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SUMMARY 

A general framework based on the influence curve is developed for outlier 
resistant design. Several criteria for outlier resistant design are discussed. 
It is shown that one criterion results in a class of resistant designs which is 
a proper subset of the set of classical admissible designs. 

Some key words: Design Admissibility, Influence curve, Invariant design, Measures 
of resistance, Optimal design, Outliers. 
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o. INTRODUCTION 

Experimental design for regression problems has been a concern of scientists 

since the development of least squares regression. Regression design problems 

particularly for polynomial regression were discussed in papers by Laplace and· 

Gergonne in the early nineteeµth century. Since this time a vast body of 

literature has accumulated which can aid in the choice of an adequate design. 

However, most of the past work assumes th?t the experiment will produce "ideal" 

data.. Recently some attention has shifted towards the investigation of 

characteristics of optimal designs in the presence of contaminated data • 

This attention is probably due, in part, to a contemporary interest in robust 

estimation and to the realization that rarely are data ideal. 

The choice and justification of design selection criteria is dependent on 

the estimation procedure and the overall goal of the exper~ment. For example, 

when least squares estimation is used D-optimal designs produce confidence 

ellipsoids with minimal volume. However, the study of robust or resistant design 

requires a more formal (i.e. functional) connection between the design 

and its effects on the estimation procedure than has previously been the case. 

The influence curve has proven an effective tool in the study of robust 

estimators. Generally, in this paper we employ the influence curve to study 

how the design influences the effects of an outlier on the least squares estimator. 

Section 1 is devoted to a brief review of optimal regression design. Invariance 

is considered briefly since it is often regarded as a property of fundamental 

importance and has special relevance to outlier resistance. 

In section 2 we define outliers and discuss the sensitivity of least 

squares to outlying observations. The ·influence function (first Von-Mises 

derivative) for least squares is considered as a function of the design. 



-2-

Our consideration of the influence function leads to several possible 

measures of outlier resistance which are examined in Section 3. Design 

admissibility with respect to optimality and outlier resistance is examined 

in Sections 4 and 5. It is shown that generally the goals of optimal and 

resistant design are in accord while there are situations in which the usual 

optimal designs are not resistant. 

been relegated to an appendix. 

The p~oofs of all theorems and lemmas have 
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1. REGRESSION DESIGN 

Let f' = (f1,£2 , ••• ,fp) be a vector in RP defined by the set of linearly 

independent functions £1 which are assumed to be continuous on some compact 

space X• An experiment consists of selecting any xE X and observing a random 

variable Y(x) with regression function E(Ylx) = f'8 and constant variance a2 • 

The functions fi are assumed known while~'= (8
1

,82 , ,,, 8P), an element of 

RP and o2 are unknown. Further, assume that for two experiments xi and xj (i + j) 

that Y(x
1

) and Y(xj) are uncorrelated. 

An experimental design is defined by any probability measure on X• 

A design problem is specified by a pair (£,x). Exact designs for experiments 

of size N concentrate mass ;N(xi) at points xi, i = 1, 2 ••• r, subject to the 

n. be integral for all i. 
1 

An exact design specifies 

that the experimenter is to take N uncorrelated observations, n. at each 
1 

xi. The selection of an exact design is usually a difficult combinatoric 

problem often solvable only by an exhaustive search of a large subset of all 

possible exact designs. Approximate designs are not constrained by the 

requirement that N~(xi) be integral for all i. The set of all designs on X, 

= is the space of all probability measures on the design space X· The support 
X' 

of a design t, will be denoted by S(t). In this paper we restrict our results to , 

approximate designs. Results for exact designs will be considered in a future 

paper. 

The least squares estimator of 8, 0, is the principal estimator considered. 

It is well-known that 8 is the minimum variance unbiased linear estimator of 0. 
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A 

The covariance matrix of 8 is of the form 

where M(~) is of the information matrix of the design~; 

M(~) = f f(x)f'(x) d~(x). 
X 

M defines a map from· =x to a spa~e information matrices, M(f,X), where 

M(f ,x) = {MIM = M(~) for some ~ E = } . 
X. 

Since each M(~) in M(f,X) depends only on a finite set of moments of~ 

this map is not in general one to one. 

Many criteria have been proposed for optimizing the selection of a design 

for the design problem (f,x). Generally the criteria specify the selection of 

a design which minimizes some functional of the information matrix, M(~). 

.. -

Justification of such criteria is often based on the properties of the resulting -' 

least squares estimator 8. Kiefer (1975) .introduced a large class of such 

measures defined by the functional t · q' 

4> (~) 
q 

4> 0 (~) 

O< q < co 

= lim t (~) = {det M-1(~)} l/p 
q-1-o q 

t (~) = lim t (~)=max A-l c,) 
00 q i i 

q-+ + 00 

i-th eigenvalue of M(~). where A.(~) is the 
]. 

It is well-known [Keifer (1959)~ 

Fedorov (1972)] that these criteria are relevant to estimation and hypothesis 

testing. Two classical criteria are D-optimality (q=O) and A-optimality 

(trace-optimality, q=l). 
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Design criteria based on prediction variances have also been widely used. 

The predicted value at a point x is 
0 

,.. ,.. 
Y(x ) = f .-(x )6 and 

· 0 0 

,.. 2 
Var (Y(x )) = (a /N) 

0 

-1 f-'(x )M (~)f(x ). 
0 0 

For notational convenience let 

.- -1 d(x ,;} ~ f (x )M (;)f(x) 
0 0 0 

._ and refer to d(x ,;) as the variance function for~ at x. 
0 0 

A minimax design is a design which minimizes the maximum of the variance function 

.._ over X• 

-
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-
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-
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Invariance will be an important concern in our development of criteria 

for outlier resistant design. In the remainder of this section we c9nsider 

some invariance characteristics of the~ criteria. Let G be a group of 
q 

transformations on X such that, for each g E G, there is a corresponding linear 

transformat'ion g on RP which can be represented as a pxp nonsingular matrix such 

that for all X and 8, 

f~(x) 8 = f'(gx) g8 , - -1-
= f (x) g g8. ---

Thus, the elements of G define the mappings 

(£ ,x> 1l+. Cf ,gx> 

and 

(f(x), M-1(~)) ~ ((g -l)'f(x), g M-l(~)g'). 

