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ABSTRACT 

Optimal designs g for polynomial regress!on of degree n are n 

considered. A measure of model robustness is defined for general model 

spaces. The model robustness of g for polynomial model spaces is 
n 

examined. Some robustness properties of the limiting design g0 are 

considered for the limiting polynomial model space. 
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lo Introductiono Let!'= (£
0

, £
1

, ••• , fn) be a vector in Rn+l defined 

by the set of linearly independent functions£., i = 0, 1, ••• , n, on some 
]. 

compact space X. An experiment consists of selecting an x in X and observing 

a random variable Y(x) with regression function E(Y\x) = !'f3 and variance 

2 
a • We assume that the functions, f., are known while the 

]. 

2 
parameter vector~·= (f3 0, (3 1,oo•, ~n) and a are unknown. Ifs is a 

probability measure on X then~ defines an experimental cesign. 

Exact designs concentrate mass ~(x.) at points x., i = 1,2, ••• , r, 
l. ]. 

subject to the restriction that N~(x.) = n. be an integer for all i. An exact 
1 l. 

design specifies that the experimenter is to take N uncorrelated observations n. 
l. 

at x., i == 1,2, ••• , r. The res_ulting covariance matrix of the least squares 
:L 

estimate of 8 is of the form 

(o2/N) M-l(E;) 

where the information matrix, M(E;), of the design has elements, 

J f.(x) f.(x) d~(x) 
1 J 

X 

Approximate designs are not constrained by the requirement that Ns(x.) be 
1. 

integral for all i. Here we consider only approximate designs. For 

justification see Fedorov (1972)0 

Many criteria have been proposed for optimizing the selection of a design, 

~- Generally, they all specify the selection of a design which minimizes some 

functional of the information matrix, M(~). We consider the functionals, 

(i) determinant [M-1(t;)] 

(ii) sup df(x,E;) 
xsx -

-1 
where df(x,~) = .f'(x) M (;) i(x) . 
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Designs minimizing these functionals are called D- and G-optimal designs, re­

spectively. It is well known that D-optimal designs minimize the content of 

confidence ellipsoids for S while G-optimal designs minimize the maximum pre­

diction variance over X· Kiefer and Wolfowitz (1960) showed that for approximate 

designs D and G optimality are equivalent. Additional functionals and resulting 

equivalences are given in Fedorov (1972) and Kiefer (1974). 

Clearly the G-optimality (D-optimaltiy) of a design depends on the model 

specification!• In the ne~t section we define model robust designs and 

consider the robustness of some designs for polynomial regression. Two 

conjectures are presented on the G-efficiencies of a class of designs for 

polynomial models. 

The final two sections of this note are concerned with large degree 

polynomial regression: Lets be the G-optimal (D-optimal) design for nth 
n 

order polynomial ~egression and consider the sequence ~1 , s2 , •••• Kiefer and 

Studden (1976) find the limiting design So <sn ~ So as n ~~)and examine some 

of its properties. Some of their findings are reviewed in Section 3. In 

Section 4 we present additional characteristics of g
0 

and relate them to· the 

problem of determining a model robust design for polynomial model spaces. 

2. Model Robustnesso The problem of determining a model robust design 

has been formulated in many settings (see Box and Draper (1959), Atkinson and 

Cox (1974), Huber (1974), Stigler (1971)). Let F be a space of models each 

specified by a function f(x) defined over X· * We define a design~ to be a 

* model robust design with respect to .f if~ maximizes the minimum efficiency 

over E. Since the D-efficiency of a design is no less than its G-efficiency 

(Atwood (1969)) we shall consider only the latter. The selection of a model 
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robust design by this or any of the other criteria that have been put forward 

is often extremely complicated. Thus, designs which are "almost robust" (i.e. 

have high efficiencies over F) are of great interest. 

generalized definition of G-efficiency useful: 

We find the following 

Definition 2.1. For fixed£., the G-efficiency of the designs relative 

to the designs* overs is 

Gis ,;*; S) - inf sup 
xeS x*eS 

df{x* ,s*) 

df(x,s) 

This definition allows a comparison of the behavior of two arbitrary designs 

on some spaces. When;* is the G~optimal design for! and S = X, this 

reduces to the usual definition of the G-efficiency (see Atwood (1969)) of 

the designs relative to the G-optimal design, s*, over the full design 

space X. Thus a model robust design,;**, is defined by the property 

sups inffc! G/s,l;f; X) = inffeE_ Gf(s**,f;f; X) 

where sf is the G-optimal design for the model g__. 

