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SUMMARY

A general framework based on the influence curve is developed for outlier
resistant design. Several criteria for outlier resistant design are discussed.
It is shown that one criterion results in a class of resistant designs which is
a proper subset of the set of classical admissible designs.

Some key words: Design Admissibility, Influence curve, Invariant design, Measures
of resistance, Optimal design, Outliers.




0. INTRODUCTION

Exéerimental design for regression problems has been a concern of scientists
since the development of least squares regression. Regression design problems
particularly for polynomial regression were discussed in papers by Laplace and
Gergonne in the éarly nineteenth century. Since this time a vast body of |
literature has accumulated which can aid in the choice of an adequate design.
However, most of the past work assumes that the experiment will produce "ideal"
data. Recently some attention has shifted towards the investigation of
characteristics of optimal designs in the presence of contaminated data.

This attention is probably due, in part, to a contemporary interest in robust
estimation and to the realization that rarely are data ideal.

The choice and justification of design selection criteria is dependent on
the estimation procedure and the overall goal of the experiment. For example,
when least squares estimation is used D-optimal desigﬁs produce confidence
ellipsoids with minimal volume. However, the study of robust or resistant design
requires a more formal (i.e. functional) connection between the design
and its effects on the estimation procedure than has previously been the case.

The influence curve has proven an effective tool in the study of robust
estimators. Generally, in this paper we employ the influence curve to study
how the design influences the effects of an outlier on the least squares estimator.
Section 1 is devoted to a brief review of optimal regression design. Invariance
is considered briefly since it is often regarded as a property of fundamental
importance and has special relevance to outlier resistance.

In section 2 we define outliers and discuss the sensitivity of least
squares to outlying observations. The influence function (first Von-Mises

derivative) for least squares is considered as a function of the design.



Our consideration of the influence function leads to several possible
measures of outlier resistance which are examined in Section 3. Design
admissibility with respect to optimality and outlier resistance is examined
in Sections 4 and 5. It is shown that generally the goals of optimal and
resistant design are in accord while there are situations in which the usual
optimal designs are not resistant. The proofs of all theorems and lemmas have

been relegated to an appendix.
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1. REGRESSION DESIGN

Let £ = (fl’fZ’ ...,fp) be a vector in RP defined by the set of linearly
independent functions fi which are assumed to be continuous on some compact
space X. An experiment consists of selecting any x€ X and observing a random
variable Y(x) with regression function E(Y|x) = £°0 and constant variance o2
The functions fi are assumed known while 87= (61,62, P Gp), an element of
rP and 02 are unknown. Further, assume that for two experiments Xy and xj (i + j)
that Y(xi) and Y(xj) are uncorrelated.

An experimental design is defined by any probability measure on X.

A design problem is specified by a pair (f,X). Exact designs for experiments

of size N concentrate mass EN(xi) at points Xy i=1, 2 ...r, subject to the
restriction that NEN(xi) =n, be integral for all i. An exact design specifies
that the experimenter is to take N uncorrelated observations, n, at each

x The selection of an exact design is usually a difficult combinatoric

i.
problem often solvable only by an exhaustive search of a large subset of all

possible exact designs. Approximate designs are not constrained by the
requirement that NE(xi) be integral for all i. The set of all designs on Y,

Ex’is the space of all probability measures on the design space X. The support

of a design,g, will be denoted by S(§). In this paper we restrict our results to

approximate désigns. Results for exact designs will be considered in a future

paper.

The least squares estimator of 6, 6, is the principal estimator considered.

~

It is well-known that 6 is the minimum variance unbiased linear estimator of 6.
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The covariance matrix of 8 is of the form
cov(®) = (o%/m) ¥t (E)

where M(£) is of the information matrix of the design £;
M(E) = {f(X)f'(X) dg(x).

M defines a map from‘Ex to a space information matrices, M(f,x), where
M(£,X) = {M|M = M(§) for some gesx}.

Since each M(£) in M(f,X) depends only on.a finite set of moments of §

this map is not in general one to one.

Many criteria have been proposed for optimizing the selection of a design
for the design problem (f,x). Generally the criteria specify the selection of
a design which minimizes some functional of the information matrix, M().
Justification of such criteria is often based on the properties of the resulting
least squares estimator 8. Kiefer (1975) introduced a large class of such

measures defined by the functional Qq;

[er (0919 o< q <o

o (E) =
q _ 1/
8 (E) = lim & (&) = {det M (&)} /P

° qto 1
2,(€) = Lin (&) = max X" (D)

o + i i

where Ai(E) is the i-th eigenvalue of M(£). It is well-known [Keifer (1959),
Fedorov (1972)] that these criteria are relevant to estimation and hypothesis
testing. Two classical criteria are D-optimality (q=0) and A-optimality
(trace-optimality, q=1).
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Design criteria based on prediction variances have also been widely used.

The predicted value at a point X is

§(x°) = f'(xo)g and

Var (1(x)) = (/M) £ 0 (B)ECx, ).
For notational convenience let

d(x, ) = £7Gx M (E)ECx )

and refer to d(xo,i) as the variance function for £ at X

A minimax design is a design which minimizes the maximum of the variance function

Over X . . -

B Y

Invariance will be an important concern in our development of criteria
for outlier resistant desién. In the remainder of this section we consider
some invariance characteristics of the @q criteria. Let G be a group of
transformations on X such that, for each g € G, there is a corresponding linear

transformation E'on RP which can be represented as a pxp nonsingular matrix such
that for all x and 0,

£7(x) 6 = £7(gx) g0 = £ (x) g -1§e.