This group includes, among others, scale and location transformations. 
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Note that the D-optimal design is invariant under G and thus D-optimal for all 

g EG. However, in general for the W -optimal design for (f,X), say;, there may· 
q q * 

exist g E G such that g;· is not w -optimal for (£ ,gX). In particular let G be the 
q -* q 

group acting on X such that G is the group of all pxp non-singular matrices then 

< • 

for qfO there exists g such that g~ is not w optimal. Lemma 1.1 gives necessary '-' q q 
and sufficient conditions for a design measure to be invariant under such a group. 

-* Lemma 1.1. If G is the group of all pxp non-singular matrices then a maximal 
* . -1 

invariant with respect to G acting on (f(x), M (;)) is 

The principal consequence of LellllUa 1.1 is that if tis ~-optimal then; is 

invariant under G* if and only if there exists a function H such .that 

i(;) = H(d(x,t)). 

That is, Wis a function only of the variance function d(x,t). Consequently a 

minimax design is also an invariant design under c*. The Equivalence Theorem 

proved by Kiefer and Wolfowitz (1960) established the implied duality between 

D-optimal and minimax designs; a design is D-optimal if and only if it is a 

minimax design. Other groups G may yield a larger class of invariant designs and 

thus additional equivalences. 

2. OUTLIERS AND INFLUENCE. 

An essential first step in any development of robust theory is to describe 

the deviations from assumptions we wish to guard against. Much of the original 

work in robustness has been concerned with symmetric heavy tailed alternatives 

to the nonnal distribution. For our purposes, a somewhat simpler approach to 

outliers will suffice. Suppose that y(x), an observation on some model 

f .... (x)8, has an "aberration" c added to it so we observed (y(x) +c), an outlier. 

It is assumed that the occurrence and magnitude of an outlier at a design point 

x are independent of x: Clearly c cannot be directly measured since y(x) is a 

realization of a random variable Y(x). Thus we must be concerned with "wild" 

observations; that is, those observations which markedly deviate from their 

expected values. 

I ' 

-
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In what follows, we employ the influence curve to measure the effects 

of an abberation on the least squares estimator and to aid in understanding 

how the design of an experiment may be used to lessen its effects. As 

background, we first briefly review the influence curve. 

Hampel (1974) discusses the use of the influence curve in the study of 

robust estimators. (See also Andrews, et.at (1972)). Let R be the real line, 

T be a real-valued functional defined on some subset of the set of all probability 

measures on R, and let F denote a probability measure on R for which Tis defined. 

Then the.influence curve, ICT,F(•), of the functional ("estimator") Tat F 

(the underlying probability distribution on R) is defined pointwise as 

ICT,F(y) = lim {T((l-E)F + Eo(y)) - T(F)}/£ 
£-1-0 

if this limit is defined for every yin R. o(y) is the probability measure with 

mass 1 at y. 

The influence curve ICT,F(y) measures the influence an observation of 

magnitude y has on the estimator T. For example, a simple least squares estimator 

is the arithmetic mean which may be defined by the functional T(F) = /Ry dF(y) 

for all probability measures F with first moments. If the mean of Fisµ then 

the influence curve of Tis 

ICT F(y) = lim {(1-£)µ + Ey - µ}/E 
, £,}O 

= y - µ 

Thus the mean T has a linear influence curve; each observation y influences T 

by y - µ, an influence linear in the "error" in y. Clearly the influence function 

for the mean is unbounded and thus the potential influence of an observation is 

similarily unbounded. Robust estimators of location such as Windsorized or trimmed 

means alter the influence curve by truncation and, thus, bound the gross error 

sensitivity (see Hampel, 1974). 
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Least squares estimation for a linear model f'(x)8 results in a vector 

valued estimator necessitating the extension of the influence curve· to vector-valued 

functionals: Let T be a vector-valued mapping (estimator) from a subset of 

probability measures on, say, Rn into RP. Further let F be a probability 

n measure in the domain of Tandy be a point in R. Then the vector-valued 

influence function for Tat Fis defined pointwise as above.· For least squares 

Hinkley (1977) states the following lemma without proof: 

Lemma 2.1. Let F be the conditional distribution of Y(x) such that 

EF(Y(x) = f~(x)8. 

Further let H be the joint distribution function of the design point x and 

the response variable Y, H = txF, such that 

EH{ 
f(x) 

y 
(f'(x), y)} = 

rM(H) 

Ly'(H) 

y(H~ 

-r(H~ 

rM(t) 
= Ly~(H) 

y(H)J 
-r(H} 

(Note that x may have design or probability measure. For the purposes of this 

'-,j 
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~ 

~ 
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paper x has design measure, t.) ..i 

Define the least squares functional 8 by 

8(H) = M-1(t)y(H). 

Then the influence function of 8 at (x,y) for x ES(~) is 

-1 
lt(e,x;8) = eM (t)f(x) 

where e = y - f'(x)8. (By assumption e is independent of x and 8) 

Clearly the influence function for least squares is linear in e, the error 
A 

in y(x) at x, for each estimator 8.,j = 1, , ••• p. However, the influence function 
J 

is a function of both x, the design point at which the observation is taken, and 
A 

the design~- Therefore,the influence that an error of magnitude e has on ej 

depends on both the design point x where e occurs and the design points specified by t. 

-' 

--
~ 

i.J 

~ 

~ 

However, the influence of an error of magnitude eat x does not depend on the errors '-' 

at the other design points. It follows thnt the influence function is a measure of 
I / 

~ 
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-' sensitivity not constrained to the single outlier case. Note the implicit assumption 

that the design point xis determined without error.· The following example illustrates 

the role of the influence curve in experimental design. 

Example. For linear regression with 

f ='°(x) = (l,x), X = [-1,1], 

and 

consider the designs~ of the form a,a 

r (-1) = t (1) = 1-a 
~a,a a,a 2 ' 

t (-a)= a,ex 

where O ~ ex ~ 1 and O ~ ~. < 1. 

