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Abstract 

A decision maker is seen to be coherent in the sense of de Finetti if, 

and only if, his probabilities are computed in accordance with some finitely 

additive prior. If a bounded loss function is specified, then a decision 

rule is extended admissible (i.e. not uniformly dominated) if, and only if, 

it is Bayes for some finitely additive prior. However, if an improper, 

countably additive prior is used, then decisions need not cohere and 

decision rules need not be extended admissible. Invariant, finitely addi­

tive priors are found and their posteriors calculated for a class of prob­

lems which include translation parameter problems. 
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o. Introduction. The main object of this note is to present a simple formula-

tion of statistical decision problems using finitely additive probabilities as 

has been recommended by Bruno de Finetti [7] and Leonard J. Savage [13]. One diffi­

culty is that the theory of conditional distributions for finitely additive proba­

bilities is relatively new and still incomplete. (Some major results are in 

Lester Dubins' paper [4].) Nevertheless, it is possible to characterize coherent 

conditional odds functions as being the posteriors of finitely additive priors, 

a result which was proved by Freedman and Purves [8] for finite spaces. There 

is probably an interesting extension of their theorem in a countably additive 

setting as well, but we suspect that such-a result would be more difficult than 

Theorem 1 and its corollary. Theorem 1 is proved by a simple separation argu­

ment and the same type of argument also yields a characterization of the extended 

admissible decision rules as being just the Bayes rules, at least in the case of 

a bounded loss function (Theorem 2). The computation of the Bayes rule for a 

given finitely additive prior typically requires its posterior and Theorem 3 

enables one to find the posterior for a natural prior in a class of generalized 

translation parameter problems including the Behrens-Fisher problem. The 

final section treats briefly the relationship of improper, countably additive 

priors to the finitely additive theory. Many of the improper priors which are 

commonly employed lead to posteriors which could have been reached from a proper, 

finitely additive prior. However, this is not the case for every improper prior 

and such priors can result in incoherence and uniformly inadmissible decision 

rules (Example 5.2). 
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1. Preliminaries. Let S be a nonempty set. A probability rr on S here· 

means a finitely additive probability measure defined on all subsets of S. 

Denote by P(s) the collection of all probabilities on S and by L(s) the 

space of all bounded, real-valued functions with domain s. To each rr in 

P(s) corresponds a unique nonnegative linear functional t on L(S) such that 

(1.1) 

for all ES s. Furthermore, every nonnegative linear functional t on L(S) 

such that 1(18) = 1 determines a rr in P(s) by (1.1). Henceforth, such an 

t is identified with the corresponding rr and, as suggested by de Finetti, the 

indicator function lE is identified with the set E. The value of rr at a 

function f will be written rr(f), j f drr, or J f(s)rr(ds). 

The following lemma is a slight improvement of Theorem 1 in [10], 

and the proof is almost the same. 

Lemma 1. ~ F5L(S). ~ (i) there exists!. rr in - P(S) 

rr(f) 2: 0 £2E !.!! f e F g, ,2 only if, (ii) every finite, convex combination 

.2!_ functions in F has!. nonnegative supremum. 

Proof: Because rr is a nonnegative linear functional, it is trivial that (i) 

implies (ii). Now assume (ii) and give L(S) the sup norm topology. Let C 

be the set of all functions of the form a1f 1 + ••• + anfn where 

fie F for all i. Define N = {f e L(s): sup f < o}. Then C 

a. > 0 and 
l. -

and N are 

convex sets which are disjoint by (ii). Furthermore, the interior of N is 

nonempty since it contains, for exanple, the function f = -1. By a standard 

s·eparation theorem ( [ 6], p. 417), there is a nontrivial, continuous linear 

functional t and a real number r such that t(f) ~ r on C and 

t(f) ,5 r on N. Because O is a limit point of both C and N and t is 

continuous, the constant r must equal O. Thus t is a nonnegative functional 
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and the rr if (i) can be taken to be -1 a t where a= t(l). 

A rr in P(S) can be extended to functions f on S, which are 

bounded below, by taking the inner integral thus. 

(1.2) rr(f) = sup rr(f An). 
n 

Here f An is the minimum of f with n and n ranges over the set of 

natural numbers. 