Thus, the elements of G define the mappings
(£, & (£,8%
and
~1 g - -1, . - =l =
Ex), M 7(8)) = ((g )7f(x), g M "(E)g").

This group includes, among others, scale and location transformations.
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Note that the D-optimal design is invariant under G and thus D-optimal for all

g €G. However, in general for the Qq—Optimal design for (f,x), say E . there may -
exist g€ G such that g& is not o -Optimal for (f£,gX). In particular let G be the
group acting on X such ghat G is the group of all pxp non—singular matrices then
for q+0 there exists g such that ggq is not @q optimal. Lemma 1.1 gives necessary

and sufficient conditions for a design measure to be invariant under such a group.

Lemma 1.1. If G is the group of all pxp non-singular matrices then a maximal

invariant with respect to G acting on (£(x), M (E)) is

. - _1 .
d(x,8) = £7(0M (E) £(x). ‘
The principal consequence of Lemma 1.1 is that if £ is Y-optimal then £ is

invariant under G* if and only if there exists a function H such that

¥Y(£) = H(d(*,E)).

That is, ¥ is.a function only of the variance function d(x,£). Consequently a
minimax design is also an invariant design under G*. The Equivalence Theorem
proved by Kiefer and Wolfowitz (1960) established the implied duality between
D-optimal and minimax designs; a design is D-optimal if and only if it is a
minimax design. Other groups G may yield a larger class of invariant designs and

thus additional equivalences.

2. OUTLIERS AND INFLUENCE.

An essential first step in any development of robust theory is to describe
the deviations from assumptions we wish to guard against. Much of the original
work in robustness has been concerned with symmetric heavy tailed alternatives
to the normal distribution. For our purposes, a somewhat simpler approach to
outliers will suffice. Suppose that y(x), an observation on some model
£°(x)0, has an "aberration" c¢ added to it so we observed (y(x) +c), an outlier.
It is assumed that the occurrence and magnitude of an outlier at a design point
x are independent of x. Clearly c cannot be directly measured since y(x) is a
realization of a random variable Y(x). Thus we must be concerned with "wild"
observations; that is, those observations which markedly deviate from their

expected values.



In vhat follows, we employ the influence curve to measure the effects
of an abberation on the least squares estimator and to aid in understanding
how the design of an experiment may be used to lessen its effects. As
background, we first briefly review the influence curve.
Hampel (1974) discusses the use of the influence curve in the study of
robust estimators. (See also Andrews, et.at (1972)). Let R be the real line,
T be a real-valued functional defined on some subset of the set of all probébility

measures on R, and let F denote a probability measure on R for which T is defined.

Then the influence curve, ICT F(°), of the functional ("estimator") T at F
b
(the underlying probability distribution on R) is defined pointwise as

IC, 1',(y) = 1im {T((1-€)F + €8(y)) - T(F)}/e
’ €40

if this limit is defined for every y in R. 6(y) is the probability measure with
mass 1 at y.

The influence curve IC, . (y) measures the influence an observation of

T,F
magnitude y has on the estimator T. For example, a simple least squares estimator
is the arithmetic mean which may be defined by the functional T(F) = fRy dF(y)

for all probability measures F wifh first moments. If the mean of F is yu then

the influence curve of T is

1im {(1-€)u + ey - ul/e
V0

ICT’F(y)
=y-H
Thus the mean T has a linear influence curve; each observation y influences T
by ¥y - 4, an influence linear in the "error" in y. Clearly the influence function
for the mean is unbounded and thus the potential influence of an observa;ion is
similarily unbounded. Robust estimators of location such as Windsorized or trimmed

means alter the influence curve by truncation and, thus, bound the gross error

sensitivity (see Hampel, 1974).



Least squares estimation for a linear model f'(x)0 results in a vector
valued estimator necessitating the extension of the influence curve to vector-valued
functionals: Let T be a vector-valued mapping (estimator) from a subset of
probability measures on, say, R” into RP. Further let F be a probability
measure in the domain of T and y be a point in R". Then the vector-valued
influence function for T at F is defined pointwise as above.  For least squares
Hinkley (1977) states the following lemma without proof:

Lemma 2.1. Let F be the conditional distribution of Y(x) such that

EF(le) = £7(x)0.
Further let H be the joint distribution function of the design point x and

the response variable Y, H = &xF, such that

£(x) .- M(H) Y ME) y(H)
Wt €6 N = yem | T Y(H)  T(H)

y
(Note that x may have design or probability measure. For the purposes of this
paper x has design measure, £.)
Define the least squares functional 6 by

o) = M H(E)y(H).

Then the influence function of 0 at (x,y) for x €S(E) is
I (e,x30) = e (D)£(x)

where e = y - £°(x)0. (By assumption e is independent of x and 6)

Clearly the influence function for least squares is linear in e, the erroxr
in y(x) at x, for each estimator 8j,j =1, ,...p. However, the influence function
is a function of both x, the design point at which the observation is taken, and

~

the design . Therefore,6the influence that an error of magnitude e has on ej

depends on both the design point x where e occurs and the design points specified by £.
However, the influence of an error of magnitude e at x does not depend on the errors

at the other design points. It follows that the influence function is a measure of
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sensitivity not constrained to the single outlier case. Note the implicit assumption
that the design point x is determined without error.  The following example illustrates

the role of the influence curve in experimental design.