For such designs, 

and 

Ir (e,x;8) 
'='a,a 

= 

0 ~ 2 -1 
[(1-a) + a a] . 

[ 1 J e 2 1 
x[(l-a) + a a]- • 

Clearly for all (a,a) and x ES(~ ) the influence function for 8 is unchanged. a,a o 

In fact I~(e,x;8
0

) has the same influence function as the sample mean for all t 

synnnetric on [-1,1]. Consider now the influence function for 81 on the support 

of the design ~ ex • For x = a, 1 a, 
2 -1 

Ir· ( e, x ; e 1) = ex (( 1-a) + a a) = - It ( e, -x ; 81) • ~a,a ~a,ex 

Thus if a= k-l then an error of magnitude eat the point x = +1, -1 will be k 

times as influential as the same error at x = +a,-a. Moreover as a~o the influence 
,.. 

on e1 at x = a goes to O; that is, observations at x = 0 have no influence on the 
A 

least squares estimator e
1

• 
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Clearly some designs are preferrable to.others in terms of influence. 

Selecting a design that is outlier resistant requires that the design selected 

be relatively insensitive to outlying observations. Some measures that may be 
~-

optimized (minimized) over (a,a) are 

and 

(i) sup er ) 
x ES '='a,a 

I~ (e,x;81), 
a,a 

(ii) I~ (e,1;81)-I~ (e,a;81), 
a,a a,a 

(iii) E . {I ( 2 
xES(t ) t e,x;81)} t (x). 

a,a a,a a,a 

Clearly the D,A-optimal design (a=l) minimizes each of these measures. 

concludes the example. 

This 

Recall that the influence function I~(e,x;S) is unbounded and linear in 

' . . 

e for all designs t •. Consequently the design determines the slope of each of the 

influence curves I~(e,x;S.),j = 1,2, .•• ,p, as a function of x. Measures of 
':, . J 

influence may, thus, be based on these slopes which will be represented by 

-1 IE: (x;0) = M (t)f(x) (pxl). 

This is the only part of the influence function that can be controlled by the 

design. To distinguish between It(x;0) and It(e,x;8) we shall refer to the· 

former as the design influence function (DIF). The following lemmas give some 

relevant properties of the DIF. 

1...1 
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,.. ,.. 
Lemma 2.2. The DIF for the least squares predictor Y(x) = f'(x) 8 is 

I;(x,f \X)8) = d(x,;) 

It follows from lemmas 1.1 and 2.2 that only measures of the form 

H(ed(x,;)) = H(I;(e,x;f'(x)8)) 

are invariant measures under G*. A consequence of invariance is the restriction 

of outlier resistance measures to those which depend only on the DIF for the 

specific linear combinations f'(x)8, (xE S(~)). 

Recall that the occurrance and magnitude of an outlier are assumed to be 

independent of the design; Given the presence of an outlier the probability 

that it occurs at x ES(;) . is proportional to ~ (x). Letting It (8) denote the 

average design influence of a single randomly occurring outlier we have 

It(8) = /It(x;8)d;(x). 
X 

The following lemma gives the form of It(8) when the model contains a constant 

term: 

Lemma 2.3. If for some j , f. (x) = 1 for all x E X then for all t E = for which 
J . X 

M(~) is positive definite 

Where 

and oij is the Kronecker delta­

!5 = Ji 1£ i = j 

ij ~ if i + j. 
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This result implies that if the same design is used repeatedly then on the 

average the effects of the outlying observations will cancel. Of course, this 

is of little consequence for a single replicate of the design. This result is 

not directly extendable to general models without overall means. 

lemma gives the "covariance" matrix for I~(x;8). 

-1 
Lemma 2.4. /{It(x;8))(I~(x;8))~d~(x) = M (~). 

X 

The next 

. -1 
In view of Leunna 2.3, the diagonal elements of M (~) measure both the variance 

and magnitude of the influence of a randomly occurring outlier on the 
A 

elements of·8. 

3. MEASURES OF RESISTANCE. 

In this section we consider measures of outlier resistance as derived 

from the influence curve. 

3.1 BOX-DRAPER AND HUBER CRITERIA. 

Past formulations of outlier resistant measures have resulted directly 
A 

from the use of the residuals , y(x) - y(x), to detect outlying observations. 

These residuals are invariant under G* and thus measures of their resistance 

to outlying observations are invariant. 

Box and Draper (1975) consider one such invariant measure which they 

describe as a measure of the discrepancy in y(x) caused by an outlying observation. 

The measure they consider is equivalent to 

r = I {d(x,~)}2d~(x) 
X 

the squared variance function averaged with respect to the design measure. 

-. 

I ..., 

I i 
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Their justification of this measure is based on exact design considerations 

and will not be reproduced here. By Lemma 2.2, r is proportional to the 
,. 

averaged squared influence of f'(x)8. Of course, Box and Draper's goal is to 

minimizer by an appropriate design selection. 

Huber (1975) mentions an invariant measure of outlier resistance which 
,. 

is also based on y(x). Huber suggests the measure 

r = sup d(x,~), 
XE S(~) 

the maximwn of the variance function over the support of~-
,. 

Again, by Lemma 2.2, r is the maximum design influence for f'(x)8. 

Lemma 3.1. If~* is a D-optimal design for (£,X) then 

1) inf r = I {d(x,;*)}2 d;*(x) = p
2 

tE= X 
X 

and 

2) inf r = sup d(x,;*) = P. 
; E = xES(;*) 

X 

Consequently both measures rand rare minimized by a D-optimal design. 

In fact, if a measure of resistance is invariant and defined by its properties 

on the support of; then such measures would be expected to be optimized by 

the D-optimal design. 

The measures rand r of; are, as noted above, measures of the.influence of 
, ,. 

f (x)8 only for those x values in the support off;. The principal criticism 

of rand r is that they concentrate on the influence of y(x) while potentially 
,. 

ignoring elements of a. A design.t with f.(x) small for all x in S(~) may 
1 

result in I~(e,x;8i) large in absolute value with negligible effect or r or r. 
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It is important to note that a fundamental difference between 

optimal design and outlier resistant design is that in the former a measure 

is evaluated over X whereas in the latter a measure is evaluated only over 

S(t). This difference is a consequence of the assumption that the design 

points x are determined without error and thus observations are only taken 

at the points in S(t). 

