 .2222 .0025 .32 
4 25.90 -2.947 -.8143 · +2145 .0151 -.81 
5 29.90 2.296 .5904 .0931 .0030 .50 
6 29.90 6.998 1+9910 .2593 +1157 2.22 
7 30.90 .6188 .1918 .3759 .0018 .19 
8 28.90 -1.812 -.5828 .4206 .0205 -.57 
9 84.90 4.002 1+8457 .7181 .7233 · 2.01 ... 

10 82.90 2.895 1+2593 +6832 .2849 1.20 
11 35.90 5.326 1.5937 .3302 .1044 1.68 
12 31.50 -2.532 -.7797 .3676 .0295 -.77 
13 31.00 2.620 +8216 .3901 .0360 .81 
14 30.90 .5920 .1744 .3090 .0011 .17 
15 30.00 .6312 +2187 .5005 .0040 .21 
16 28.90 -1.812 -.5828 .4~06 .0205 -.57 
17 36.90 -5.386 -1.6595 .3684 .1339 -1.77 
18 41.90 +5884 .2251 .5902 .0061 .22 
19 40.50 1.390 .4054 .2955 .0057 .39 
20 43.90 3.390 1.1999 +5215 .1308 1.22 
21 37.50 1.167 .4359 +5701 .0210 .42 
22 37.90 -3.435 -1.0855 .3994 .0653 -1.09 : 

23 44.50 -.9019 -.2736 .3486 .0033 -.27 '-I 

24 37.90 -3.791 -1.2766 +4712 .1210 -1.30 
25 38.90 -5.621 -1.6577 .3107 .1032 -1.76 
26 36.90 -3.434 -1.2091 .5164 .1301 -1.23 
27 45.80 -.1528 -.0478 .3876 .0001 -.05 
28 41.00 -3.380 -1.8199 .7932 1.0587 -1.98 

RESIDUAL ss = 266.8499856 
PRESS = 1147.330450 
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Table 4. 10 Best regressions for n = 28 and n = 27 

n = 28 cases 

BEST 10 REGRESSION WITH y DEPENI•ENT, USING CP 
p C(P) R2<ADJ) R**2 RSS VARIABLES 
3 * 2.620 .9180 .9241 410.6 1 4 
4 * 1.940 .9239 .9324 365.9 1 2 4 
4 * 3.013 .9202 .9291 383.8 1 4 9 
4 * 3.202 .9195 .9285 387.0 1 4 11 
5 * 3.026 .9239 .9352 350.7 1 2 4 10 
5 * 3.134 .9235 .9349 352.5 1 2 4 7 
5 * 3.147 .9235 .9349 352.7 1 2 4 9 
5 * 3.169 .9234 .9348 353.1 1 2 4 8 
5 * 3.187 .9233 .9347 353.4 1 2 4 11 
6 * 3.285 .9271 .9406 321.6 1 4 8 9 11 

CP TIME USED IS • 531 SECONDS • 

... 

n ~ 27 cases (case #28 deleted.) 

BE~J 10 REGRESSION WITH y IIEPENI•ENT, USING Cf' 
p C(P) R2(AitJ) R**2 RSS VARIABLES 
3 * 1.535 .9363 .9412 317.9 1 2 
4 * 2.293 .9371 .9444 300.4 1 2 11 
4 * 2.394 .9369 .9441 301.8 1 2 4 ... 4 * 2+917 .9353 .9428 309.2 1 2 ·6 
4 * 3.201 .9345 .9420 313.2 1 2 9 
4 * 3.371 .9340 .9416 315.6 1 2 7 
5 * 2.978 +9383 .9479 281+8 1 2 4 11 
5 * 3.029 .9382 .9477 282.6 1 2 4 6 
5 * 3.379 .9371 .9468 287.5 1 2 6 11 
6 * 3.029' .9417 .9529 254.3 1 2 4 6 11 

I 

CP TIME USED IS • 479 SECONDS • .... 