Example. For linear regression with
f"(x) = (1,x), X = [-1’1],
and

E(Y[x) = 6 + 8;x
consider the designs Ea o of the form
3’
£ (D=t =2, (a)=-f (a)=af2
a,o a,0o 2 ? Pa,a a,o

where 0 <0 <1 and 0 < a.< 1.
For such designs,

-1 1 0
MCEe) "lo o) + a2a]™}

and
1
1 (e,x30) = e -
£a,a x[(1-a) + aza] 1 .
Clearly for all (a,a) and xe;s(ga’a) the influence function for 6  is unchanged.

In fact Ig(e,x;eo) has the same influence function as the sample mean for all §

symetric on [-1,1]. Consider now the influence function for Bl on the support
of the design Ea,a . For x=a, 1

I, (e,x:8.) = ex((1-a) + aza)-4'=—I (e,—x3;0.).

Easa S ! E..a,oc 1

Thus if a = krl then an error of magnitude e at the point x = +1, -1 will be k
times as influential as the same error at x = +a,-a. Moreover as a*0 the influence

at x = a goes to 0; that is, observations at x = 0 have no influence on the

D>

on
1
A

least squares estimator 61.
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Clearly some designs are preferrable to.others in terms of influence.
Selecting a design that is outlier resistant requires that the design selected
be relatively insensitive to outlying observations. Some measures that may be

"t

optimized (minimized) over (a,d) are

o) e Ty, (o0
(i1) Iga’a(e.1;91)-I£a’a(e,a;91),
and
(111) xEXS(ga,a) '{Iga’a(e,x;el)}zga,a(x).

Clearly the D,A-optimal design (a=1) minimizes each of these measures. This
concludes the example.

Recall that the influence function Ig(e,x;e) is unbounded and linear in
e for all designs &.. Consequently the design determines the slope of each of the

influence curves Ig(ezx;ej),j =1,2,...,p, as a function of x. Measures of -.

influence may, thus, be based on these slopes which will be represented by

I (x38) = M (D)EGR)  (pxD).
This is the only part of the influence function that can be controlled by the
design. To distinguish between Ig(x;e) and IE(e,x;e) we shall refer to the -

former as the design influence function (DIF). The following lemmas give some

relevant properties of the DIF.
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Lemma 2.2. The DIF for the least squares predictor g(x) = £'(x) 3 is

Ig(x,f'1X)9) = d(x,§)

It follows from lemmas 1.1 and 2.2 that only measures of the form

H(ed(x,8)) = H(I(e,x;£7(x)0))
ére invariant measures under G*. A consequence of invariance is the restriction
of outlier resistance measures to those which depend only on the DIF for the
specific linear combinations £”(x)6, (x€S(£)).

Recall that the occurrance and magnitude of an outlier are assumed to be
independent of the design; Given the presence of an outlier the probability
that it occurs at x €S(£) .is proportional to E(x). Letting 1£(e) denote the
average design influence of a single randomly occurring outlier we have

I.(0) = JI_(x;0)dE(x).
€ X €
The following lemma gives the form of Ig(e) when the model contains a constant

term:

Lemma 2.3. If for some j,fj (x) = 1 for all x€ X then for all Eesx for which
M(§) is positive definite

15(61) = (Sij'

Where
Ig(e)f= (Ig(el)’lg(ez)’°"’Ig(ep))

and § 1 is the Kronecker delta-

14if i = j

61.
3 o if i ¢ j.
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This result implies that if the same design is used repeatedly then on the
average the effects of the outlying observations will cancel. Of course, this
is of little consequence for a single replicate of the design. This result is
not directly extendable to general models without overall means. The next
lemma gives the '"covariance" matrix for Ig(x;e).

Lemna 2.4. J(T;(x39)) (T (x58)) “4EG) = M (E).
X .
In view of Lemma 2.3, the diagonal'elements of M—l(g) measure both the variance

and magnitude of the influence of a randomly occurring outlier on the

A
elements of ‘0.

3. MEASURES OF RESISTANCE.

In this section we consider measures of outlier resistance as derived

from the influence curve.

3.1 BOX-DRAPER AND HUBER CRITERIA.

Past formulations of outlier resistant measures have resulted directly

A

from the use of the residuals , y(x) - y(x), to detect outlying observations.
These residuals are invariant under G* and thus measures of their resistance

to outlying observations are invariant.

Box and Draper (1975) consider one such invariant measure which they

A

describe as a measure of the discrepancy in y(x) caused by an outlying observation.

The measure they consider is equivalentAto

r =/ {de,0) e
X

the squared variance function averaged with respect to the design measure.

{
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Their justification of this measure is based on exact design considerations
and will not be reproduced here. By Lemma 2.2, r is proportional to the
: avéraged squared influence of f’(x)a. Of course, Box and Draper's goal is to
minimize r by an appropriate design selection.

Huber (1975) mentions an invariant measure of outlier resistance which
is also based on §(x). Huber suggests the measure

r=sup d(x,E),
x €S(§)

the maximum of the variance function over the support of E£.

Again, by Lemma 2.2, r is the maximum design influence for £”(x)6.

Lemma 3.1. If £* is a D-optimal design for (f,x) then

1) ipg r =/ {d@x,E%)}? aEx(x) = p2
EGEX X
and
2) 4nf T = sup d(x,E%) = p,

E€ EX x €S (&%)

Consequently both measures r and Y are minimized by a D-optimal design.

In fact, if a measure of resistance is invariant and defined by its properties

on the support of £ then such measures would be expected to be optimized ﬂy
the D-optimal design.