3.2 ALTE~ATIVE CRITERIA 

A large set of resistance measures similar to the Box-Draper and Huber 

criteria can be generated by the inner products 

R(t,C,x) = (I~(x;S))'C(I~(x;S)) 

= f~(x)M-l(~)CM-l(~)f(x) 

for C non-negative definite. Specifically, consider the measures 

and 

R(~,C) ~ / R(~,C,x)d~(x) 
X 

-1 
= tr M (~)C 

R(t,C) = sup R(~,C,x). 

xE S(~) 

The selection of C depends on the importance of the resistance properties of 
A 

individual estimators Sj,j = l, ••• ,p. The following lemma shows the existence 

of optimal designs for these measures. 

._, 
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Lennna 3.2. Let g be an element of G* such that g' = B where.Bis any pxp 

non-singular matrix such that B'B = C. If g-l;c is A- optimal for the prDblem 

(f,gx) then 

1) 

and 

2) 

inf R(;,C) = 

;E = 
X 

R(; ,C) 
C 

inf R(;,C) 
;E: 

= R(; ,C}. 
C 

X 

·Consequently, if either measure of influence, R(;,C) or R(;,C), is consistent 

with the resistance objectives for the problem (f,x), Lemma 3.2, shows that a 

solution exists. Moreover Lemma 3.2 gives a specific solution which is not 

difficult to find.(c.f. Fedorov (1972) page 137.) 

Alternatively, one might consider design criteria which are scalar-valued 

functions of 

/ I;(x;8) I';(x;O) d~(x) 
X 

However, by l.P_mma 2.4, we are lead back to considering functions of the 

information matrix. Consequently, designs which are optimal with respect a 

measure based on the information matrix may also be regarded as outlier 

resistant with respect to that measure. Of course, it is of little help to 

be able to say that any~ -optimal design is outlier resistant in some sense. 
q 

The previous discussion illustrates the ways in which resistant design 

criteria might be constructed from the DIF. Apart from r and r, these criteria 

are rather arbitary and, without further refinement, are of limited practical 

use. The Box-Draper and Huber criteria may prove useful for experiments in 

which prediction is of primary goal. However, they seem less desirable for the 
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purpose of estimation. (Recall that the principal criticism of these 
,.. 

measures is that the potentially ignore esitmates, ej, that may be·very 

sensitive to outliers.) In the next section we discuss a useful broad 

criterion that may be used to check the robustness characteristics of a design, 

particularly when estimation is the goal of the experiment. 

4. ADMISSIBILITY. 

The choice of a single criterion (measure) for design selection, whether 

optimal or outlier resistant, results in an unknown degree of specificity. 

Kiefer (1975) and others have noted that a ~-optimal design may be very 

inefficient with respect to another measure, say~~, even when~ and~, are 

apparently consistent in formulation. This concern with specificity is directly 

applicable to outlier resistant design. An alternative to the selection of a 

single design is to partition the design space= using broad principles of 
X 

design goodness. The resulting admissible design space may be regarded as a 

space of designs which are efficient in a wide sense. 

The classical definition of design admissibility (Elfving, 1958) follows 

from the fact that most optimality criteria are nonincreasing on M(f,X). 

Definition 4.1. ·A design tis admissible for (f,X) if and only if there does 

not exist ;*E = such that 
X 

M(;*) ~ M(;). 

(A~ B if A - Bis non-negative definite and A - BT O.) Note that if 

M(~) > 0 then M(~*) ~ M(~) if and only. if M-l (0 2:_ M-l (;*). 

Thus, if a design; is inadmissible and M(~) > 0 there exists a contrast 

vector c and an admissible design;* such that; \ / 
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and 

-1 -1 
i)c'M (~)c > c'M (~*)c 

ii)for all possible contrasts c 
c'M-1C;)c ~ c'M-1C;*)c. 
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Note also that the set of t
4

, 0 ~ q ~~,optimal designs are all admissible. 

The concept of admissibility partitions both the design space= and 
X 

M(f,X). Let M*(f,X) denote the subspace of !!(f,X) corresponding to the space of 

admissible designs •. Specifically, M*(f,X) = {M(~)jM{~)E M(f,X) and 

t is admissible}. M*(f,X) is a space of non-negative definite matrices (not 

necessarily positive definite) with the properties: 

Theorem 4.1. 

1. M*(f,X) is a boundary set of !!(f,X)• 

2. If Mis an element of M*(f,X) then there exists an admissible design t 

such that M = M(;) and the support of~ has no more than p(p+l)/2 

points. 

3. For all g E. G*,M(;)E M*(f ,x) if and only if M(g;)E= M*(f ,gx). 

The principle result of this theorem is that M*(f,X) is an invariant boundary 

set of M(f ,X). 

-1 Recall that M (;) is a measure of the "covariance" of the vector 1~(~;8) 

and thus admissible designs are preferred designs with respect to this measure. 

-1 It may be desireable for outlier resistance to have M (~) di:agonal, 

however beyond this it is unclear what structures for M.-l(~) are to be preferred. 

An omnibus . measure of outlier resistance is the averaged squared influence 
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•• .1 

vector 

11 .pp 
= (m (;), ••• , m (;)) 

= diagonal {M-1(~)}. 

m11
(t) is a measure of both the magnitude of I;(x;8

1
) and its variability over 

A . 

S(;); if a design t results in a estimator e1 that is extremely sensitive to 

ii outlying observations then m (;) will be large. 

Clearly the design space= or equivalently the information matrix space 
X 

M(f,X) cannot be completely ordered by ASI;(0) •. However ASI;(8) does induce 

a partial ordering of these spaces. 

Definition 4.2. If ; 1 and ; 2 are elements of -X then 

1) t
1 

is preferred to ; 2,(;
1 

> ;
2

) if 

for all i, i=l, ••• p, with strict inequality for at least one i. 