In the following we consider model robustness for polynomial models; 

X = [-1, 1], 

f'(x) = (1,x,x2, ••• , xn) • 
-n 

Let !k = (£u), n = 1,2, ••• , k 
1 

M (;) = J f (x)f'(x) d;(x) 
n -1 -n .-n 

-1 
d (x,s) = f'(x)M f (x) 

n -n n-n 

and for notational convenience, Gn(·, •; •) be the G-efficiency for~- !k is 
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the polynomial model space of polynomials of degree not gr~ater thank. For 

k = 2 a model robust design, say ~2 , has mass (/10 - 1)/6 at +1,-1 and the 

remaining mass at 0. Clearly a model robust design over a two point space is a 

design that has maximum G-efficiency among all designs with equal G-cfficiency. 

2 
For~, 

while for ~2 

.838 

However fork> 3 finding a model robust design directly is a tedious 

algebraic exercise which provides little insight into a general solution. While 

we will address the properties of model robust designs in detail in a sub­

sequent paper some immediate simplification of the problem is possible: In 

general, for each k > 1 there exists a symmetric model robust design with no 

. more than k + 2 points of support (k + 1 when k is even) which must include 

-1, 0, and +1. To prove symmetry it is sufficient to note that the space of all 

model robust designs for fixed k is convex and that d (x,~) is convex on the 
n 

design space for all n = 1,2, ••• ,k (see for example Stigler 1971). Symmetry 

reduces the problem to considering measures on [0,1]. Since the model 

robustness of a design is determined by its first 2k + 2 moment~, k + 1 are 

zero by symmetry, the dimension of the support is determined by the solution to 

the classical moment problem.(see Shohat and Tamarkin, p. 42, 1943). Finally 

the inclusion of the points -1, 0, and +l follows from a simple scaling 

argument. 

Kendall a.nd Stuart ( 1968), p. 161, among others, recommend the· use of i;k., 

the G-optimal design for the largest order polynomial., when designing for !.k• 
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Clearly, sk will not be model robust unless k = 1, although it may be 

"almost robust." Our consideration of this recommendation resulted in the 

following conjectures: 

Conjecture 2.1. For all j::; k 

sup d. (x,sk) = d. (l,sk) ( = d. ( 0 1,sk)} 
xe[-1,1] J J J 

Conjecture 2.2. For all j ~ k 

d.(l r:- ') = (k+l) - (k·D
2 

J '':lk ' k 

For j = k the conjectures are obviously true. We have verified by computation 

that the conjectures are true fork S 10. The proof of these conjectures seems 

to depend on properties of partial sums of orthogonal polynomials defined with 

respect to sk· 
3. The limiting design, g0• The G-optimal design, s , for f minimizes n -n 

-1 sup f 1 (x) M (s) f (x) 
X

-n n -n xe 

among all designs son [-1,1]. It is well known (Guest (1958), Fedorov (1972)) 

that one such designs concentrates mass 1/(n+l) at the zeros of (l-x2)P'(x) 
n n 

where P (x) is the nth order Legendre polynomial. The following theorem is n 

given in Fedorov (1972), page 91, and by Kiefer and Studden (1976). 

Theorem 3.1. The sequences , n = 1,2, ••• , of G-optimal designs n 
2 \ -1 converges weakly to 1;0 where so has the density [n(l - x) ] • 

The proof consists of showing that if x1, ••• , xn+l is the support of Sn then 

8. = cos-1x. are uniformly distributed in the interval [O,n] as n~ ~. Thus, 
1 1 

w 
sn ~ so where s 0 is the distribution -of X = cos e and e is uniform on [O,rr]. 

Let 

d (s) = sup d (x, s) 0 

n X n Xe: 



-

-
..., . 

