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Abstract 

Whether stationary families of strategies are uniformly adequate for a 

leavable, analytically measurable, nonnegative gambling problem whose optimal 

return function is everywhere finite is a question which remains open but is 

given an affirmative answer if, for example, the fortune space is Euclidean 

and all nontrivial, available gambles are absolutely continuous with respect 

to Lebesgue measure. 
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1. Introduction. Consonant with (6], a· gambling problem is an ordered 

couple .(.r, u), where r is a gambling .. house and . u is. a .real-valµed fuQ.c.

tion, both defined on the same set F. In [6], u was assumed to be 

bounded; here u may be unbounded, but it. is assumed that u is nonnega

tive and that tf:i~, optimal return function V is everywhere finite. 

If, for· ee --.h f e F , ;( f) i·s a. strategy·, a is a plan. If p is 

a set of plans available in r and if, fo1 ?ach e >0 and f e F, 

3 ~ ~ p such that 

( 1. 1) 

then p is an adequate set of plans for (r,u) • If, for each e >0, 

'3 asp such that (1.1) holds for all f, then 

for (r,u) • 

is uniformly adequate 

A Markov kernel is a gamble-valued function Y defined on F. If 

. ,· 

Y(f) e f(f) for all f, then V is a r-selector or a f-kernel. The plan 

y00 that prescribes v(f) whenever the current fortune is £ is stationary. 

Let g be the set of all stationary plans available in r. The question 

raised in [6] as to whether stationary plans are uniformly adequate for leav

able problems was settled in the negative by a surprising example of Orr,te~u 

[13]. (A later example [9] shows that stationary plans need not even be a~-~ 

quate.) It is natural, therefore, to ask whether stationary plans are uni

formly adequate if the problem (r,u) is Borel measurable, but we have suc

ceeded in answering this query only if r is Borel absolutely continuous. 
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A Borel, or ~y~n ·analyti~ally, measurable house r. is Borel absolutely 

continuous if, for some probability measure a ·countably additive on the 

Borel subsets of F, every nontrivial gamble Y available in r ·, assigns 

probability zero to· every Borel subset ·of. F tQ ·which a assigns _probability 

zero •. ( If v·. e r( f) and Y I a( f) ~- .then v is nontrivial.) The principal 

purpo~e- of this paper is to show that if it is· also ·su.pposed · that r is 

Borel absolutely cont~nuous, then ~ta tionary ptans _ are indeed ~nif_ormly ade-

quate.· 

Two preliminary facts require_ no assumptions of countable additivity or 

of measurability. The first, Proposition 4.1 and its Corollary, is a ·charac-. 

terization of optimal stationary pl~ns for leavable, stop-or~go houses, that 
. . 

is, those houses in which, at each f, at most one nontrivi~l gamble is 

available; it can be viewed as another version of the fundamental theorem 

of optimal stopping (cf. [5] and [8]). The second, Proposition 5.1, states 

that, for each e >0 and n ~- 1, there is available a statioriary plan 

Q) 

y such that 

(1.2) u(v=(f)) ~ (1-e) U (f) , . . n 

where U is the optimal return.if gambling must terminate by time - n. 
n 

2. · A few conventions and some notation. Every gamble · V is assumed to be 

defined on the set of all nonneg~tive, extended-real-valued functidns with 

domain F and to satisfy the usual conditions: 

(a) v(u1+ u2) -= vu1+ yu2 , 

(b) Y(tu) = tyu for t ~ 0, 

( c) u1 :s: u2 = yu1 s Yu2 , 

(d) Ye= c for all constants c. 
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Using the same argument as for [6, Theorem 2.8.1], one canv~rffy that every 

nonnegative, extended-real-valued, finitary function g can be integrated 

in a unique way by every strategy cr so as _to satisfy cr_c = c and 

( 2.1) ag = J a[f](gf) da0 (£) • 

No-tation, such '!:Is cr[ f] used often in [ 6 J, will ordinariiy not be explained 

here. From e· .1) follows the more general 

(2.2) ag =·s o[pt](gpt) do, 

which holds for every stop rule t ·, as in [6, Equation 3.7.l]. Here pt(h) 

is the partial history p = ( £
1

, •.. , fn) where it = ( £
1

, £2 , ••• ) and t(h) = 

It is natural to regard o[pt](gpt) as the con<litional a-expectation of g 

given the past up to time t. The time remainin after p, say t[p], 

is defined by 

t[p](h) = t(ph)-n, 

where he H, ph is the history which consists of p followed by h, 

and n is the number of coordinates of p. Notice that t(p] is a stop 

· rule if t(ph) > n; it is a nonpositive constant otherwise. As in (6, 

Section 2.5], o[p] denotes the conditional ·strategy given p·. If r 

is the policy (cr,t) , then the conditional policy given p is n[p] = 

(cr[p],t(p]) • The utility u(rr[p]) = J u(ft[p)) do[p] is well-defined if 

t[p] is a stop rule. If, on the other hand, t(p] is nonposi~ive~ set 

u(rr[p]) = u(fk) where p = (£1, ..• ,fn) and t(f1 , ... ,£
0

, ••• ) = k ~ n. 

Let s be a stop rule. Then the formula 
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(2. 3) 

is a special case of (2.2) _a$ .well as an extension to stop rules of (6, 

Formula 2.10.2]. 