2) t 1 is not preferred to ; 2,(;1 ~ ; 2) ~f neither 

t 1 > t2 nor ; 2 > t 1• 

This preference ordering is invariant only under changes of scale and 

permutation of the parameter vector If an ordering is required to be 

invariant under larger transformation groups then such a preference ordering 

cannot depend on the particular parameterization. Generally, invariant 

orderings cannot be sensitive to the outlier resistance of individual least 

squares estimators. Consequently, if C' is a pxp matrix of contrasts then the 

preferrence ordering of =x for (f,X) may not be the same as the preference 

- -1 ,.. 
ordering of= for (C f,X). Examples in which 8 is apparently resistant to 

X ,.. 
outliers while linear combinations of the elements of 0 are sensitive to outliers 

are easily constructed. This means that a model must be parameterized in terms 

of the parameters of interest prior to any resistance considerations based on 

.. ... -~-

\ i 
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The preference ordering> provides a method of selecting an outlier 

resistant subset of - • -x· 
Definition 4.2. A design; E = is robust admissible or R-admissible for 

X 
(f,X) if there does not exist;' E = such that;'>;. 

X 
Admissibility partitions= and induces a partition of ~(£,x). R-admissibility 

X 
R results in a similar subspace of M(f,x). Let M {f,X) denote the space of 

information matrices corresponding to the R-admissible designs. Designs 

corresponding to elements of ~(f,X) are outlier resistant designs. Throughout 

this paper outlier resistance has been shown to be associated with optimality 

criteria. Box and Draper (1975) expressed concem that robustness considerations 

might be inconsistent with classical optimality considerations. For outlier 

resistance (robustness) these concerns are consistent and in hannony with the 

classical optimality criteria as shown by the following theorem. 

Theorem 4.2. For any (f,X) all R-admissible designs are admissible. However, 

all admissible designs are not necessarily R-admissible: 

11'-(£ ,x)c M*(f ,x>. ·., . ' •, 

Therefore R-admissible designs are both outlier resistant and admissible. 

However optimal designs are not always outlier resistant. Consequently while an 

Qptimal design must be verified outlier resistant all outlier resistant designs 

are optimal. In emphasis, we do not propose that any.one measure of outlier 

resistance is preferrable in all problems. Rather, we would suggest, as with 

optimality criteria, that a broad range of criteria are applicable and available 

for the evaluation of a particular design with respect to outlier resistance. 

R-admissibility is defined to encompass many of the measures of relevance. The 

next section is devoted to conditions for and some further thoughts on 

R-admissibility. 
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5. OUTLIER RESISTANT DESIGNS. 

The following lemma shows that there always exists at least one 

R-admissible design. 

Lemma 5.1. If ;A is A-optimal for (f,X) then ;A is R-admissible. 

Consequently, since ~l is a linear-optimal criterion, the trace-optimal design is, 

... 
'-' 
---

_, 
--
\ ,I 

~ 

-
', j 

'-' 

... 
for most problems (f,X), easily generated by an iterative algorithm. However, the ~ 

principal thrust of our development of outlier resistance is that some measure 

of resistance should always be used to evaluate a design choice. If for (f,X) a 

classical optimality criteria is applicable then it is necessary to determine if the 

resulting optimal design is R-admissible. If not, then other optimal designs 

might be examined to find one that satisfies both optimality and robustness 

considerations. The remainder of this section will be devoted to methods of 

determining if a specific design is R-admissible. 

Lemma 5.2. If; is both D-optimal and orthogonal for (f,X) then.:~ is R-admissible. 

_, 

.., 

~ 

._ 

_, 

The consequences of Lemma 5.2 are clear when considering the classical balanced -.; 

design situation. It is well known that most balanced othogonal designs are 

D-optimal. See for example Kiefer [(1958), (1975)]. Hence these classical 

balanced designs are R-admissible. 

The following example illustrates the specificity necessary to determine 

R-admissibility even when the designs satisfy the same optimality criteria. 

Example. Consider polynomial regression on X = [-1,1] with 

f'(x) = (1,x, ••• ,xP). 

1) For p = 1 ~l is D-optimal if 

--
~ 

'-I 

i.-1 

--
': i 

'-' 

I / 

I.I 
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By Lemma 2.8, ~l is R-admissible since it is both D-optimal and orthogonal. 

2) For p = 2 ~2 is D-optinlal if 

0 -3 . 

1.5 0 
• 

4.5 

It can be shown that if there exists a design~ such that~> ~
2 

then t has 

support (-1,b,l) for some b E(-1,1). We have computationally verified that 

there does exist such a~- Thus, ~2 is R-admissible. 

3) For p = 3 t
3 

is D-optimal if 

~3 c-1> = t3 c-1,r.s) = ~3 c11rs> = ~3 o> = 114. 

for which 
3.25 0 

15.75 

-3.75 

0 
6.25 

0 

-16.25 
0 

18.75 • 

Consider the design~ a linear combination of ~3 and the point mass o(x) 

at x = -.34; '= .94 , 3 + .06 0(-.34). Then 

[

3.02 .71 -3.52 -.7~ 
-1 15.54 -.75 -16.05 

.M (') = 6.15 .76 
18.69 

Clearly,> ~T Thus the D-optimal design ·is not R-admissible. This concludes 

the· example. 
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In the previous example a single point augmentation of ; 3 was used 

to show that ;
3 

is not R-admissible. Typically procedure·s for iterative cons-

truction of better designs with respect some criteria depend on single point 

augmentation of an initial design. Clearly if there exists x. an element of X 

and a, 0 <a< 1, such that ;x,a 

is preferred to;, ;x,a >;,where 

; = (1-a); + ao(x), x,a 

then; is not R-admissible. Moreover it seems reasonable to suspect that if 

there does not exist a pair (x,a) such that; >;then; is R-admissible. 
x,a 

Consider the following two lennnas: 

Lemma 5.3. If; is an element of such that M(;) is positive definite for -x 
(f,X) then; is not R-admissible if 

max min K (x,i,;)> 1-a for some a, 0 <a< 1. 
xe:x i a 

Where 

- a d(x,;) 

and 

i ~ il i2 ip 
m (;) = (m (;), m (;), ••• , m (;)). 

