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Abstract 

Let X denote a vector of observations from a location parameter 

model whose first moment exists, and let A denote an invariant set of 

(X,9) values such that Sx = (ej(x,9) F. A} are level Y confidence 

regions and for each x, Sx has fiducial probability Y . !tis 

shown that there is no subset C of X values such that in£
9
P

9
(Ajc) > y 

or such that sup
9

P
9
(Alc) < Y · 

* Supported by National Science Foundation Grant MCS76-06284. 



- -1-

1. Introduction. 

A set A of (x,e) values can be called a level v confidence 

procedure if P
9

[(X,9) EA}= Y for all 9 . A set C of x values 

has been called a relevant subset (Buehler 1959) if for some e >0 

( 1) 

for a 11 9 • 

or P (Ale) s y - e e 

If f(x,e) = f(x-e) , and the first moment of X exists, and 

where and c
2 

are finite, then it is 

known that there are no relevant subsets (Buehler 1959). In the present 

paper this result is generalized in three ways: (i) Finiteness of c1 , 

c2 is not required, nor need the confidence region be an interval. 

(ii) The subset C is replaced by a "selection" cp(x) 0 s ~(x) s 1 . 

(iii) Arbitrary sample size n is allowed, with the confidence procedure 

based on the Fisher-Pitman fiducial distribution (Fisher (1934), Pitman 

( 1939)). 

For this more general case we find that existence of the first moment 

still guarantees nonexistence of relevant subsets. It is not known whether 

the moment condition is actually necessary. 

For estimation of the mean in joint location-scale models an example 

involving Student's distribution shows that relevant subsets can exist 

(Buehler and Feddersen (1963), Brown (1967)). In the Student example and 

also for Behrens-Fisher confidence intervals, Robinson (1976) has shown 

that only a positive bias is possible so that in this sense the intervals 

are conservative. For other examples of relevant subsets see Robinson (1975). 
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P ( C' 9. ) as well as P (Ajc) 
9 

has been 

suggested by Stone (1972) and studied for group-invariant models by 

Bondar ( 1977) . 

For the case of a multivariate translation family with density 

f(x1-e 1, ... ,~-9k) Stein (1961) showed nonexistence of relevant sub

'sets when sample size n=l. For k=2 we have attempted to extend this 

result to general n using the methods below. Using notation analogous 

to that below, let 

R 
µ,( R) = 

,, 
I 

J 

t =-R 1 

R 
•" 
I 

J 

t =-R 
2 

f 
ul 

J ~(t1,u1,t2 ,u2)dA(u1 ,u2)dt1dt2 
u2 

The proof seems to extend either if ~(=) < m or if R/µ(R) - 0 as 

R ~=,but unfortunately not in general. 
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The Main Result. 

Let X = (x1 , .•. ,Xn) have density 

n 
rr f(x.-a) 

i=l ]. 

and define T, U by 

( 3) 
1 n 

T = - E xi 
n i=l 

U = (X1-X2,X2-X3,•••,Xn-l-Xn) 

Let the joint density of (T,U) be denoted by 

(4) g(t-e!u) dt dA(u) • 

For fixed O < v < 1 suppose we determine for each u 

that 

( 5) J g(t!u) dt = y. 
A u 

With x = (t,u) we then define 

A= [x,elt-9 E Au} 

(6) 
Ax= [e!(x,e) EA} 

a set A such 
u 

The sets A are then level y invariant confidence regions for 9, and 
X 

each A has fiducial probability v. We will call these Pitman confix 

dence regions. In practice A 
X 

is usually a finite or infinite interval, 

but there is no need here for any such restriction. The conditioning set 

C is replaced by the more general "selection function" (Tukey (1958), 

Wallace (1959), Stein (1961)) ~(x) , with O ~ ~(x) ~ 1, interpreting 
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~(x) as the probability that observation x goes into the selected 

subset. Then Pe(Ajc) = Pe(AC)/Pe(c) is replaced by E9(1A~)/E9~, 

the two being equal when ~=le . 

Theorem 1. Let X have density (2) where EX. exists. Let A 
L 

define level y Pitman confidence regions. Then there does not exis.t 

a selection ~(x) (0 ~ cp(x) s 1) such that E8~ >0 for all a and 

for some e >0 

E 1 ~ 
:.Ll..:. 