Many of the definitions and results in [6], which were established· 

there for bound~d- u's, extend without difficulty to nonnegative u's, 

and will be used here without comment. ~ecall that, as defined in [6]~ 

the two optimal return functions for a gamb~ing problem, V and U, 

satisfy .V ~ U. In this paper, whenever it is considerably simpler to do 

so, the problem will be assumed to be a leavable one, in which event V = U. 

Nevertheless, when greater generality is to be hinted at or when the logic 

of an argument is clarified by doing so, "V" will often be used in lieu 

of, and in addition to, "U" even when V = U. 

3. Preliminary lennnas. For ~ e r(f) , let Ve be the supremum·of 

u(cr) over all a available in r at f for which the initial gamble 

is 13 • 

LetlllDB 3.1. v~ = .~v . 

Proof: Apply (6, Corollary 3.3.4 ]. 

Lemma 3.2. Let y bear-selector. Then Y()O is optimal if and only if, 

for all f, both of these conditions hold: 

(a) y(f)V = V(f) , 

(b) u(f) < V(f) = V(f) ~ sup u(y()O{f),t) 

where the supremum is taken over all stop rules t • 
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Proof: Suppose v= is optimal. Plainly, Lemma 3.1 implies (a), and 

(3.1) V( f) = u(y=(f)) = lim sup. u(y0
\ £), t) :S: sup u(V=( f), t) 

t t 

so (b) holds. For the converse, suppose (a) and (b) hold for all f. 

Fix e > 0 , f t: F , and a _stop rule s • It suffices to find a stop rule 

t-== s such that- u(y=(f),t) ~ V(f)-e. If u(f') < V(f'.) , then by (b), 

there is a sto.., rule t(f') such that 

(3.2) u(y(X)(f'),t(f')) :i!: V(f')-e 

If u(f') ~ V(f') , let t(f') = 0. Define L to be the composition of 

s with the family t; that is, 

(3.3) t(h) = s(h) + t(fs(h))(fs(h)+l'fs(h)+2' •• ) 

for all h • Then 

u(YCX)(f),t) = J u(v(X)(f ),t(f )) dY=(f) 
s s 

~ J V(fs) dy(X)(f)-e 

= V(f)-e • 

The first equality is an i_nstance of (2.3); the inequality is by definition 

of t; and the final equation holds for every stop rule s as can be se~P 

using (a) and an induction on the structure of 

Lemma 3. 3. Suppose y(X) is optimal. Then 

(c) Y(f) = 8(£) ~ u(f) = V(f) 

£ • O 
s 

Lennna 3.4. Let r' be a subhouse of r. Suppose that, for .every f at 

which u(f") < U(f) , r'(f) includes every v e r(f) except possibly 6(f) • 

Then U' = U. 
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Proof: Obv~ously, U' s U • The. revers.e .j.nequality wiil follow from 

(6, Theorem 2.12.1] once it is verified that u' is excessive for r. 
For the verification, fix f and ye r(f) • if u(f) < U(f) , then 

either Y = 6(f) or Ye r.'(f). The 9esired inequality, YU' s U'(f), 

is obvious in the first case· and a consequence of (6, Theorem 2.14.l]'in 

the second. If u(f) =:= U(f) , then 

yU' s yU s U(f) = u(f) s u'(f) , 

where the first inequality holds because· U' s U; the second· because of 

(6, Theorem 2.14.1]; the equality by hypothesis; and the final inequality 

by definition of U' • D 

Letmna 3.5. At any f at which u(f) < U(f) , there is a.Ye r(f) dis

tinct from 6(f) • 

4. Stop-or-Go Houses. Throughout this section, r is a leavable, stop-

or-go house which means that, for some gamble-value~ function a defined 

on F, r(f) is (a(f),5(£)} • A stationary plan y
00 is promising if, 

for all f , 

(a) V(f)V = V(f) , 

and 

(b) Y(f) = 6(£) = u{f) = V(f) 

Proposition 4.1. For a stationary plan to be everywhere optimal it is neces

sary and sufficient that it be promising. 

(For predecessors of, and for results closely related to, Proposition 

4.1, consult [5], [6], [8], and [16].) · 
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Proof: The necessity is evident even-without the help of Lemmas 3.2 arid 

3.3. suppose therefore that y00 is promising, in which event condition 

(a) of Lemma 3.2 certainly holds. To . . s~-~ tb.at .... coq.d~t_i_Qn,_(.b) also holds, 

let r'(f) be the one-gamble h~use {y(f)} • If u(f) < U(f) , then 

u( f) < V( f) , for U = V for· leavable r • For stich f ·, y·( f) :/; 8( f) 

because y00 if ?romising. Of course, y(f) :r 6(f) implies that Y(~) = 

a(f). In sun if u(f) <U(f), then r'(f) co~tains a(f) so ·that the 

hypothesis of Lennna 3.4 is satisfied. So J' = U. If u(f) < V(f) , as 

• f 

is now plain, u(f) < u' (f) ·, and there m·.H::. be, for each e > 0 , a policy 

n available in r' at f for which u(n) > TJ'(f)-e • Equivalently, if 

u(f) <. V(f) , sup u(y00(f),t) = U'(f) , where the sup is taken over all stop 

rules t. Since u' = U = V, condition (b) of Lemma 3.2 holds. That lem

ma now yields the conclusion that y
00 

is optimal ~or r. Ll 

The problem of showing that optimal stationary plans exist has been 
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reduced to showing that promising stationary plans exist. For showing that ~ 

the latter exist, this simple lenn:na. is useful. 