Lemma 5.4. If; and;* are elements of and;>;* then for all a, 0 <a< 1 
X 

(1~); + a;* > ;*. 

Lemma 5. 3 provides sufficient conditiors for the exi_stence of a single point 

augmented design; 
x,a preferred to;. Moreover by Lemma 5.4 if there exists 

a preferred design;* then all linear ~ombinations of;* and; are preferred 

·1 I 

I I 

to;. The following lemma partially ties the R-admissibility of a design; to _. 

the existance of a preferred single point design. 
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Lemma 5.5. If Xis closed and convex and K (x,i,;) is concave in x for all a 
I 

a and i (O ~a< 1, i = 1,2 ••• p), then; is R-admissible if and only if there 

does not exists a pair (x*,a*), x*EX and O <a*< 1, such that~ • ~x*,a* is 

preferred to~. 

LeDDI1a 5.5 is a fundamental result as it delineates the rather severe restrictions 

necessary for the use of single point augmentation. The assumption that 

Ka(x,i,;) is concave in x· for all a and each i is very difficult to satisfy. In 

general, given the structures of this problem it may seem reasonable to 

conjecture that if a preferred design exists-then there exists a preferred 

design; • As a counterexample consider simple_linear regression on 
x,a 

X = [-1,1]. The D-optimal design ~l with ; 1(-1) = ~1(1) =½is preferred to 

; where ;(-1) = ;(-1//T) = ;(1//T) = ;(l) = 1/4. However, there does not 

exist a design;. preferred to;. 
x,a 

In the previous sections we have developed foundational principles for 

outlier resistant design and discussed a consequence of these principles, 

R-admissibility. In this section, while we have shown that it is always possible 

to find an R-admissible design, we have also shown that it may be very difficult 

to establish the R-admissibility of an arbitrary design. In fact probably the 

most generally useful result of Lemma 5.5 is that single point augmentation, 

the foundation. of all optimal design generating algorithms, will 

usually not work. Obviously the need here is for efficient algorithms to 

R generate the elements of,!:! (f,X), or preferrably, theoretical insights into the 

general structure of MR(f,X)• While these objectives are yet to be met, for 

arbitrary (f,X), it must be noted that usually in a pa~ticular problem insights 

into structure of ~(f,X) can be derived from known results in design theory. 
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Utilizing these insights it is often a simple matter to characterize MR(f,X) 

* or minimally M (f,X). 
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* For gEG, 

A. l 

APPENDIX 

Proofs 

Lemma 1.1 

d{gx,g~) = f'(x)g-lg M-l(~)g'(g-l)'f(x) 

= d{x,~). 

Thus d(x,~) is invariant. To show that d(x,~) is maximal it is necessary to 

show that if 

d(x,~) = d(x,~) 

or equivalently 

f'(x)M-1(;)f(i) = f'(;)M-l(~)f(;) 

then there exists g an el~ment of G* such that 

((g -l)'f(x),(g -l)'M(;)g -l) = (f(x), M(~)). 

Let T and T denote two lower triangular matrices such that 

TT'= M(~) and TT'= M{~). Consider 

- -1, - -1 (g ) =Tr T for some r a pxp orthogonal matrix. 

Then 

<i -l)M{;)g - 1 =(Tr T-1){TT')(T r T-1)' 

-=TT'= M(;). 

However 

(g -l)'f(x) =Tr T-1f(x) 

and we require (g -l)'f(~) = f(x). Thus we must have 

r T-1f(x) = T-1f(x). 



A.2 

Such a r clearly exists since d(x,;) = d(;,~) or equivalently 

I -l II I - -i -I r T f (x) = I T f (x) 11· There£ ore there exists g an element of G* 

- - -1 -corresponding tog'= Tr T such that f(gx) = f(x) a~d M(g;) = M(;). 

Therefore d(x,;) is maximal invariant. 

Lemma 2.1 

Let z' = (f'(x),y) and o(z) be the probability measure with mass 1 at z. 

Then by definition 

IC8 H(z) = lim {8((1-e:)H + e:o(z)) - 8(H)}/e:. 
, e:+o 

Now, 

-1 8((1-e:)H + e:o(z)) = M ((1-e:); + e:o(x))y((l-e:)H + e:o(z)), 

M((l-e:); + e:o(x)) = (1-e:)M(;) + e:f(x)f'(x) 

and 

y((l-e:)H + e:o{z)) = (1-e:)y{H) + e: yf{x). 

Using the following identity given by Fedorov (1972), page 106, 
-1 -1 

M((l-e:); + e:o(x))-l=(l-e:)-l{M-1(;)- e:M (s)f(x)_f '5x)M {s)} 
1-e: + e:f'(x)M 1(;)f(x) 

it follows that 

lim {8((1-e:)H + e:o(z)) - 0(H)} /e: = M-1(;)f(x)y-M-l(;)f(x)f'(x)8(H) 
e:-1-0 

-1 ~ 
= M (~)f(x)(y - r (x)8) 

-1 = eM (;)f{x). 

Thus completing the proof. 
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A.3 

Lemma 2.2 

The proof of this le~a is to show that the influence function is a 

linear function of 8, a property that is clear from the definition. 

Lemma 2.3 

Take ~6=x with M(;) positive definite and let 

M(;) = (m1 (;), •• G , mp(;)) 

where 

m.(;) = /f(x)f.(x)d;(x) 
1 l. 

X 
and 

-1 1 · p 
M (;) = (m (;), ••• , m (;)) • 

Since 

I;(x;8i) = mi(;)~f(x) , 

it follows that 

~;(8i)= /It(x;8i)d;(x) 
X 

= mi(;)'/f(x)d~(x) • 
X 

Suppose f.(x) = 1, for all XEX, then 
J 

mj(~) = /f(x)d;(x) • 
X 

Consequently 

I;(8i) = mi(;)'mj(;) • 

(pX}} 

However M-1(;)M(~) = {oik} = {mi(;)'~(~)} 

and thus I;(8i) = oij as claimed. 
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Lemma 2.4 

The proof of this lemma is evident from the form of the integral. 