The measures r and r of £ are, as noted above, measures of the.influence of
f'(x)g only for those x values in the support of £. The principal criticism
of r and r is that they concentrate on the influence of §(x) while potentially
ignoring elements of 8. A design .£ with fi(x) small for all x in S(%) may

result in I (e,x;ei) large in absolute value with negligible effect or r or r.

g
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It is important to note that a fundamental difference between
optimal design and outlier resistant design is that in the former a measure
is evaluated over X whereas in the latter a measure is evaluated only over
S(£). This difference is a consequence of the assumption that the design
points x are determined without error and thus observations are only taken

at the points in S(§).

3.2 ALTERNATIVE CRITERIA

A large set of resistance measures similar to the Box-Draper and Huber
criteria can be generated by the inmer products

R(E,C,x) = (Ig(x;e))'C(IE(x;G))
» "1 "1
= £7(x)M “(E)CM “(E)f(x)
for C non-negative definite. Specifically, consider the measures

R(E,C) = J R(E,C,x)dE(x)
X

tr M1 &)c

and

(]

sup R(§,C,x).
x€ S(&)

The selection of C depends on the importance of the resistance properties of

R(E,C)

~

individual estimators Gj,j =1,...,p. The following lemma shows the existence

of optimal designs for these measures.
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Lemma 3.2.v Let g be an elemeﬁt of G* such that g' = B where B is any pxp

non-singular matrix such that B'B = C. 1If g~1§c is A- optimal for the problem

(£,8X) then

1) inf R(E,C) = R(§_,C)
E€ = ¢
X
and
2) inf R(£,C) = R(E ,C).
€= ¢

X

‘Consequently, if either measure of influence, R(§,C) or R(£,C), is consistent

with the resistance objectives for the problem (f,x), Lemma 3.2, shows that a
solution exists. Moreover Lemma 3.2 gives a specific solution which is not

difficult to find.(c.f.'Fedorov (1972) page 137.)

Alternatively, one might consider design criteria which are scalar-valued

functions of

i Ig(x;e) I'g(x;e) dg(x)

However, by lemma 2.4, we are lead back to considering functions of the
information matrix. Consequently, designs which are optimal with respect a
measure based on the information matrix may also be regarded as outlier
resistant with respect to that measure. Of course, it 1svof little help to
be able to say that any ¢q-optima1 design is outlier resistant in some sense.
The previous discussion illustrates the ways in which resistant design
criteria might be constructed from the DIF. Apart from r and ;, these criteria
are rather arbitary and, without further refinement, are of limited practical
use. The Box-Draper and Huber criteria may prove useful for experiments in

which prediction is of primary goal. However, they seem less desirable for the
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purpose of estimation. (Recall that the principal criticism of these

A

measures is that the potentially ignore esitmates, 6,, that may be very

i
sensitive to outliers.) In the next section we discuss a useful broad
criterion that may be used to check the robustness characteristics of a design,

particularly when estimation is the goal of the experiment.

4, ADMISSIBILITY.

The choice of a single criterion (measure) for design selection, whether
~ optimal or outlier resistant, results in an unknown degree of specificity.
Kiefer (1975) and others have noted that a Y-optimal design may be very

inefficient with respect to another measure, say ¥°, even when ¥ and ¥~ are

apparently consistent in formulation. This concern with specificity is directly

applicable to outlier resistant design. An alternative to the selection of a
single design is to partitiog the design space Ex using broad principles of
design goodness. The resulting admissible design space may be regarded as a
space of designs which are efficient in a wide sense.

The classical definition of design admissibility (Elfving, 1958) follows

from the fact that most optimality criteria are nonincreasing on M(f,X).

Definition 4.1. ‘A design & is admissible for (f,x) if and only if there does

n

not exist £*¢c = such that

M(E*) > M(E).

(A>Bif A-B is non-negative definite and A - B + 0.) Note that if
M(E) > 0 then M(E*) > M(E) if and only if M 1(&) > M l(£wy.
Thus, if a design £ is inadmissible and M(£) > O there exists a contrast

vector ¢ and an admissible design £%* such that;
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e Ere > e Enye

and
ii)for all possible contrasts ¢

el > etz
Note also that the set of Qq, 0 < q < », optimal designs are all admissible.

The concept of admissibility partitions both the design space Ex and
M(£,X). Let M*(f,x) denote the subspace of M(f,X) corresponding to the space of
admissible designs. Specifically, M*(f,x) = {M(E)|M(£)e M(f,X) and |
£ ié admissible}. M*(f,X) is a space of non-negative definite matrices (not
necessarily positive definite) with the properties:

Theorem 4.1.

1. M*(f,x) is a boundary set of M(f,¥%).

2. If M is an element of M*(f,x) then there exists an admissible design £
such that M = M(£) and the support of & has no more than p(p+1l)/2
points.

3. For all g € G*%M(E)E M*(f,x) if and only if M(gf)€e M*(£f,gx).

The principle result of this theorem is that M*(f,X) is an invariant boundary
set of M(f,x%).

Recall that M’l(g) is a measure of the '"covariance'" of the vector Ig(g;e)
and thus admissible designs are preferred designs with respect to this measure.
It may be desireable for outlier resistance to have Mfl(g) diagonal,
however beyond this it is unclear what structures for M’l(g) are to be preferred.

An omnibus . measure of outlier resistance is the averaged squared influence
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vector |
w@),...,PPE))
diagonal (M 1(£)}.

]

ASIg(G)

mii(E) is a measure of both the magnitude of Ig(x;ei) and its variébility over

S(E); if a design § results in a estimator 6i that is extremely sensitive to

outlying observations then mii(g) will be large.