D 

... 
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2. Coherence ~ .! theorem of Freedman ~ Purves. Let X and ® be 

nonempty sets to be thought of as the set of possible observations and possible 

states of nature respectively. Let p be a conditional probability~ ® 

given X, that is, a mapping from ® into P(X). For e e ® and B sx, 

p(e){B) will sometimes be written p
8

(B) or p(B(e). Consider, informally 

at first, a game with three participants known as the bookie, the gambler, 

and the master of ceremonies (MC). The MC selects e e ® and then, using 

the probability p(e), selects x e X. Next the MC reveals x to the 

bookie and the gambler. Then the bookie posts odds on subsets of ®, after 

which the gambler places a finite number of bets. Finally, the MC reveals 

e and the bookie and the gambler settle up. As shown by Freedman and Purves 

in [8] for the case when ® and X are finite, the bookie must post odds 

consistent with some posterior distribution or else the gambler can attain 

positive expected winnings for all values of e. The object of this section 

is to extend their result to infinite sets. 

It is convenient, for later applications, to equip ® and X with 

a-fields s1 = B(®) and s2 = B(X) of subsets. A conditional odds function ------
q is a mapping from XX a1 to the unit interval. The interpretation is 

that, after observing x e X, the bookie posts the odds q(x, B): 1 - q(x, B) 

on sets A simple betting system is a pair (A, b) where 

and b is a bounded, real-valued, s2-measurable function on X. Here the 

interpretation is that, after observing x, the gambler stakes b(x)q(x, Ax) 

on the event Ax= {e:(e, x) e A}. The payoff from the bookie to the gambler is 

~(e, x) = b(x)[A(e, x) - q(x, Ax)] 

and the expected payoff, for a given e, is 

E(e) = J~(e, x) p(dx(e). 

In an unconditional setting ([7], p. 87), de Finetti has defined coherence to be 
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the absence of a combination of bets which results in a uniformly positive 

loss. Similarly, in this note an odds function q is called coherent if 

there does not exist a finite number of simple betting systems 

with associated expected payoffs 

that 

(2.1) inf{E1{e) + ••• + En{e)J > O. 
e 

••• , E n such 

This definition could be modified by allowing infinitely many bets or by 

weakening the requirement of uniform positivity in (2.1). Buehler [3] has 

also explored "preference-reversal" coherence, a notion of coherence formulated 

without betting. 

An element rr of P(®) is called a prior. Each prior rr together with 

the conditional probability p determines a marginal me P(X) by the formula 

(2.2) m(B) =JP(Ble)rr(de) 

for BS X. 

Theorem 1. ! conditional ~ function q is coherent g, ,!!!.2. only g, there 

!!, !. prior rr such that,~ every simple betting system (A, b), 

(2.3) fJb(x)A(e, x) p(dx(e)rr{de) = [b(x)q{x, Ax)m(dx),' 

where m is ~ marginal .2!. err, p) .2!!. x. 

Proof: Apply Lemma 1 with S = ® and F the collection of all functions 

E(e) which are expected payoff functions of a simple betting system. Use 

the fact that F is closed under multiplication by a real constant and also 

use the definition of m. D 

A conditional odds function q can be regarded as a conditional proba­

bility on ® given X if, for each x, q(•lx) = q{x, ·~) is an element of P(®). 

.... 

.... 

... 

.... 

. '-
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There is good reason for the bookie to select an odds function q which is 

a conditional probability since otherwise, for those x· at which q(x, •) 

is not in P(®), the gambler can inflict a sure loss ([10], Theorem 5). 

A posterior~.! prior rr (relative E.2, Bi X 92) is a conditional 

probability q on ® given X such that for all bounded, real-valued, 

s1 X s2-measurable functicns q, on ® x X, 

(2.4) ss~ce, x)p(dxfe)rr{de) =J!~(e, x)q(de(x)m{dx), 

where m is the marginal of (rr, p) on x. 

Corollary 1. ! conditional probability q on ® given X !!_ coherent !f, 

~ only g, iE, ,!!. .! posterior ~ !2!!!.! prior 1T. 