"-I 

Lemma 4.1. At any f at which u(f) < V(f) , a(f) is distinct from 0(£) 

and a(f)V = V(f) • At any f at which a(f)V < V(f) , 6(£) e r(f) and llmi 

u(f) = V(f) • 

Proof: Suppose u(f) < V(f) • Then Lemma 3.5 applies to show that a(i, 

is distinct from 6(£) ·• Moreover, since u(f) < V(f) , there must be for 

each e >0 an e-optimal strategy available at f whose initial gamble is 

a(f) • As Lemma 3.1 now implies, a(f)V = V(f) • 

Suppose a(f)V < V(f) • Then by Lemma 3.1, there is available at 

some Y other than a(f) which y can be nothing but a(£) • That 

V(f) is the main content of the first sentence of Lemma 4.1. O 

f 

u(f) = 

.. 
._ 

... 
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~ 
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Corollary 4.1. There exist everywhere:-optimal stationary p.lans. In fact; 

there exist r-selectors y . with this property: at each f _at which 

u(f) < V(f) 

Y(f) = 5(f) 

V(f) = a(f) and at each f at which a(f)V < V(f) , 

for each such Y, ya:, is everywhere optimal. Moreover, 

there are no other everywhere-optimal stationary plans. If Y(f) is a(f) 

or 6(f) according as u(f) < V(f) or not, then Ym is the optimal station

ary plan for which the time until stag~tion is a minimum for every history. 

Proof: That there exist r-selectors V with the stated property and that, 

for such Y, Vm is promising is innnediate from Lemma 4.1. That each such, 

ym is everywhere-optimal is implied by Proposition 4.1 as is the assertion 

that there are no other everywhere-optimal stationary plans •. The final as

sertion is now evident. 0 

5. There is a stationary family which yields at least (1-e) U • 
n 

Let 

rJ = u and, for k ~ 1 and f e F, let Uk(£) be the most a gambler 

with initial fortune f can attain if play is allowed to continue up to time 

k but not beyond. By (6, Theorem 2.15.2], for k ~ 0 and f e F, 

which obviously implies that, for O < ~ < 1 there exists a (r,$)~seguence,-

that is, Y1,Y2,•. • such that, for all k~ 1 and all f , 

.5.2) yk(f) Uk-1 ~~Uk(£) . 

For each (r,~ )-sequence, Yl'V2 , • • • , each n~ 1 and each f ' if k = 

k(f) = k(f,n) is a nonnegative integer at most n and satisfies 

.( 5. 3) 
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( 5. 4) 
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yk(f)(f) 
y(f) = 

6( £) 
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if k(f) ~ 1 , 

if k(f) = 0, 

• r 

then the r-selector y is called a (r;a,n)-selector. Here is a generali

zation of [15, ~heorem 1.2). 

Proposition 5. 1. For each e > 0 and 1. ~ 1 , there· is a r-selector Y 

such that 

, ,. C:) 
)•) u(y00

(f)) ~ (1-e) U (f) 
n 

for all .c ... . 

Indeed, for each ~,n and each (r,~,n)-selectc~ y , 

Proof: Fix ~ and n, let k = k(f) satisfy (5.3), define V as in (5.4), 

let W(f) be the right-hand side of (5.3), let a= 1/,.j, ana,for any f 

for which 

· .. 5. 7) 

k(f) ~ 1, calculate thus. 

k-1 
y(f)W ~ y(f){~ Uk-l} 

= ~k-lyk(f) uk-1 

k 
~ a~ Uk(f) 

= aW(f) • 

For any f at which k(f) = 0, Y(f)W = o(f)W = W(f) 

Fix f and let cr = y
00{f) . 'llle process W(f), W(f1), ••• is, by the 

previous paragraph, expectation increasing under cr and, hence, W(cr) ~ 

w~ 0 ,t) ~ W(cr,s) ~ W(f) for all stop rules s,t with t ~ s. Since 

W ~ ~nu , for (5.6), it suffices to show u(a) ~ W(cr) . This is obviously n 

I 

I.al 

-
I ' 
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true if u(f) =·w(f) 

y(f) ~ a(£) 

So assume u(f} < W(f) , or in particµlar, that 

Let h = (£1 ,£2 ,.~.) and let t0 (h) be the first k (if any) such 

that ~(fk) = W(fk) , where it is understood that t 0 (h) is. +0) if there 

is no such k 

For each stop rule ·t, write W( 0 ,t) = at+ bt where at= J W(ft)' ~a 

and bt = J W(ft)· da·. Th~n 

t<to 

t~t
0 

at= J W(ft
0

) do= f u(ft
0

) do= J u(ft) dos u(cr,t) • 

t~t
0 

t~t
0 

t~t0 

The first and third equalities hold because O stagnates at time t
0 

[6, 

Theorem 3.4.3], the second equality holds by the definition of t
0

, and the 

inequality holds because u ~ 0. 

( 5 .8) 

It now suffices to show bt~ 0 since, in that case, 

u(o) = lim sup u(o,t) ~ lim sup at 
t t 

= lim sup W(o,t) = W(o) • 
t 

To each stop rule t, associate another stop rule t given by 

Then 

( 5.9) 

{ 

t(h) 

;(h) = t(h)+l 
if t(h) ~ t

0
(h) , 

if t(h) < t
0

(h) • 

,. " 
W(a,t) = f W(o[pt],t[pt]) do= J W(ft) da + J y(ft)w da 

~ at+ f aW(ft) do 

t<to 

= at+ abt • 

t~t
0 t<to 



-12- . 
• 'r' 

The first equality is.an i~tance of (2.3) and the inequality is by (5.7). 