. Clearly the design space EX or equivalently the information matrix space
M(£,X) cannot be completely ordered by ASIE(G). .However ASIE(G) doeg induce

a partial ordering of these spaces.

Definition 4.2. 1If El and 52 are elements of Ex then
1) El is preferred to 52,(51 > gz) if
ii ii
m(g) 2w, |
for all i, i=1,...p, with strict fnequality for at least one i.

2) 51 is not preferred to g?(gl ~ 52) if neither

&, > &y mor §, > E,.
This preference ordering is invariant only under changes of scale and
permutation of the parameter vector . If an ordering is required to be
invariant under larger transformation groups then such a preference ordering
cannot depend on the particular parameteriéation. Generally, invariant
orderings cannot be sensitive to the outlier resistance of individual least
squares estimators. Consequently, if C' is a pxp matrix of contrasts then the
preferrence ordering of EX for (£,x) may not be the same as the preférence
ordering of EX for (C_lf,x). Examples in which 8 is apparently reéistant to
outliers while linear combinations of the elements of 5 are sensitive to outliers
are easily constructed. This means that a model must be parameterized in terms

of the parameters of interest prior to any resistance considerations based on

ASIg(G).

L

£
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The preference ordering > provides a method of selecting an outlier

resistant subset of EX:

Definition 4.2, A design & € EX is robust admissible or R-admissible for
(£,X) if there does not exist &' € Ex such that &' > £,

Admissibility partitions Ex and induces a partition of M(f,X). R-admissibility
results in a similar subspace of M(f,x). Let y?(f,x) denote the space of
information matrices corresponding to the R-admissible designs. Designs
corresponding to elements of y?(f,x) are outlier resistant designs. Throughout
this paper outlier resistance has been shown to be associated with optimality
criteria. Box and Draper (1975) expressed concern that robustness considerations
might be inconsistent with classical optimality considerations. For outlier
resistance (robustness) these concerns are consistent and in harmony with the
classical optimality criteria as shown by the following theorem.

Theorem 4.2. For any (£,¥%) all R-admissible designs are admissible. However,

all admissible designs are not necessarily R-admissible:

MU (E,X0C BH(£,X).

Therefore R-admissible designs ére both outlier resistant and admissible.
However optimal designs are not always outlier resistant. Consequently while an
optimal design must be verified outlier resistant all outlier resistant designs
are optimal. In emphasis, we do not propose that any.one measure of outlier
resistance is preferrable in all problems. Rather, we would suggest, as with
optimality criteria, that a broad range of criteria are applicable and available
for the evaluation of a particular design with respect to outlier resistance.
R-admissibility is defined to encompass many of the measures of relevance. The

next section is devoted to conditions for and some further thoughts on

R-admissibility.
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5. OUTLIER RESISTANT DESIGNS.

The following lemma shows that there always exists at least one
R-admissible design. |
Lemma 5.1. If EA.is A-optimal for (f,x) then EA is R-admissible.
Consequently, since @1 is a linear-optimal criterion, the trace-optimal design is, »
for most problems (f,X), easily generated by an iterative algorithm. However, the
principal thrust of our development of outlier resistance is that some measure
of resistance should always be used to evaluate a design choice. If for (£,%) a
classical optimality criteria is applicable then it is necessary to determine if the
resulting optimal design is R-admissible. If not, then other optimal designs
might be examined to find one that satisfies both optimality and robustness
considerations. The remainder of this section will be devoted to methods of
determining if a specific design is R-admissible.

Lemma 5.2. If £ is both D-optimal and orthogonal for (f,x) then.§ is R-admissible.

The consequences of Lemma 5.2 are clear when considering the classical balanced
design situation. It is well known that most balanced othogonal designs are
D-optimal. See for example Kiefer [(1958), (1975)]. Hence these classical
balanced designs are R-admissible.

The following example illustrates the specificity necessary to determine
R-admissibility even when the designs satisfy the same optimality criteria.
Example. Consider polynomial regression on Y = [-1,1] with

£7(x) = (1,%,000,%0)0

1) Forp=1 €l is D-optimal if
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: 1 0
ME) o | W),
0

By Lemma 2.8, El is R-admissible since it is both D-optimal and orthogonal.

2) Forp=2 52 is D-optimal if

) 3 0 -3
M (E,) =

1.5 0

4.5

It can be shown that if there exists a design & such that § > 52 then & has
support (-1,b,1) for some bie(—l,l). We have computationally verified that
there does exist such a §. Thus, Ez is R-admissible.

3) Forp=3 £3 is D-optimal if

E4(-1) = E5(-1/V57) = £,(1//57) = £,1) = 1/4.

for which
3.25 0 -3.75 0
_1 15.75 0 -16.25
M (53) = 6.25 0
18.75] *

Consider the design £ a linear combination of 53 and the point mass 6(x)

at x = -.34; £ = ,94 53 + .06 8(-.34). Then

3.02 71 -3.52 -.72
1 15.54  -.75 -16.05
M) = 6.15 .76
18.69| -

Clearly & > £3. Thus the D-optimal design is not R-admissible. This concludes

the- example.
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In the previous example a single point augmentation of 53 was used

to show that 53 is not R-admissible. Typically procedures for iterative cons-
truction of better designs with respect some criteria depend on single point
augmentation of an initial design. Clearly if there exists x an element of ¥

and a , 0 < a < 1, such that Ex,a
is preferred to &, & > £, where
X, 0

£y o= (1-0)E + a8(x),
then &£ is not R-admissible. Moreover it seems reasonable to suspect that if
there does‘not exist a pair (x,a) such fhat Ex,a > £ then § is R-admissible.
Consider the following two lemmas:
Lemma 5.3. If § is an element of EX such that M(£) is positive definite for
(f,x ) then £ is not R-admissible if

max min K (x,i,£)> 1l-a for some o, 0 < o < 1.
o
xex i

Where

iy~ 2
Ky G,1,8) = BEIEQOE g 408
i)

and

n (®)” = @@, ni?@,..., nPE).