The corollary is not as satisfactory·as it may seem. For as Lester 

Dubins [4] has shown, not every prior has a posterior. Thus a question 

implicit in the corollary and of some independent interest is for which 

priors do posteriors exist. A special case is treated in Section 4. 
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3. Decision problems~ extended admissibility. To formulate an abstract 

statistical decision problem, introduce, in addition to the sets X, ® and 

conditional probability p, a nonempty action set A and a loss function - - ----
L which maps ® X A to the nonnegative reals. A (randomized) decision~ 

6 is a conditional probability on A given X. The E.!!.! r(o) of a 

decision rule 6 is defined by 

(3.1) r{o){e) = r{e, a) 

= JL'{e, 6(x))p(dx(e), 

where 

L'(e, v) = fL(e, a)y(da) 

for e e ®, x e X, ye P(A). A mapping f from X to A is a pure decision 

~- Such an f can also be regarded as a randomized rule if, for each x, 

f(x) is identified with that element of P(A) which assigns probability one 

to {f(x)}. 

Notions of admissibility will be formulated relative to a fixed collection 

D of decision rules and elements of D will be called D-rules. D can be 

thought of, at present, as the collection of all decision rules, but, in some 

applications to come, it will be taken to be the set of decision rules which 

are measurable in an appropriate sense. As usual, a D-rule 6 is admissible 
0 

if there does not exist a D-rule 6 such that 

r(e, &) ~ r(e, 6
0

) 

for all e with strict inequality holding for some e. Call 

if there does not exist a D-rule 6 for which 

6 e-admissible 
0 

for all e. As in Blackwell and Girshick [2], 6 is extended admissible if it 
0 

... 
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is e-admissible for every e > O. As is easily seen, 6
0 

is extended 

admissible if, and only if, 

inf sup[r(e, 6) - r(e, 6 )] > O. 
6 e O 

-

Obviously, every admissible rule is extended admissible. However, the converse 

is false, as Example 4.1 (or a simpler example) shows. 

A decision rule 6
0 

is Bayes for a prior rr if 

for all decision rules o. 

Theorem 2. Every Bayes~!!. extended admissible. If the loss function L is ---
bounded, ~ E.h,! ~ D !!, convex, ~ every extended admissible ~ ,!!. Bayes. 

Proof: The first assertion is a trivial consequence of the definitions. To 

prove the second, suppose 6 is extended admissible. 
0 

Set S = ® and take F 

to be the collection of all functions r(o) - r(o
0
), where a is a decision 

rule. The collection D is convex by hypothesis and, consequently, so is F 

because 

p1r(&1)+ ••• +p r(6) = r(p1&1+ ••• +p 6) . n n nn 

for pi~ 0, p1+ ••• +pn = 1. By (3.3), Lemma l(ii) and, hence, (i) hold. 

Obviously, 6 is Bayes for the rr of Lemma l(i). D 
0 

The remainder of this section is devoted to the problem of calculating a 

Bayes rule for a given prior. The conventional solution begins with the 

calculation of the posterior distribution. As already mentioned, a posterior 

need not exist in the general finitely additive setting. However, if there is 

a posterior, the Bayes rule can be calculated in the usual fashion by minimi­

zing posterior loss. 
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Two cases will be considered. Until the completion of Lemma 3.l below, 

take D to be the set of all decision rules. Measurability restrictions will 

be imposed later. A posterior q for a prior rr is complete if (2.4) holds 

for all bounded, real-valued functions ~ on ® x X. 

Lemma 3.1. Let q ~.!complete posterior !2!, ~ prior rr ~ suppose 

~, !2!, ~ x e X, ~ infimum 

inffJL'(e, y)q(delx): ye P(A)} 

is achieved at y = 6 (x). Then, if L _is bounded, 
0 - -

6
0 

is Bayes~ rr. 

Proof: Let m be the marginal for (rr, p) and let 6 be a decision rule. 

Then rr(r,6
0
)) = JJL'(e, 6

0
(x))p(dx(e)rr(de) 

= JJL'(e, o
0

(x))q(de(x)m(dx) 

~fJL'(e, a(x))q(de(x)m(dx) 

= JfL'(e, o(x))p(dxfe)rr(de) 

= rr(r(6)). 