Now let e >0. and choose a stop rule s such that W(cr,s) >W(cr)-e • 

(The choice is possible because W(cr) s U(cr) s U(f) = V(f) < + oo. The 

first inequality holds because Us W, the second by L4, Corollary 3.3.4] 

and the standing hypothesis that v. is finite.) Then, for every stop rule 

t :2!:: s , 

~ 

(5.10) W(c,t) :2!:: W(a,s) >W(a)-e ~ W(cr ~)-e 

because the process (W(f )1 is expectatL.1 • increasing. By (5.9) and (5.10), n-

so 

at+ bt = W(a,t) ~ at+ abt-e , 

b - 0 • t D 

Here is an examp~e which shows that there my oe no stationary family 

which yields as much as U -e n even when n = 2. 

, ..i 
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Example 5.1. (A modification of an example of Blackwell ili f3]). Let F i., 

-n be the set of integers; let u(n) = 0 for n ~ 0 , u(n) = 2 -1 for n < O 

r(n) = [o(n)} for n s 0 r(n) = [o(n),~(5(n+1)+6(0)),o(-n)} for n >0. 

Then u
2

(n) = 2n-l/2 for n >0. But, if Y is a r-selector, then either 

y(n) = \(o(n+l)+a(o)) and u(v
00

(n)) = O for all n > 0 or ther~ is~ 

positive n with Y(n) = 6(n) or 6(-n) in which case u(y00(n)) s ~~-1 = 

u
2
(n)-l/2 

6. Analytically measurable gambling problems. Consonant with Blackwell, 

Freedman, and Orkin's paper [4], a gambling problem (r,u) is called 

analytic if r is analytic and u is semi-analytic. Analytic-problems 

include the measurable problems defined and studied by Strauch [14], and, 

1-.J 

--
'-' 

Ii. 
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_, 
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~ 
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a fortiori,. the continuous. gambling problems studied in (6). 

This section shows that·, for leavable, analytic problems, measurable 

stationary plans are adequate. 

Recall that a separable metric space X is analytic if there fs a con

tinuous function from the set of irrationals in the unit interval onto X 

(Kuratowski [11]). Let B(X) and G(X) denote the sigma-field of Borel 

sµbsets of X and the sigma-field generated by the analytic subsets of X 

respectively. An extended real-valued function g defined.on X is called 

semi-analytic if· it is nonnegative and, for all real numbers a , the set 

of x for which g(x) >a is analytic. For a discussion of these concepts 

see !f, Section 39, XI] or [2]. 

Denote by P(X) the set of countably additive ·probability measures de-

fined on B(X) Equip p(x) with the weak-star topology. Then p(X) is 

again an analytic set (2, Lemma 25]. 

A gambling house r is analytic if F is analytic and the set 

{(f,v): v e r(f)} is an analytic subset of F x p(F) 

y is identified with its restriction to ij(F) .) 

(Here each gamble 

Lemma 6.1. (Lemma 1(3) of Meyer and Traki [9]). Let u be semi-analytic on 

F. Then the mapping v- yu from P(F) to the extended real numbers is 

semi-analytic. 

( 6.1) 

* Define the operator r by 

(r*u)(f) = sup (yu:y e r(f)} , f e F. 

If (r,u) is a leavable gambling problem, then, as was noted in [6, Theorem 

2.15.2], for all n ~ 0 , * r u = u where n n+l is u • 

Throughout the remainder of this paper assume that (r,u) is a leavable, 
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analytic gambling problem. -The assumption usually in force that V is 

everywhere finite is needed in this section only for Proposition 6.1. 

Lemma 6. 2. --·- * r u and, consequently, each u n 
is semi-analytic. Further-

more U 't- U as n t co , so U , too, is semi-analytic~ 
n 

; V 

* Proof: For an,? real number a, the set of f such that (r u)(f) > a is 

the projectic, on F of f(f,y):_ yu > a, Y e r(.f)} which set is analytic ..i 

by Lemma 6.: and the hypothesis that r ., an analytic house. Hence, its 

projection is also analytic. * r u = ul is semi-analytic. Consequentl~. 

Use induction and the commen't following \6.1) to see that each u 
n 

is 

semi-analytic. By (6, Theorem 2.15.5g], u 1 u • n 
So U too is semi-ana-

lytic. :J 

The construction of measurable strategies requires the measurable choice 

of gambles for which purpose the following selection lemma is useful. 

Lemma 6.3. Let n be the projection of the product Xx Y l,~ the two ana-

\ / 

lytic sets X and Y onto X ; ••• :::::i A _
1 

:::, A
0 

:::::i A
1
••• be a doubly infinite \al 

sequence of analytic subsets of Xx Y; Bi= n(Ai) for all i ; and let 

B = nB. Then, for 
1 0) 

mapping, s 

conditions: 

(i) 

( ii) 

' 
of the 

X & B. -
l. 

x e B 
0) 

each integer k 
' 

there is an analytically measurable 

union of the B. into y which satisfies these t\ o 
1 

B. 1 implies (x,s{x)) e A. for all i , 
1.+ l. 

implies ( X, S ( X) ) € ·~ • 

( That s is analytically measurable means s-1(D) e a(x) for each De B(Y).) 