Lemma 5.4. If £ and £* are elements of EX and £ > E* then for all o, 0 <a <1

(1-0)E + af* > E*,

Lemma 5.3 provides sufficient conditiors for the existence of a single point
augmented design €x,a preferred to {. Moreover by Lemma 5.4 if there exists
a preferred design £* then all linear combinations of &% and § are preferred

to £. The following lemma partially ties the R-admissibility of a design & to

the existance of a preferred single point design.

L



~-23~

Lemma 5.5. If X is closed and convex and Ka(x,i,E) is concave in x for all
cand i (0<a<1l, i= 1,2...p)i then £ is R-admissible if and only if there
does not exists a pair (x*,0%), x*¢€X and 0 < 0% < 1, such that Ex*’a* is
preferred to E.

Lemma 5.5 is a fundamental result as it delineates the rather severe restrictions
necessary for the use of single point augmentation. The assumption that
Ka(x,i,ﬁ) is concave in x for all o and each i is very difficult to satisfy. In
general, given the structures of this problem it may seem reasonable to
conjecture that if a preferred design exists -then there exists a preferred
design EX’a. As a counterexample consider simple linear regression on

X = [-1,1]. The D-optimal design El with El(-l) = gl(l) = % is preferred to

£ where £(-1) = E(-1/V' 5 ) = E(1/V 5 ) = E(1) = 1/4. However, there does not
exist a design Ek,a preferred to &.

In the previous sections we have developed foundational principles for
outlier resistant design and discussed a consequence of these principles,
R-admissibility. In this section, while we have shown that it is always possible
to find an R-admissible design, we have also shown that it may be very difficult
to establish the R-admissibility of an arbitrary design. In fact probably the
most generally useful result of Lemma 5.5 is that single point augmentation,
the foundation of all optimal design generating algorithms, will
usually not work. Obviously the need here is for efficient algorithms to
generate the elements of yg(f,x), or preferrably, theoretical insights into the
general structure of.yg(f,x). While these objectives are yet to be met, for
arbitrary (£,Xx), it must be noted that usually in a particular problem insights

into structure of yg(f,x) can be derived from known results in design theory.
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Utilizing these insights it is often a simple matter to characterize yI_R(f »X)

~ *
or minimally M (f,%).
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APPENDIX

?roofs
Lemma 1.1

*
For g€G ,
d( - --'1"‘ -1 ~ "'"1 »
g8x,88) =£7(x)g g M (8)g'(g ) f(x)
= d(x,§).
Thus d(x,£) is invariant. To show that d(x,£) is maximal it is necessary to

show that if

d(x,E) = d(x,E)

or equivalently
£-GOM H(E)EG) = £ GOM L))

then there exists g an element of G* such that
(€ HEw.G Hruee ™H = @, uEN.

Let T and T denote two lower triangular matrices such that

T T° = M(E) and T T°= M(E). Consider

(g _1)' = E r ']'.‘-'1 for some I' a pxp orthogonal matrix.
Then
G huez - arrham@r
= T 7%= M(E).
However

G Hee =Tl
and we require (g _1)’f(x) = f(X). Thus we must have

I 7 lex) = TlE(R).



Such a I' clearly exists since d(x,E) = d(;,g) or equivalently
||P T-lf(x)||=||5 -lf(i)lL Therefore there exists g an element of G*

1

corresponding to g” = T T T ~! such that f(gx) = £(X) and M(gf) = M(E).

Therefore d(x,£) is maximal invariant.

Lemma 2.1

Let z© = (£7(x),y) and 6(z) be the probability measure with mass 1 at z.
Then by definition

I1C. .. (z) = lim {6((1-€)H + €8(z)) - 6(H)}/e.
0,H €Y0

Now,

1

0C(1-e)H + €8(z)) = M L((1-€)E + £8(x))y((1-e)H + €8(z)),

M((l-€)E + €8(x)) = (1-e)M(E) + ef(x)f (x)

and

fl

Y((1-€)H + €6(z)) (1-g)y(H) + € yf(x).

Using the following identity given by Fedorov (1972), page 106,

-1 ooyl
M((1-€)E + e8(x)) 1=(1-) L} (5)- QUL CM_(£))
l-¢ + ef“(x)M " (E)£(x)

it follows that

]

lim {8((1-€)H + €8(2)) - B(H} /e = M L(E)EG)y-M L(E)E(x) £~ (x) 6 (H)

£Y0
M EEE) (v - £ (x)0)
eM L) e(x).

1

]

Thus completing the proof.
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Lemma 2.2

The proof of this lemma is to show that the influence function is a

linear function of O, a property that is clear from the definition.
Lemma 2.3

Take EGEX with M(E) positive definite and let

ME) = (m (&), . . ., mp(E))
where
m, (&) = JE(x)E, (x)dE(x) (px1)
X

and

i = @@, ..., oPE) .
Since

I,(x30;) = m' (6)"£(x)
it follows that

Ig(el) = )J;IE’ (x; ei)dg (x)

= mi(E) “SE(x)AE(x) .
X

Suppose fj(x) = 1, for all xeX, then
mj(E) = JE(x)dE(x) .