6 

It is well known that d (~ )= n + 1 and that the supremum is obtained at the n n 

points of support of~ . 
n 

The following additional results by Kiefer and Studden will be useful: 

dn(cos0,;o) = n + ½ + sin[(2n+l)e] 
2sinB 

where Uk(x) are the Chebyshev polynomials of the second kind. 

ii) Sup Uk(x) = Uk{l) = lim Uk(x) = k + I 
XEX X tl 

for all k = 0, 1, 2, • 

iii) 
n + 1 

2n + 1 -+ lj as n -+ co • 

iv) For each E >O there exists a design ;e: such that 

n + I 
lim infn-+oo d (;) > 1 - e:. 

n e: 

The first two results are necessary for the third which shows that the limit of 

the sequence of G-efficiencies is½. This result is somewhat surprising and led 

Kiefer and Studden to question the existence of designs with limiting 

G•efficiency equal to one. The fourth result is the product of their inquiry. 

Note that property ii) proves Conjectures 2.1 and 2o2 fork= m. 

4. Robustness of So• Consider the polynomial space~ and suppose now 

that k is allowed to become arbitrarily large, then sk-+ s0 and the G•efficiency 

th of so for n order regression becomes (n+l)/(2n+l). Recall inff F (n+l)/(2n+l) = \. 
e-o, 

Clearly, we would prefer a substantially larger efficiency for a design to be 

adequate for E.k• However, as will be shown, this result is a consequence of 
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a singularity in dn(x,g 0) at± 1 as n~ ~. This tends to give a distorted 

view of the robustness properties of So• 

Let S£ = [-l+e:,1-e:], 1 > e: > O. The following theorem shows the behavior 

at ~O relative to ~n over SE as n + 00 • 

Theorem 4.lo For all O < & < 1 

lim G (~O'~ ;S) = 1 . n . n e: n~ 

Proof: Clearly, for any O < e:<l there exists an ne: such that for all n ~ ne: 

sup d (x,~) = n + 1 . 
S n n xe: e: 

Thus, 

= inf n+l 
S dn(x,~o) 

xe: e: 

for n > n. Let x = cos9, 0e:(cos-1 (1-e:),cos-1(-l+e:)). From result i, 
- e: 

__ n_+_l __ = (1 + l) [i + L + sin(2n + 1)9] -l 
dn (cos9 ,~

0
) n 2n 2n (sin6) _ 

For all n and 9 e: (O,n) 

Thus, 

0 < jsin(2n + 1)91 < 1 • 

sin(Zn + l)S +Oas n + 00 for all 9 e: [cos-1(1-e:),cos-1(-l+e:)]. 
2n (sin8) 

The result follows. 

The theorem shows that for any 1 > e: > 0, the limiting design ~O is asymp­

totically equivalent in the sense of G-efficiency to the G-optimal design over 

the interval Se:. This result is consistent with a fundamental property of G­

optimal designs in the finite case: The G-optimal design places measure one on 

the points of maximum prediction variance. Therefore, if a continuous design 

with support Xis G-optimal it seems reasonable to expect that the prediction 

variance must be maximized at each point in X· The following lemma illustrates 

this • 
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Lemma 4.1. For all x £ X 

n + 1 
lim ---- = 1. 

n ~ dn(x,so) 

8 

Proof: For x £ (0,1) the result is immediate from the proof of Theorem 4.1. 

The result follows (see i~, section 3). 

Note that for 0 < £ < 1, 

lim inf (n+l)/dn(x,~o) 
n~ x£S£ 

However, for£= 0, 

= inf lim (n+l)/dn(x,~o) = 1 • 
x£S£n~ 

½ = lim inf (n+l)/dn(x0 ,~0) # inf lim (n+l)/dn(x,~0) = 1 
n-+<X> xEX xsx n-+<X> 

The left hand side represents the limit of the sequence of G-efficiencies, while 

the right hand side may be interpreted as the G-efficiency for the limiting 

design ; 0 and the limiting model £0 , fn + f 0 as n + 00 • 

The previous results suggest that if the experimenter is mainly interested 

in predicting on some subset of the open interval (-1,1) and the degree of the 

polynomial is unknown then ~O could be a reasonable (albeit not optimal) choice. 

In what follows we will present a brief outline of the model robust· 

characteristics of ;
0 

on selected subsets of (-1,1). 