. -
I 

... 
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Proof: According to a selectio·n ·theorem of Mackey and _von Neumann (2, 

Proposition 15], for each i including i = oo, there exiscs an a(X)-

measurable mapping 

an element of -B. 
1. 

let s(x) = s (x) 
00 

s.:B.~Y 
1. 1. 

such_th~t, for all x e Bl.. , (x,s.-(x)) is 

or accord~ng as i 

. 1. 

is finite or not. If X e B 
co 

If x e UB.- B , let · s(x) = s.(x) where i is 
1. 00 1. 

the unique integer such that x e B1 and x e Bi+l. · That s satisfies 

(i) and (ii) is easily verified. D 

The.above lennna and its proof were abstracted out of Blackwell, 

Freedman,. and Orkin [2]. 

,. 

A selector v for r is Borel (analytic) if it is a Borel measurable 

( analytically-ineasurab le) funct_ion from F to p( F) • In each case, f>( F) 

is equipped with the sigma-field of its Borel subsets. It can happen that 

there is no Borel selector for a nonleavable, Borel measurable house [14]. 

There are, however, analytic selectors for such houses. Indeed, they ex

ist for all analytic houses, including those which are not leavable, as is 

innnediate from the Mackey-von Neumann selection theorem, which is the 

important special case of Lemma 6.3 in which the A. 
1. 

do not vary with i • 

Lemma 6.4. For each e >0; there is an analytic r-selector y such that 

< co ' 
(6.2) 

=· 00 • 

(The assumption, otherwise in force, that r is leavable, is not needed for 

this lemma.) 

Proof: Choose 6 and k so that 

( 6. 3) 
-1 

(1+8) > 1-e , and 
k 1 

(1+6) > -e 
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For each n , let A . be the set- of all ( f ,y) ·such that y is available 
n 

at f and yu exceeds 
n 

( 1+6) • By Lemma 6.1, each A is analytic. 
n 

Hence, with X and y replaced by F and P(F) , the hypothesis of Lemma 

6. 3 is satisfied. Let s be the ·map which Lemma q. 3 de.livers and let· Y 

be s on the domain of s which is the set or UB .:i,n the· 
n 

notation of Leu-una 6.3. That (6.2) holds for f in this set is easily veri

fied because c e Bn if and only if u1(:e; is +co. Define Y on the 

set [u1 = J] to agree with any analytic -selector. D 

Of course, if u
1 

.is everywhere fini:~, then the statement of Lennna 

I ' 

'-I 

6.4 and its proof becomes slightly simpler. F · predecessors of Lemma 6.4, --' 

see [4, No. 43] and (6, _Section 16]. 

Corollary 6. 1. For each e > 0 and each Q' e p( ·) there is a Borel r-selector · 

y such that (6.2) holds except for a set of f's having Q'-probability zero. 

Proof: By Lemma 6.4, there is an analytic selector Y' wh~L, makes (6.2) 

true when y is replaced by Y' • Choose a Borel Markov kernel ~ such 

that the set of f for which Y(f) is different from ~(f) , call it A
0

, 

has Q'-probability zero. Then choose a Borel subset A of F such that 

A0 c A and O'(A) = 0. Define Y(f) = ~(f) if f ¥ A and Y(f) ~ 5(f) 

if f e A • 0 

00 
A stationary family y is called Borel ( analytic) if the selector Y 

is Borel (analytic). 

Proposition 6.1. For each positive integer n and e > 0, there is an 

analytic r-selector y such that 

(6.4) u(y00(f)) ~ (1-e) U (f) 
n 

for all f e F • 

.. 

I I 
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Proof: Choose J, such . that ._ 0 < ~ < 1 and 
n . 

~ >.l-e_ • By t.emma-6.4, 

there is, for k ·- 1,2, ••• , an anaiytic r-select~r · vk such that. 

Proposition 5.1. now applies." D 

Since U - U ,. it follows from Proposition 6.1 that .analytic, stationn 

ary plans are 'adequate. In fact_, Borel stationary ~lans are adequate as 

The9rem 7.1 below implies. No assertion about ·the measurability of the 
. . 

left-hand side.of (6.4) is made here. Indeed, we do·not know whether 

u(y0
\ •.)) is analytically measurable even if Y is Borel measurable, un

less u is bounded [17, Theorem 2]. 

7. Borel stationary plans are almost uniformly adequate. There is a notion 

of the adequacy of a set p of plans which is intermediate in strength be

tween ordinary adequacy and unifo~m adequacy. Namely, a set p of plans 

available in r is almost uniformly adequate if, for each e > 0 and 

each measure a countably additive on the Borel subsets of F, there is a 

cr e p such that the set of F for which (1.1) fails to hold has measure 

zero under a. 

Proposition 7.1. Borel stationary plans are almost uniformly adequate for 

r . 

