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Abstract

Let X denote a vector of observations from a location parameter
model whose first moment exists, and let A denote an invariant set of
(X,9) values such that S, = {9|(%,8) € A} are level Y confidence
regions and for each x , Sx has fiducial probability v . It is
shown that there is no subset C of X wvalues such that infePs(A!C) > Y

or such that sup PS{AIC) <V .
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1. Introduction.

A set A of [(x,5) values can be called a level v confidence
procedure if psg(x,e) € A} =y forall 9 . Aset C of x values

has been called a relevant subset (Buehler 1§59) if for some ¢ =0
(1) PG(A]C) 2y + ¢ or Pe(AIC) Sy -e¢

for all o .
1f f{x,5) = £{x-¢) , and the first moment of X exists, and

A= [x,e,cl < xX-9 < c2} where ¢, and c, are finite, then it is

2
known that there are no relevant subsets (Buehler 1959). 1In the present
paper this result is generalized in three ways: (i) Finiteness of ¢y s

c is not required, nor need the confidence region be an interval.

2
(ii) The subset C is replaced by a "selection" ¢(x) , 0 < g(x) s 1.
(iii) Arbitrary sample size n is allowed, with the confidence procedure
based on the Fisher-Pitman fiducial distribution (Fisher (1934), Pitman
(1939)).

For this more general case we find that existence of the first moment
still guarantees nonexistence of relevant subsets. It is not known whether
the moment condition is actually necessary.

For estimation of the mean in joint location-scale models an example
involving Student's distribution shows that relevant subsets can exist
{Buehler and Feddersen (1963), Brown (1967)). In the Student example and
also for Behrens-Fisher confidence intervals, Robinson (1976) has shown

that only a positive bias is possible so that in this sense the intervals

are conservative. For other examples of relevant subsets see Robinson (1975).



A modified criterion involving P9<C) as well as PQ(A,C) has been
suggested by Stone (1972) and studied for group-invariant models by
Bondar (1977).

For the case of a multivariate translation family with density
f(xl-el,...,xk-sk) Stein {196l) showed nonexistence of relevant sub-
"sets when sample size n=l . For k=2 we have attempted to extend this
result to general n using the methods below. Using notation analogous

to that below, let

R R
7 = O P /
u(R) i | J‘ Jf‘ cp(tl,ul,t2,u2)dk\u1,u2)dtldt2 .
tl=-R t2=-R up Uy

The proof seems to extend either if (=) <= or if R/u(R) =0 as

R - o , but unfortunately not in general.



2. The Main Result.

Let X = (xl,...,xn) have density
n
(2) m £(x;-8)
i=1

and define T , U by

4=

=1 = - - -
(3) T == X, » U (x1 X5, X, x3,...,xn_1 xn) .

i=1

Let the joint density of (T,U) be denoted by
(4) g(t-9[u) dt dr(u) .

For fixed 0 <v <1 suppose we determine for each u a set Au such
that

(5) [ s(tlu) gt =y .

A
u

With x = (t,u) we then define

A= {x,8]|t-9 ¢ Al

—~~
ON
~—

A = {o|(x.8) € 4} .

The sets Ax are then level vy invariant confidence regions for g , and
each Ax has fiducial probability v . We will call these Pitman confi-

dence regions. In practice Ax is usually a finite or infinite interval,
but there is no need here for any such restriction. The conditioning set

C 1is replaced by the more general '"selection function" (Tukey {1958),

Wallace (1959), Stein (196l)) ¢(x) , with O € @(x) s 1 , interpreting



(p(x) as the probability that observation x goes into the selected
subset. Then P_.{A|C) = P_(AC)/P,(C) is replaced by E_{l0)/E @ ,

5 3 g" g A" )
the two being equal when x5 = lc .

Theorem 1. Let X have density (2) where EX; exists. Let A
define level v Pitman confidence regions. Then there does not exist

a selection @(x) (0 < (%) s'l) guch that E 9 -0 for all ¢ and

6
for some ¢ >0

E .l e E Ll
94 >Y + e or S2A £Y -¢ forall g.
Eem EqP

Proof., We have
ESCP = J j (P(t,u)g(t-elu)dt dA (u)

u t

EelACP =f ‘[' C.D(Vt,u)g(t—elu)dt dA{u) .

u teAu-!-a

(Where limits are not given, integrals are over the full range of the

variable.) Define

w(R) = [ R o(t,u) di(u) dt

v

=..R u

oR) = [ *(5,0) do
g=-R

= Ry
3(R) = [ 7 {Eglyo) do
9=-R
A contradiction will be established by showing that «(R)/a(R) tends to

v as R tends to o .



Case 1: u(m) =M< o .

) = [ ][, o(csam)a(e![a)ae aia) oo

=[T [ @(t'+6,u)g(t'[u)de dt' di(u)
u‘t'eAu‘g

= ', "lu)de' dt' di(u)
fuft'EAuf .w(e u)g(c , )de ¢ (

=‘/p.-(°°)=YM-

The key to variable cha.nges and integral reversals is: t ~ t' = t-g5 ,
(8,u,t") = (u,t',8) , 8 ~8"=6+¢t", (u,t',9"') = (u,8',c") , and
integrate over t'

The special case vy =1 , A = (-»,0) gives (=) =M , establish-

ing the desired contradiction for Case 1.

Case 2. p(R) == as R == . In the Case l calculation replace
B(w) by B8(R) and the integral -o <9 <o by -R <6 <R . The same

steps then give (dropping primes om 9 and t)

8(R) = [ [ [ % g(s,u)g(t]u)dsdr d(u) .
u"teA "9=t-R

We will compare 8(R) with B'(R) defined by

3'(R) = [ [ [ Fale,u)g(t]u)dedt dr(u) .
“u tGAu 6=-R

In the last expression we can integrate first over t and then reverse

the two remaining integrals to get



3'(R) = v w(R) .
The difference 8{R)-3'(R) 1is the sum of four integrals, two positive
and two negative, over regions
S; = {u, 8 <-R, teA , 6-R < t < &+R}
= {u, -R <8 <R, tEA, t < 0-R}
S, = {u, -R <8 <R, teA , t > 0+R}
8, = {u, 8 >R, t€A > 8-R < t < 8+R} .

Let Il"“’Ih denote the corresponding integrals. We will show that all

four are bounded as R — o . Replacing «(t,u) by 1 and A, by (~o,)

we have
s [0 PR e(elu)dede ar(w)
‘U g=-x" t=9-R
= f "R &R o(t)drde ,
B=-= t=9-R
where g(t) is the marginal density of t . Denoting the corresponding

c.d.f. by G(t) and putting t = g+R we have

-R
I, < f (G(8+R)-G(8-R) ]d6
§=-w

0
= f {c(t)-6{t-2R) ldt .

t=-»

. s . 0
Since EXi exists, we know that ET exists, and this implies F G(t)dt =

-

K<w . Thus I, £ K forall O <R <o .

1



£

B

For 12 we have
I, s f [ R f 9-R g(t|u)dede dx(u)
u” 8=-R " t=-o
8-R
= I R g(t)dtds
==R tZ~g

= [ ® c(e-R)dg
ex

=J‘ 0 G(t)dt < K .
t=-2R

The integrals 13 and I, are of course similar so that 8(R)-g'(R)

The special case a, = (~=,m) gives @(R)-o'(R) = O(R) where ¢'(R)

Thus B(R)/a(R) — v , giving the desired contradiction.

O(R) .

w(R) .
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