For any finite n the value achieved by G (;0 ,; ;S) is a function of e and 
n n £ 

depends on the extrema of the Chebyshev polynomials, u
2
n(x), in the interval SE. 

As n increases the location and number of extrema change as well as the values 

of u20 (x) at the extrema. Some insight into the relationship between£ and 

Gn(;0 ,;n;SE) can be obtained by considering the smallest value of E that corre-
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spends to the largest possible G-efficiency for each f , n = 1, 2, •• 
Ll 

Table 

1 gives sup G (~
0

,~ ;S) and the corresponding value of e: for n ~ 2, where s 
O<e:< o n n e: n 

-n 
is selected such that S0 contains all the roots of u2n(x). Clearly if e: is 

n 
* allowed to become arbitrarily close to 1 then for n odd there exists an e: such 

that 

while for n even 

for all e:. Our restriction of e: to the interval (O,o ] thus excludes only that 
n 

portion of X at the boundaries+ 1. For n = 1 

Note that for ally> e: and all n 

G (;o,; ;S) < G (;o,; ;Sy) • n n e: - n n 

The results in Table 1 do not contradict Theorem 4.1 since both e: and n were 

allowed to vary. 

Table 2 gives G (;0 ,; ;S) fore:= .01, .05 and .1. Table 2 shows that 
n n e: 

the convergence of Gn(;
0

,;n;Se:) is not monotonic, however this characteristic 

can be easily explained by considering some fundamental properties of dn(x,;
0

) 

or equivalently u2n(x). The G-efficiency G (~
0
,; ;S) depends only on the 

n n e: 

supxe:Se: u2n(x). For fixed e:, u20 (x) has fewer than n local maxima in Se:. If 

(m) th (1) (2) C2n-l) 
x corresponds to them local maxima where x < x < ••• < x , 

n n n n 

then form fixed 
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I (m) I I (m) I 
U2n(xn ) < U2(n+l)(xn+l) 

and 

jx(m)I < lx(m)I < 1 • 
n n+l -

Also, as n ~ 00 , lx(m)I ~ 1 and therefore the irregularity of G (~0,~: S) is n n n E 

caused by the increasing values of the local maxima and the passage of x(m) 
I Il 

corresponding to these maxima beyond the interval S£. For very large n the 

maxima are "tightly packed" in the interval [-1,1] thus the convergence is 

much smoother. 

By presenting the efficiency of ~O for S we are not arguing that the 
£ 

variance in (-1,1] - S he ignored but rather that some discounting needs to 
£ 

be considered. Table 1 clearly shows that for large order polynomial 

regression; has high efficiency relative to~ for essentially all subsets u n 

of (-1,1). Further while recognizing that ~O was not derived as a model 

robnst design for F the efficiencies in Table 2 are probably not unreasonable 
~ 

for such a large model space. In a practical view it might be desirable if 

the efficiencies were decreasing for larger order polynomials and not increasing 

as they are for ;
0 

on SE. Such a characteristic might be used to select a 

specific design from the class of all model robust designs for some model 

space .Ek· 
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- TABLE 1 

_, Sup G-efficiency in S for restricted s; 
e 

supO<~ G (s 0,s :S) = G n n e n -n 
«-
n 2 3 4 5 6 7 8 9 10 11 12 50 100 1000 

Gift! LO .99 .97 .96 .95 .94 .93 093 .93 .92 .92 .90 • 89 .89 

.134 .074 .046 .031 .022 .017 0013 .011 .009 .007 .006 4xl0-4 10-4 10-6 

bail 

.. 
-

TABLE 2 
._ 

G-efficiency of s0 in Se for e = • 01, • 05, • 10 • . .. 

'-1 1 2 3 4 5 6 7 8 9 10 11 12 50 100 1000 

~ _, 
.01 .68 .62 .62 .63 .66 .71 .76 .83 .90 .93 .92 .92 .94 .975 .997 

.DS .71 .73 .84 .97 .96 .95 .94 .93 .93 .93 .92 .92 098 .989 .998 

LO .76 .88 .99 .97 .96 .95 .94 .93 .96 .97 .97 .97 .99 .994 .999 ._ 

-
.. 
--
._ . 

~ 

-
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