This proposition has predecessors in [1], [2], [13], and [15]. Because 

the present proposition treats unbounded, albeit nonnegative, utilities 

and because it covers analytic problems rather-than Borel problems only, 

the proof given here differs from that.of its predecessors. But the reader 

will easily discern the underlying similarity of the arguments and, in 
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particular, our debt to Ornstein fl3], who was the ~irst to ·s~ttle the. 

problem of stationarity for a. large class of countably additive houses 

r based on a denumerable fortune space F. The result which corresponds 

to Proposition 7.1 in the case of positive dynamic programming was stated 

by Frid [ 10, The,.,rem 1], but his proof has an error. ( The sets G and 

defined in ... emma 3 of [ 10 ] need not be Bore 1.) H 

A .leaval ·e house r' defined on the analytic set F is (Borel) 

countably parametrized if it is the. unio1, -,f ( the graphs of) a countable 

number of Borel measurable Markov kernel.;;. A house r' is a subhouse of 

r, written r' £ r' if, tor each f ·r'tf) .-: r(f) A house r' is a 

union of houses r 
n 

if, for each f r'(f) is the set-theoretic union 

of r (f) . n 

For each ct e P(F) and each Borel Markov kt-.rnel y , let ctY be 

that element of p(F). defined by 

(7.1) ( Q'Y )( A ) = f y ( f ) ( A ) dQ' ( f ) 

for A e B(F) . The trivial fact that a subset A of F which has proba

bility one under the completion of ctY also has probability one under the 

completion of Y(f) for a-almost all f will be used twice ir. the ~roof 

of Lemma 7 .1. 

Leanna 7 .1. For each ct e P(F) , there is a countably parametrized sub-

house r' of r and a Borel measurable, nonnegative function u' on 

F such tl"B t 

(i) u' s u everywhere, and 

( ii) u' ~ u a-almost everywhere , 

where u' is the optimal return function for (r',u') . 

I I 

] I 
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Proof: First the lemma obtained by replacing (ii) with the weaker condi~· 

tion 

(7.2) U' ~ (1-e)· U · a - a.s. 
n 

will be proved. Here e > 0 and n is a po.sitive integer •. To· this end, 

choose A· 
. n 

in (0,1) such that A > (1-s) . By (5.1) and Corollary 6.1, 

there is a Borel r-selector v1 such that 

(7.3) v1(£) U l ~AU (f) 
n- n 

a ·- a. s. 

Use the notation of (7.1), set a 1 = cw1 , and again call on Corollary 6.1 

to obtain another Borel r-selector v2 with 

V2(£) un-2 ~ A un-l(f) a 1 - a.s. 

Continue thus to define inductively Borel r-selectors v1 , .•• ,yn and 

measures Q'o = a ' Q'l' ••• ,an- ,1 so that, for ls;ks;n, Q'k = Q'k-lyk 

and 

(7. 4) vk(f) un-k ~ A un-k+l(f) ak-1 a.s. 

Let r'(f) = (v1(£), .•. ,yn(f), 6(£)} Since u is measurable with respect 

to the complet-ion of a , there is a Borel u' ::ii? 0 which satisfies (i) 
n 

and which agrees with u 

an-1 a.s. and,hence, 

(7. 5) V (f)u' ~ Y (f)u 
n n 

on a set of a -probability one. 
n 

an-1- a.s. 

So V (f)[u'=u] = 1 
n . 

Let U~ be the optimal j-day return for the problem (r',u') • 
J 

As will now be shown, for 1 ~ j s; n, 
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To verify (7.6) for j=l, calculate thus. 

Ui(f) ~ Yn(f)u' 

~ y (f)u n °' 1 a.s. n-

~). u1(f) a 1 a.s. n-

{. r 

The first inf.quality is by definition of 

third is the instance of (7.4) in which 

u' 1 
the second is (7.5), and the 

= n. Suppose (7.6) holds for 

j = n-1 • That is, the set of f 1 such Lat 

u~_l(fl) ~ An-lun-1(£1) 

has (ay1)-probability one. so, for a-almost al' f, the same set has 

v
1
(£)-probability one. Now calculate: 

U~(f) ~ J U~_1(£1) Y1(df1ff) 

n-1 I ~ J ~ un_ 1(£1) v1(df1 f) a -a.s. 

~ A~ (f) °' - a.s. n 

The first inequality is by (5.1) and the third is by (7.3). The proof of 

(7.2) is complete. 

Thus, for n = 1,2, ••• , there is a countably parametrized house 

rn ~ r and a nonnegative Borel· utility function t• ~ u 
n such that, if 

R is the return function for r , then R ~ ( 1--1/n) U a-almost surely. 
n n n n 

Let r' be the union of the r ' let u' = sup u • 
n n 

and, since U = sup U , (ii) is easily verified. n D 

Obviously, (i) holds 

.... 
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Lennna 7.2. Suppose r is countably parametrized, u is nonn~gative 

Borel, and e is a positive number. Then 

(7.7) 

(7.8) 

(a) the functions Ul' u
2
,... and U are Borel; 

(b) for each positive integer n, there is a Borel f'-:sele~tor 

y such that 

u(yO?(f)) ~ (l-i/2). U (f) for all, f , . n 

u(y=(f) is a Borelmeasurable function of f and, for· each 

a e p(F) and all n sufficiently large, 

u(y=(f)) ~ (1-e) U(f) with a-probability at least 1-e • 

Proof: For a proof of (a), use Formula 5.1 and Lemma 6.2 or (15, Theorem 4.1]. 

For (b), choose ~ in (0,1) such that 
n 

~ > 1-e/2 • Let Yi,v;, ... 
be the Borel Markov kernels ~·omprising r . For each k and . f , let 

yk(f) be the first element of the sequence v1(f),y~(f), ••• satisfying 

(5.2). Then v1,v2 , ••• are Borel measurable and constitute a (r,a) 

sequence as defined in Section 5. That the corresponding r-selector. Y 

satisfies (7.7) is evident in view of. Proposition 5.1. 