X
Consequently

i ”»
I8 = m (E)my(E) .
However M 1(E)M(E) = {8, } = {n'(§)"m, (D)}

and thus Ig(ei) = Gij as claimed.
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Lemma 2.4
The proof of this lemma is evident from the form of the integral.
Lemma 3.1

First we note that for all £ with M({) positive definite

fa(x,E)AE(x) = tr M L(EM(E) = p .
X

Thus by the Cauchy-Schwarz inequality for all such §
r = [{d(x,E)}2dE(x) > {fd(x,E)dE(x)}? = p? .
X X

Furthermore since

fd(x,£)dE(x) = p
X

it follows that

max d(x,&) >p .
x€S(€)

*
By the Equivalence Theorem if £ is D-optimal then

max d(x,ﬁ*) =p
x€YX

from which it follows that

max  d(x,E) = p -
x€S (%)

* -
Thus the D-optimal design £ minimizes r.
* *
Furthermore since r Z_pz and d(x,£ ) = p for all x in S(§ ) it follows that

Hax, 9128 @) = p?
X

*
proving that £ minimizes r.

L



A.s

Lemma 3.2

Fedorov (1972),p. 125,presents and proves a theorem that is equivalent

The following assertions:
* -1, %
(1) & minimizes tr M 1(£ )

(2) E* minimizes sup £7(x) M-Z(E*)f(x) ,
XEY

(3) sup £7(x) M 2(E)E() = tr M H(E)
x€x

are equivalent for the problem (f,x). Note E* assigns measure one to a set
of x where the supremum in (3) is achieved.

Now for C = Ip we have

R(E,I) = tr M (9)
and

R(E,L) = sup  £°(x) M2 (E)E(x) .
x€S(E)

Thus by the result above the lemma is proved for C = Ip.

In general for gEC* corresponding to C we note that
R(E,C) = R(gﬁ,lp)
and
R(E,C) = R(g&,L) .
Then applying the argument above to the problem (f,gX) completes the proof

of this lemma.
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Theorem 4.1

1. For MEM*(f »X), assume that M is an interior point of the convex set
M(£f,X). Then there exists a positive number o such that the matrix
M, = (1+a)M is also an element of M(f,X). However M, > M, which is
a contradiction. Thus M is a boundary point for all M ¢ g*(f,x).

2. Since M is a boundary point of M{f,Xx) we can apply Caratheodory's

Theorem and the result follows.

* *
3. Take geG and MeM (£,X). Then g acts on M by

8 —-1,.— -1

M+ (g )Mg " =M .

g
*
Assume that Mg is not an element of M (f,gX)-

~ *
Then there exists Mg an element of M (f,gx) such that

~

M ~-M >0
g g
or
— "'1 » -~ - "1
(g8 N'M-Mlg ~>0.
Consequently M - M > 0 which is a contradiction. Thus Mg is an

*
element of M (f,gX) for all M and g.
Theorem 4.2

. *
Take M an element of _IQ_R(f,x) and assume that M is not an element of M (f,x).
~ * ~
Then there exists M an element of M (f,X) such that M > M.
By the definition of ER(f,x), M is positive definite. Thus, since M -~ M >0

1 1

and M is positive definite, it follows that M = > %L, However M7 >M

implies wil = 511 for a11 1, i=1,...,p. Consequently either ol = 5 for ana

-~ *
i or M is not an element of M (f,¥).
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Claim: If mil = ﬁii for all i, i=1,...,p and M-'1 - ﬁ_l_g 0, then M"1 = ﬁ—l.

Proof: let A = Mfl - ﬁ-l_z 0, A= {aij}’ a;; = 0 for all i, i=1,...,p. To show

that aij = 0 for all i,j=1,...,p, take x an element of RP; x'=(x1,x2,...,xp).

Then
. > 2 o
XAx = x,a,. + L x.,x.a
=1 P oy g 13U
P P
= I I x,x.a,,>0.
4=1 §41 T3 13-
Let x; = 1, xj = =1 and x = 0 k=1,2, ... ,0p
k#i, k#j
then x“Ax = -Zaij _>_ 0
or
ay; <0 for all 1i,j .
Let x, = Xy = L, x =0 k #i, k#j
then x"Ax = Zaij_z 0
or
244 > 0 for all i,j .
Therefore a,, = 0 for all i,j.

ij
Consequently either M = ﬂ or ﬁ is not an element of M*(f,x) which are both
contradictions.
Therefore
l_{_R(f,)() _C;_b_d_*(f,x). To show that MR(f,x) Cﬁ*(f,x) it is only necessary

to show there exists an admissible design that is not R-admissible. See part

3 of the example in Section 4.
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Lemma 5.1
The proof of this lemma is evident from the conditions for A-optimality.
Lemma 5.2

Let ED be D-optimal with M(ED) diagonal and assume that ED is not

* .
R-admissible. Then there exists £ an element of EX such that

otie®) 5_mii(gD) foralli=1,2, . ..,p

with strict inequality for at least one i.
Thus

P P
Tt < 1 oatheg) = der w7l
=1 i=1

since M_l(gn) is diagonal.

- P *
By Hadamard's inequality, det M l(F;*) < I mii(E )
i=1

—-1,.%
and equality holds if and only if M 1(& ) is diagonal.

Then

p . P s s
det WMD) < T witEh) < 1 mitE) = derw N,
=1 i=1

which is a contradiction since £D is D-optimal.
Lemma 5.3

Fedorov (1972), page 106, presents and proves the following identity.