* Table 5. cpi an,d cpi for 3 models 

(Xl, X2) (Xl, X4) 

n = 28 n == 27 n:::: 28 n = 27 

* * * * Case cpi cpi cpi cpi cpi cpi cpi C 
pi 

1 .45 2.12 -.12 2.24 -.37 2.10 -.46 2.20 
2 -.20 1.so -.23 1.s2 .30 1.40 -.02 1.27 
3 -.os .59 -.07 .59 -.07 .60 -.06 .59 
4 .os .57 .01 .64 -.03 .56 -.02 .60 
5 .os .10 .03 .19 .02 .10 .02 .19 
6 .51 .64 .21 .63 -.os .69 -.oa .71 
7 -.27 1.10 -.22 1.19 -.21 1.20 -.14 1.21 
8 -.27 1.34 -.31 1.43 .44 1.29 .55 1.32 
9 .32 1.50 .09 1.55 .12 1.30 .42 1.34 

10 .76 1.50 .56 1.52 1.06 1.59 1.32 1.62 
11 -.22 1.02 -.22 1.06 -.23 1.04 -.24 1.00 
12 1.10 1.15 .35 1.37 -.17 1.04 -.12 1.11 
13 .25 1.21 -.23 1.66 -. 18 1.11 -.15 1.37 
14 -.20 .95 -.22 1.02 -.19 .94 -. 16 .97 
15 -.35 1.61 .09 1.01 .16 1.ss .76 1.77 
16 -.27 1.34 -.31 1.43 .44 1.29 .55 1.32 
17 .01 1.16 .42 1.10 -.27 1.10 -.09 1.10 
18 -.36 1.77 -.39 2.oa .79 1+97 -. 18 2.30 
19 1.05 .ea .19 1.14 -.07 .89 .03 1.00 
20 .57 1.10 • 25 .93 -.11 1+60 .71 1.40 
21 1.45 1.86 2.21 1.99 .73 1+88 1.60 2.02 
22 -.os 1.22 -.30 1.37 -.31 1.29 -.20 1.44 
23 -.24 1.10 -.19 1.13 -.21 1.10 -.22 1.13 
24 .os 1.22 -.os 1.62 .so 1.45 .33· 1.ao 
25 -.20 .96 -.16 .98 -.22 .97 -.21 .98 
26 1.22 1.35 -.oa 1.35 -.42 1.68 .19 1.72 
27 -.25 1.22 .21 1.22 -.19 1.22 .17 1.21 
28 4.40 2.01 .so 1.2a 
• • 

C = 9.41 1.54 2.62 4.29 p 

(Xl, X2, 

n = 28 

* cpi cpi 
-. 18 2.07 

.03 1.34 
-.03 .59 
-.04 .56 

.03 .18 

.13 .60 
-.25 1.10 

.07 1.20 

.ss 1.20 

.57 1.49 
-.23 1.02 
-.oo .94 
-.18 1.11 
-.17 .93 
-.01 1.57 

.07 1.20 
-.15 1.14 

.06 1.69 

.04 .65 

.17 1.05 
1.17 1.05 
-.17 1.22 
"'"'.t21 1.10 

.18 1.22 
-.20 .96 

.32 1.20 
-.22 1.22 

.58 1.27 

1.94 

X4) 

n = 27 

* cpi cpi 
-.21 2.17 
-.09 1.19 
-.06 .sa 
-.02 .60 

.03 .19 

.21 .63 
-.23 1.19 

.06 1.20 

.32 1.32 

.63 1.52 
-.22 1.06 

.14 .99 
-.15 ,1.37 
-.15 .96 

.41 1.75 

.06 1.20 

.23 1.13 
-.37 2.02 

.13 .73 

.24 .91 
2.24 1.99 
-.29 1.37 
-.21 1.12 
-.13 1.60 
-.17 .97 
-.00 1.35 

.13 1.21 

2.39 
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