(7 .8) holds for all suffici~·ntly large n • 

Since U 1' U (Lemma 6. 2), n 

The proof would be complete if u(y=(f) ).. could be shown to be a Borel 

measurable function of f. Whether it is or not, we do not know and, for 

present purposes, need not know, for as will now be shown, there is a Borel 

r-selector A such that u(A=(f)) ~ u(y=(f)) £.or all f and f- u(Acx,(f)) 

is Borel. Consider the Borel gambling problem (r',u) wher·e r'(f) = 

(8(£),Y(f)} · for all f • By. ·(a), U' is Borel measurable. So, if >i. = 

y or 6 according as u < U' or u = U' , then A too is Borel measurable. 
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Of course, U'(f) ~·u(v00(f)) and by Corollary 4~1," ·u(A0°(f))" is U'(f) 

for all f. so u(A00(f)) is Borel measurable and is no less than-

{ , 

Incomplete stop rules, as defined in [6], are here called stopping 

times. A stop rJle is simply a stoppin-~ time which has onl_y finite values. 

As in l6], thf partial history 

. . . ) is deno_ed by p "(h) • 
n 

T if and, for·every 

(fl.' .•. , f ) 
11 

Strategies 

h ·and 

cr and 
., 

cr 

0 : n < -r(h) 

If T'h) < + oo, abbreviate pT(h){h)_ to p (h) .• 

agree prior to a time 

The next two lemmas are proved in [9 ], a. · do not require the measura-

bility and leavability assumptions of Theorem 7 l. 

Lemma 7.3. If cr is available in r, cr and ' .,. agree prior to time 

T , e ~ 0 , and u(cr'[p (h) ]) ~ (1-e) V(f (h)) whenever -r(h) < + oo, 
T T 

then u(cr') ~ (1-e) u(cr) • 

Proof: This lemma is one of the implications proved in [9, Lemma 3]. C 

Given cr and e > 0 , introduce T = r( 0 ,e) as the first time (if 

any) when a is not conditionally e-opt_imal; that is, 

(7.9) T(h) = r(cr,e)(h) 

= inf fn:u(cr[pn(h)]) < (1-e) V(fn)} 

The infimum of an empty set of n's is, by convention, + oo. 

The next lemma states that a strategy which agrees with a very good 

strategy until that strategy is conditionally less than good is itself a 

good strategy. 

: I 
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Lemma 7. 4. Let er be a strategy availa~le at f and let .. e > 0 . If 

O' I is any strategy-which agrees with cr prior to time ,. = r(cr,e) 

u(cr') 
-1 

if u(cr) ~ (1-e2 /2)V(f) then ~ u(cr)-e [V(f)-u(cr)] Therefore, , 

then u(o') ~ (1-e)V(f) . 

Proof: This lemma is part of l 9, Lemma 4]. D 

For the rest of this section, assume that r is countably· parametrized 

and that u is Borel. 

To each stop-or-go subhouse ~ of r , associate the house re)~ 

which is defined by 

{ 

L)f) , if L{f) 

( r c;, ~) ( f) = r( f) , otherwise. 

contains two elements, 

The leavable, stop-or-go house ~ such that Li(£) = [A(f),o(f)} for 

all f is Borel if the mapping A is Borel measurable. Such a house ~ 

is plainly countably parametrized, and, because r is countably parametrized, 

r,•:E is also. So, by Lemma 7.2, the optimal return functions W and R 

for ~ and ro :E , respectively, are Borel measurable. 

Lennna 7. 5. Suppose 6 is a leavable, Borel stop-or-go subhouse of r , 

et e P(F) , and e > 0. Then there is a leavable, Borel stop-or-go house 

~· such that '--' 

(i) ~~L'~r, 

( ii) O'[W' ~ (1-e)R] ~ 1-e 
' 

( iii) R' ~ (l~e)R. 
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-. 

(Here, R, R', and W' are the optimal return functions for 

ro~' , and r;• , respectively.) 

Proof: By Lemma 7.2, there is a Borel roDselector. Y such that 

(7.10) Q'(S);;::: 1-e, 

where S = (f. u(Ym(f)) ~ (l-e2 /2)R(f)}. Let T = ff:u(y
00

(f)) ~ (1-e)R(f)} , 

and let L. be the smallest leavable, . · op-or-go house which is at least 

as large as E and in which y( f) is a· : .. ilable at each f in T • That 

is, 

6 1 
( f) = 

f :: 'i.' . , (y(f),6(£)} , if 

Lt£) , if Df) contain., .. two elements, 

' (6(f)} , otherwise. 

Obviously, ~· satisfies (i). To check (ii), let A be the ~'-selector 

which equals y on T and is C 
6 on T • Then, for ea~h f e S , 

• a:,( f \ :\ \ , • h yo::,(£) agrees wit 

So, by Lemma 7 "4, 

prior to the time of the first e~it from T. 

for f e S. Condition (ii) now follows from (7.10). 