Lemma 3.1 

First we note that for all t with M(t) positive definite 

-1 
/d(x,t)dt(x) = tr M (t)M(t) = p • 
X 

Thus by the Cauchy-Schwarz inequality for all such; 

r = /{d(x,t)} 2dt(x) ~ {/d(x,t)d;(x)} 2 = p2 • 

X X 

Furthermore since 

/d(x,;)d;(x) = p 
X 

it follows that 

max d(x,;) > p 
xES(t) -

* By the Equivalence Theorem if; is D-optimal then 

* max d(x,t) = P 
xEx 

from which it follows that 

* max d(x,~) = p • 
xES(~*) 

* Thus the D-optimal de~ign ~ minimizes r. 

2 * * Furthermore since r ~ p and d(x,~) = p for all x in S(;) it follows that 

* * 2 /{d(x,~ )} 2d; (x) = p 

X 

* proving that t minimizes r. 
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Lemma 3.2 

Fedorov (1972),p. 125,presents and proves a theorem that is equivalent 

The following assertions: 

(1) 

(2) 

(3) 

* -1 * t minimizes tr M (~) , 

t* minimizes sup f'(x) M-2(t*)f(x) , 
XEX 

., -2 * -1 * sup f (x) M (~ )f(x) = tr M (t) 
xEx 

are equivalent for the problem (f,x). * Note t assigns measure one to a set 

of x where the supremum in (3) is achieved. 

and 

Now for C = I we have p 

R(~,I) = tr M-1(t) 
p 

R(t,I) p 
, -2 

= sup f (x) M (~)f(x) • 
xES(~) 

Thus by the result above the lemma is proved for C =I. 
. p 

and 

* In general for gEG corresponding to C we note that 

R(~,C) = R(gt,I) 
p 

Then applying the argument above to the problem (f,gx) completes the proof 

of this lemma. 
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Theorem 4.1 

* 1. For MEM (f,X), assume that Mis an interior point of the convex set 

M(f,x). Then there exists a positive number a such that the matrix 

Ma= (l+a)M is also an element of M(f,X). However M > M, which is 
- a 

* a contradiction. Thus Mis a boundary point for all ME M (f,X). 

2. Since Mis a boundary point of M(f,X) we can apply Caratheodory's 

3. 

Theorem and the result follows. 

* * Take gEG and MEM (f,x). Then g acts on M by 

* Assume that M is not an element of M (f,gx). 
g 

- * Then there exists M an element of M (£,gx) such that 
g -

M - M > 0 g g 

or 

Consequently M - M > 0 which is a contradiction. 

* element of M (£,gx) for all Mand g. 

Theorem 4.2 

Thus M is an g 

R * Take Man element of M (f,X) and assume that Mis not an element of M (f,X)-

* Then there exists Man element of M (f,X) such that M~ M. 

By the definition of MR(f,X), Mis positive definite. Thus, since M - M > 0 

d - d f · f 11 h M-l > M--l However M-l > M--l an Mis positive e inite, 1.t o ows tat _ 

implies mii -- m-ii for all i.·, i.·=1, ••• ,p. . ii -ii Consequently either m = m for all 

- * i or H is not an element of M (f, x). 

I I 
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A. 7 

ii -ii -1 --1 -1 --1 Claim: If m = m for all i, i=l, ••• ,p and M - M .?:. O, then M = M • 

Proof: -1 --1 { } . . Let A= M - M 2: O, A= aij , a11 = 0 for all i, i=l, ••• ,p. To show 

that aij = 0 for all i,j=l, ••• ,p, take x an element of RP; x'=(x1,x2, ••• ,xp). 

ihen 

x..-Ax = 
p 2 p p 
I xiaii + I I xixjaij 

i=l i=l j:/:i 

p p 
= I I X 

i=l j;'i ixjaij ~ 0 

Let xi= 1, xj = -1 and xk = 0 k = 1, 2, ••• , p 

k :/: i, k :/: j 

then x..-Ax = -2aij ~ 0 

or 

aij ~ 0 for all i,j • 

Let xi= xj = 1, xk = 0 k :/: i, k :/: j 

then x'Ax = 2aij ~ 0 

or 

aij ~ 0 for all i,j • 

Therefore aij = 0 for all i,j. 

- * Consequently either M =Mor Mis not an element of M (f,x) which are both 

contradictions. 

Therefore 

~(£,x) cM*(f,x). R * To show that M (f,X) CM (f,X) it is only necessary 

to show there exists an admissible design that is not R-admissible. See part 

3 of the example in Section 4. 
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Lemma 5.1 

The proof of this lemma is evident from the conditions for A-optimality. 

Lemma 5.2 

Let~ be D-optimal with M(~D) diagonal and assume that~ is not 

* R-admissible. Then there exists~ an element of =x such that 

- ii * ii -
m (~) ~ m (~) for all i - 1, 2, c •• , p 

with strict inequality for at least one i. 

Thus 

~ mii(~*) < ~ mii(~) = det M-1{~) 
i=l i=l 

-1 
since M (tD) is diagonal. 

-1 * p ii * By Hadamard's inequality, det M (~) ~ Il m (t) , 
i=l 

-1 * and equality holds if and only if M (~) is diagonal. 

Then 

1 * p "i * P · · 1 
det M- (t) ~ Il m1 

(~) < Il m11
(~0) = det M- (~D), 

i=l i=l 

which is a contradiction since~ is D-optimal. 

Lemma 5.3 

Fedorov (1972),page 106,presents and proves the following identity. 

Let~ = (1-a)t + ao(x) then for all x and a, 0 <a< 1, x,a 

mii(f;) 
i . 2 

_1 ii · a[m (~)'f(x)] } 
= (1-a) {m (~) - 1 - a+ ad(x,f;) 

-' 
~' 

I.I 

'-I 
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Now by applying this identity a sufficient condition for th~ 

existence of a preferred design~ can be established. From which a suffi-x,a 

cient condition to show that a design is not R-admissible follows. 