Let Ex,a = (1-a)£ + ad(x) then for all x and a, 0 < a < 1,

. : i - 2
o - gl - LG
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Now by applying this identity a sufficient condition for the

existence of a preferred design gx o Can be established. From which a suffi-
9

cient condition to show that a design is not R-admissible follows.

If Ex " is preferred to §, then for all i,
?

g, ) <utt®

with strict inequality for at least one i, or using the identity above,

i,.- 2 .
wii - PWEOFEL Gt

or equivalently

1.2 2
{m (Ei £} ad(x,E) > l-o .
m (&)

Let

2
{m ()7EC)}” ad (x, E)

K (x,1,8) =
o mii(g)

then if §x o is preferred to § it follows that
9
Ka(x,i,g) > l-o
for all i with strict inequality for at least one i.

* %
Thus if there exists a pair (x ,a ) such that

*
Ka*(x ,i,8) > 1-0 for all i ,
then Ex* o is preferred to £. The condition
]

max min K (x,i,) > 1-a for some o
xex 1

is a sufficient condition for the existence of at least one such

* %
pair (x ,a ). Therefore if the condition holds there exists at least one design

Ex* o* preferred to & proving that £ is not R-admissible.
3
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Lemma 5.4

By definition of the preference ordering M(£) and M(E*) are positive
definite. Let

£, = (1-0)E + of .
Then

ME) = (1-)M(E) + aM(E)
and it is well known that

WlE) < (@) + i HED)

*
with equality if and only if M(§) = M(§ ). Thus the inequality in this case
is strict and it follows that

i

(1-mtE) + () > nilg) .

o
*
However £ > £ , consequently
1™y > i) for al1 1
or for all o and 1
£ 3 *
it ) > (1out(E) + el .

* *
Therefore mii(E ) > mii(ga) for all o and i. Thus Ea >E .
Lemma 5.5

* %
Clearly if there exists (x ,0 ) such that Ex* o is preferred to £ then
14
£ is not R-admissible. Consequently if £ is R-admissible there cannot exist
such a pair. This proves sufficiency.

. * *
Suppose & is not R-admissible; that is, there existslg such that & is
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x %
preferred to £. Then it must be shown thdt there exists a pair (x ,o ) such

that Ex* o* is preferred to & for which a sufficient condition is
bd

max min Ku(x,i,g) > 1-o fot some o .
x€x i

Let Q be the p-dimensional probability simplex, then for q in Q, q'=(q1,...,qp) and
L q.,=1 Q 1is the convex hull of the pxl indicator vectors, 81’ i=1,2,...p.

Then

P
min K (x,i,€) = min I K (x,i,8)q.
i ¢ qqQ i=1 *

and consequently
P
max min Ku(x,i,g) = max min I K.a(x,i,g)qi .
xex 1 x€( q€Q i=1
p
Q and X are closed convex sets. Moreover, I Ka(x,i,g)qi is convex in q (linear)
i=1

and by assumption concave in x. Then by the Minimax Theorem,

P P
max min I Ka(x,i,E)qi = min max I Ka(x,i,g)qi .
x€x q€Q i=1 q€Q x€x i=1

Recall that Ex is the convex hull of the point measures 6(x), x€x. It follows

that
P P
max I Ka(x’isg)qi = max z Ka(x’i’g)qi G(X)
x€x =1 8(x) i=1

P ~
=max J £ K (x,i,8)q. d&(x)
o 1
EEEX X i=1

and

P P
max I K (6,1,8)a >/ I K (1,6 4 @)
x€x i=1 X i=1

P
= I q{f K (x,1,E) aE ()} .
i=1 X
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Thus it is enough to show that there exists an &, 0 < a < 1, such that for
all i,

f R (x,1,8) dE¥x) > 1-a .
X

Now by definition -1 1
eM T(BEETIM " (E)ey

» "'1
-af"(x)M (E)f(x) .
nii(e)

Ka(’hi’g) =

- Thus

f R 61,0 &) = WO e @uEMn T e, - aer v EMED |

X
- % -
Note that 0 < tr M 1(E)M(E ) < ©» since M 1(Ej) is positive definite.

Let tr M—l(g)M(E*) = ¢ then

[ R (x,1,8) dE°@) > 1 - o
X

implies that
iy e @mEH @, > 1 -0+ ca .

Consequently it is sufficient to show that if E* is preferred to § then for
all i
i -1 ..~1 *..~1
w @ et EmE M @, > 1

SO

e EuEM  ®e; > nt®) = epil@©)e,
or |

ep L EmMENM ()6 - e @)e; > 0
Claim: If E* is preferred to £ then for all i

e EMENM @), - e ©e, > L@ - wlEDe .



A.13

- -1, % '
Proof: Let D =M 1(5) -M I(E ); then the claim is that for all i,

’-lv * : . .
eiM (E)M(E )Dei > eiDt-:1 3

§0

v
o

e;{u‘l(g)u(g*)n - ple,

Now,

e;0 7 (EME™D - ple, = e @ME" - TiDe,

e;0 e - &M mE e,

i}

e{DM(E)De, .
Since M(E*) is positive definite,
e:{DM(E*)Dei > 0 for all i
and the claim follows. Moreover since E* is preferred to &,

mii(g*) f.mii(g) for all i .
Therefore |
;1 - 1 Eh e, = ott® - a2 0
for all i. Thus there exists a pair (x*,a*) such that gx*,a* is preferred

to E.
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