It remains to verify (iii). Since y is a ~'-selector, the ineqJality 

of (iii) certainly holds for f e T. For f + T, let CJ be any strategy 

available at f in f" :E and define CJ' to be that' strategy which agrees 

with CJ prior to the time T of first entrance into T and such that 

the conditional strategy CJ'[p (h)] is Vo::,(£ (h)) whenever ,-(h) <a:,. 
T T 

Then R'::f) ~ u(cr') ~ (1-s)u(cr) , where the first inequality holds because 

cr' is available in r' at f and the second is by Lemma 7.3. D 

' I 

'-' 

I ,r 

I 

' I 

I _, 
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Lemma 7 .,~.. Let ct e P(F) and e > O • There is a sequence .• Le) £ ~ ·£ _ ••• 

of leavable, Bore~ stop-or-go subhouses of r whose optimal return func

tions w
0

,w1 , •.• satisfy 

(7.11) a!Wn ~ (1-e)U] '} 1 • 

Proof: Let Lo be the trivial house iri which only 6(f) is available at 

f for every f • Then f'-' Le) =. r and Ra , the return function for 

ro Lt) ' is u . 

Suppose that ~ has been defined and that 
n O<e: <1. n Let R be 

n 

the return function for fv~. Then, by the previous lemma, there exists 

~n+l such that 

(7.12) ct[W l ~ (1-e )R] ~ 1-t n+ n n n 

and 

(7.13) R l ~ (1-e )R • n+ n n 

For n :i?! I , 

~ ~1 

... 

.. 
-
_, 

_, 

\al 

R ~ ( IT (1-e:i))l\), 
n i=l 

as follows from (7.13). Thus the event 

n 
[w +l ~ ( rr (1-e.))u] 

n . 1 l. 
1.= 

contains the event occurring in the left-hand side of (7.12) and, there-

fore, has a-probability at least 

e: are chosen so that n 

CX) 

rr (1-e ) > 1-e . D 
n=l n 

1-en· The proof is complete once the 
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To complete the p.roof of Proposition 7 .1,. let (6~} be the sequence 

of houses given by Lemma 7. 6 and E the union of the ~ • Then :E is 

a leavable, Borel, stop-or-go subhouse of r whose return function W is 

at least W for every n. By (7.11), W ~ (1-e)U a-almost surely. 
n 

suppose LJ(f) = p,(f),6(f)} for ev~ry f and y is that 6-selector which 

equals 6 on the set [u = W] and equals A on the complementary set. 

Then Y is Borel measurable and, by Corollary 4.1, u(yco(f)) = W(f) for 

all £ 4 The proof of Proposition 7.1 is now complete. 

b. Absolutely continuous houses. ·As defined in the introduction, an ana-

lytic house r is Borel absolutely continuous with respect to a e P(F) 

if, for every f e F and ye r(f) y ~ o(f) implies y is Borel ab-

solutely continuous with respect to a. 

Theorem 8.1. If r is leavable and Borel absolutely continuous with res-

pect to a e P(F) U is everywhere finite, and O < e < 1 , then there 

is an analytic r-selector y such that 

u(v=(f)) ~ (1-e) U(f) 

for all f e F • 

Proof: Choose so that O < e 1 < 1 and By Proposition 

7.1, there is a Borel selector v1 and a Borel subset s of [f:u(Y~(f)) ~ 

(l-e1) U(f)} for which v
0

(s) = 1 Since r is absolutely continuous 

with respect to a, S has probability one under every gamble available 

at a fortune f s S. Thus, for each f es f c S for all n with n 

Vi( £)·-probability one. So, for any selector y which agrees with y
1 

on 

S and for f e S , u(yco(f)) = u(Yi(f)) ~ (1-e·1) U(f) > (1-e) U(f) 

I I ... 

. al 

.... 
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There remains to define y C on S and, for this, _a lemma is help-

ful. 

Lemma S.l. There is an analytic r-selector v2 such that 

(i) Y
2

(f)U ~ (l-e 1) U(f) for all f, 

(ii) [y
2 

= 6] £ [u = U] : 

Proof: Consider the analytic gambling problem (r',u') where u' = U and 

and 

{ 

f(f) if u(f) = U(f) 
r'(f) = 

r(f)-[o(f)} if u(f) < U(f) . 

The desired selector y
2 

can be obtained by an application of Lemma 6.4 

once it is verified that u' 1 equals u . The inequality u' ~ u holds 
1 

because U is excessive for r [6, Theorem 2.14.1]. Because r is leav-

able, the reverse inequality U' ~ U holds on the set 
1 

[u = U] • Suppose 

now that u(f) < U(f) . Then there must be, for each positive e' , a 

strategy which is e'-optimal at f for the original problem (r,u) and 

whose initial gamble y is not o(f) . Then 

u1(f) ~YU~ U(f)-e' 

where the first inequality is by definition of Di and the second by Lemma 

3.1. C 

Returning to the proof of the theorem, set Y = y on 
2 

C S where v
2 

is the analytic·selector given by the lenma. If f e Sc and y(f) = 6(f) 

then u(Y0\f)) =U(f) =U(f) If f e Sc and y(f) ~ 6(f) , then y(f)(S) = 1 

and, therefore, 
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u ( y CX) ( f) ) = j' u ( Vex, (fl) ) dV ( f 11 f) 

= J u(y~(f1 )) dv(£11f) 

~ (1-e 1) ,_r U(f1 ) dY(f1 1£) 

= (1-e 1) V(f)U 

= (l-e 1) Y
2

(f)U 

~ (l-e1) 2 U(f). 

~ (1-e) U(f) • 

The proof is complete. 

If r is Borel countably parametrized and u is Borel measurable, 

then, as is not difficult to verify, the selector v
2 

of Lemma 8.1 and, 

hence, the selector y of Theorem 8.1, can be chosen to be Borel. 
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