E
9

m 
~ y + € 

Proof. We have 

or 
E, lAcp y ~ 
9_ s - ... 

E9C? 

E
9

q, = j' j' cp(t,u)g(t-elu)dt d1'.(u) 
u t 

for all 

E91Aq, = J J q,(t,u)g(t-elu)dt dA(u) • 
u tEAu+a . 

e . 

(Where limits are not given, integrals are over the full range of the 

variable.) Define 

~(R) = f Rf ~(t,u) dA(u) dt 

t=-R u 

a(R) = f R ( E cp) d9 
9 

e=-R 

p(R) = J R (EelAq,) de 

e=-R 

A contradiction will be established by showing that a(R)/~(R) tends to 

y as R tends co =. 
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Case 1: µ(=) = M < =. 

a C =) = J J f . cp( t '~, u) g( t' I u) d t' dA ( u) de 
9 u t'c.A "- u 

= s r r q,( t, +e, u) g( t, , u) de d t, dA cu) 
UL t 'EA .. 9 u . 

=JI J ~(e',u)g(t'lu)de' dt' dA(u) 
u t 'EA e' u 

= y µ( =) = y M • 

The key to variable changes and integral reversals is: t - t' = t-9 , 

( 8 , U, t I ) - ( U, t I , a ) , 9 - e I = e + t I , ( U, t I , 9 I ) - ( U, 9 I , t f ) , and 

integrate over t' . 

The special case y = 1 , A = ( -a:, , CX) ) 

u 

ing the desired contradiction for Case 1. 

gives a(=)= M, establish-

Case 2. µ(R) -= as R - =. In the Case 1 calculation replace 

~(=) by ~(R) and the integral -CX) < 9 <= by -R < e < R. The same 

steps then give (dropping primes on 9 and t) 

$(R) =ff f t+R ~(e,u)g(tju)d8dt dX(u) • 
u tEA 9=t-R 

u 

We will compare ~(R) with ~'(R) defined by 

s I ( R) = J f f R cp(9,u)g(tlu)d9dt dl(u) 
u tE=A e=-R . u 

In the last expression we can integrate first over t and then r~verse 

the two remaining integrals to get 
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p I ( R) = y ~( R) . 

The difference S(R)-S'(R) is the sum of four integrals, two positive 

and two negative, over regions 

s1 = '(u, 9 < -R, tEAu, 9-R < t ,< 9-i-R} 

s2 ° (u, -R < 9 < R, tEAu' t < 9-R} 

s3 ° [u, -R < a < R, tEAU, t > e+R} 

S4 = [u, 9 > R, tEAu' 9-R < t < 9+R} 

Let r 1, ••• ,r4 denote the corresponding integrals. We will show that all 

four are bounded as R - CX) • Replacing ~(t,u) 

we have 

I 1 sf J-R f+R g(tju)dtd9 dX(u) 
u 9=-00 t=9-R 

= f -R f 9+R g(t)dtd9 
e=-oo t=9-R 

by 1 and A by (-a>,Q) 
u 

where g(t) is the marginal density of t. Denoting the corresponding 

c.d.f. by G(t) and putting t = e+R we have 

-R 
Il ~ f [G(e+R)-G(e-R) ]de 

e=-oo 
0 

= J [G(t)-G(t-2R)]dt. 
t=-oo 

Since EX. exists, we know that ET exists, and this implies r OG(t)dt = 
i ' 

-0:) 

K < oo • Thus r1 s K for all O < R < oo • 
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For r2 we have 

I 2 sf f Rf e-R g(tjti)dtd9 d~(u) 
u ~=-R t=-co 

R 9-R 
= J J g(t)dtd9 

a=-R t=-co 

= J R G(e-R)de 
· e=-R 

= J O G( t) d t s K • 
t=-2R 

The integrals r
3 

and r
4 

are of course similar so that a(R)-a'(R) = O(&) • 

The special case Au = (-=,=) gives a(R)-a'(R) = O(R) where a'(R) = µ(R) . 

Thus p(R)/a(R) - y, giving the desired contradiction. 
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