If~ is preferred to~, then for all i, x,a 

with strict inequality for at least one i, or using the identity above, 

or equivalently 

Let 

{mi(t) 'f (x) }2 
K (x,i,~) c ii - ad(x,~) 

a m (~) 

then if~ is preferred to~ it follows that x,a 

K (x,i,~) > 1-a 
a -

for all i with strict inequality for at least one i. 

* * Thus if there exists a pair (x ,a) such that 

* K *(x ,i,~) > 1-a for all i, a 

then t * * is preferred to~. The condition 
X ,a 

max min K (x,i,t) > 1-a for some a 
a 

XEX i 

is a sufficient condition for the existence of at least one such 

* * pair (x ,a). Therefore if the condition holds there exists at least one design 

t * * preferred tot proving that~ is not R-admissible. 
X ,a 
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Lemma 5.4 

* By definition of the preference ordering M(t) and M(t) are positive 

definite. Let 

Then 

* ta = (1-a)t + at 

* M(t) = (1-a)M(t) + a.M(t) 
a 

and it is well known that 

M-l(~) < (1-a)M-l(~) + a.M-l(~*) 
a -

'-' 
.;. 

~ 

I..J 

.... 

liia.l 

·-
_, 

with equality if and only if M(~) = M(~*). Thus the inequality in this case -' 

is strict and it follows that 

(1-a)mii(;) + amiic~*> > mii(~) • 
a 

* However;>~, consequently 

ii * ii . m (;) ~ m (~) for all i 

or for all a and i 

miict*> ~ (1-a)mii(~) + amiict*> • 

ii * ii Therefore m (~) > m (~) for all a and i. 
a 

Lennna 5.5 

* Thus~ > ~. 
a 

* * Clearly if there exists (x ,a) such that t * * is preferred to; then 
X ,a 

tis not R-admissible. Consequently if~ is R-admissible there cannot exist 

such a pair. This proves sufficiency. 

~ 

--
-' 

_. 

-.al 

_. 

~ 

.._, 

. * * Suppose~ is not R-admissible; that is, there exists /t such that~ is -. 

wi 
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preferred to E;. * * Then it must be shown that there exists a pair (x ,a) such 

that E; * * is preferred to E; for which a sufficient condition is 
X ,a 

max min Ka(x,i,E;) > 1-a for some a. 
xEx i 

Let Q be the p-dimensional probability simplex, then for q in Q, q~=(q
1

, ••• ,qp) and 

p 
I: q =1 

i=l i 
Q is the convex hull of the px·l indicator vectors, e:

1
, i = 1,2, ••• p. 

Then 
p 

min K (x,i,E;) = min I: Ka(x,i,E;)qi 
i a qEQ i=l 

and consequently 

p 
max min Ka(x,i,E;) = max min I: K (x,i,E;)q .• 
XE)( i xEx qEQ i=l a ]. 

p 
Q and X are closed convex sets. Moreover, I: K (x,i,E;)q1 is convex in q (linear) 

• 1 a i= 

and by assumption concave in x. Then by the Minimax Theorem, 

p p 
max min I: KN(x,i,E;)qi = min max I: K (x,i,~)q .• 
xEx qEQ i=l ~ qEQ xEx i=l a 1. 

Recall that is the convex hull of the point measures o(x), xEx. It follows -x 
that 

and 

p -
= max 
-E;E= 

X 

J L K (x,i,~)q. d~(x) a i X i=l 

p p * 
max I: K (x,i,E;)q. > J L K (x,i,~)q. d~ (x) 
xEx i=l a 1 

- X i=l a 1 

p 
= I: 

i=l 

* q.{/ K (x,i,~) d~ (x)} . 
i a 

X 
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Thus it is enough to show that there exists an a, 0 <a< 1, such that for 

all i, 

* / K (x,i,~) d~ (x) > 1-a. 
X a 

Now by definition 
c1M-l(~)f(x)f'(x)M-1(~)£i , _1 

K (x,i,t) = ii - af (x)M (t)f(x) • 
a m (t) 

· Thus 

~ K
0

(x,i,~) d~*(x) = {m11(~)}-1et1-1C~)M(~*)M-1(~)e1 - atr M-l(~)M(~*> • 

-1 * -1 Note that O < tr M (t)M(t) <~since M (t) is positive definite. 

-1 * Let tr M (t)M(t) = c then 

* / K (x,i,t) dt (x) > 1 - a 
X a 

implies that 

{ ii }-1 ~ -1 * -1 
m (t) £iM (;)M(; )M (;)£i > 1 - a+ ca. 

Consequently it is sufficient to show that if;* is preferred tot then for 

all i 

{mii(;)}-lciM-l(t)M(~*)M-l(;)Ei > 1 

so 

£iM-l(t)M{;*)M-1(;)£i > mii{t) = -1 c:M (;)E:. 
l. l. 

or 

~ -1 * -1 , -1 c1M (t)M{~ )M (;)£. - £.U (;)e::. > 0. 
l. l. l. 

* Claim: If; is preferred to; then for all i 

£iM-l(;)M{t*)M-l(t)£i - £iM-1(;)£i > Ei{M-1(;) - M-1(;*)}£i. 
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A.13 

-1 -1 * Proof: Let D = M (;) - M (;);then the claim is that for all i, 

, -1 * . , 
EiM (;)M(; )DEi > EiDEi; 

so 

£1{M-l(t)M(;*)D - D}Ei > 0. 

Now, 

£1{M-l(;)M(;*)D - D}Ei = £1{M-l(;)M(~*) - I}DEi 

= £1{M~1(E;) - M-l(;*)}M(;*)DEi 

, * 
= EiDM(; )DEi. 

* Since M(;) is positive definite, 

, ~* EiDM(~ )DEi > 0 for all i 

* and the claim follows. Moreover since; is preferred tot, 

ii * ii m (;) ~ m (;) for all i. 

Therefore 

E1{M-1(E;) - M-l(;*)}Ei = m11 (E;) - m11 (;*) _?: 0 

for all i. 

to ;. 

* * Thus there exists a pair (x ,a) such that;* * is preferred 
X ,a 
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