Assume from now until the end of Lemma 3.3 that ®, X, and A are 

equipped with these cr-fields of their subsets: B 1 = d( ®), B2 = B (x), and 

B
3 

= B(A). Let C(A) be the collection of those probabilities y in P(A) 

which are countably additive when restricted to B
3 

and identify each such 

v with its restriction to ira.
3

• There is a natural cr-field ~ of subsets 

of C(A); namely, L) is the least cr-field such that, for every E e B3, 

the mapping y ~ y(E) is measurable from C(A) to the unit interval equipped 

with its usual Borel sets. (This measurable structure on C(A) was explored 

by Dubins and Freedman [5].) Take D to be the set of decision rules 8 

which are measurable maps from X into C(A). In more coonnon parlance, D is 

.... 

D 
I 

6-1 

.... 
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the collection of regular conditional probabilities on A given X. Assume 

also that p is a regular conditional probability on X given ® and that 

L' is Bi X s
3
-measurable. A decision problem is called measurable if all the 

assumptions of this paragraph hold. 

Lemma 3.2. ~.!measurable.decision problem, El!:! function (e, x) ~ L'(e, 6(x)) 

!!_ B
1 

X s
2

-measurabl~ ~ every D-~ 6. 

Proof: Almost immediate from the definition of L' in (3.2) and the Lemma in· 

Section 5 of [15]. 

Lemma 3.3. ~ q !?_! !. posterior ~ Tf relative !2, B1 x B2 ~ ~ 6
0 

~ .! D-rule. Then each £f El!:! following conditions implies !E.!_ successor. 

(a) For every x e X, 

(b) For every x e X, 

= inf JL(e; a)q(del x). 
aeA 

JL'(e, & (x))q(delx) = inf fL'(e, y)q(delx). 
- o yeC(A) 

(c) .!£. L ,!!. bounded, ~ 6
0 

!!, Bayes ~ TI'. 

Proof: To see that (a) implies (b), calculate as follows: 

JL'(e, y)q(defx) =JJL(e, a)y(da)q(defx) 

=jjL(e, a)q(delx)y(da) 

~JJL'(e, o
0

(x))q(delx)y(da) 

= JL'(e, 6 (x))q(defx). 
- 0 

D 

Here the successive lines are by {3.2), by Fubini's theorem, by (a), and obvious, 

respectively. 

The proof that (b) implies (c) is a calculation like the one used in the 
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proof of Lemma 3.l, but it relies on Lemma 3.2 for the measurability of L'. 

Most of the results presented so far require that L be bounded. The 

following lemma treats a general nonnegative loss function, and, while the 

result is far from satisfactory, it does find application in Example 4.1. 

Lemma 3.4. Let 6
0 
~ .! D·E:.!!: which!! Bayes !£!: !h!, prior TT ~ !h!, 

loss function !!. Ln = L A. n !£!: every n = 1, 2, • • • • Suppose also ~ 

where r is the risk function corresponding 
n - - - ---- --------

to Ln. Then 6
0 

is Bayes!£!: rr !!!, !h!, original decision problem. 

Proof: Let 6 be a D-rule and calculate thus. 

rr(r(o)) > TT(r (5)) > TT(r (o )) -+TT(r(o )). 
- n - n o o 

The first inequality is obvious. The second inequality and the convergence 

are by hypothesis. 

0 

... 

0 



.. .. 
-12-

4. Posteriors for translation families. The problem considered in this section 

is the existence and calculation of the posterior for a (generalized) transla­

tion family of distributions when the prior is invariant in an appropriate 

sense. Assume throughout this section that ® is a locally compact topological 

group and that X = ®· Suppose also that ® is amenable in the sense that there 

exists a finitely additively, left-invariant probability on the Borel subsets 

B of ®· The following condition is equivalent to amenability ([9], Theorem 

3.6.2) and also proves useful in calculations. Let h be the left Haar 

measure on B. 

Follner 's Condition. For every e > 0 and every compact set K S ®, 

there is a Borel set US® with O < h(U) < ~ and 

(4.1) 1h<~wfl1 < e 

for all e e K.(Here A a B = (A - B)U(B - A).) 

Using Follner's Condition, one can find a left-invariant mean rr as follows: 

Consider the collection {(e, K): e > 0, KS®, K compact} which is directed 

under the relation '<' where (el, Ki)~ (e2, K2) ¢>el:::; e2 and Ki S K2. 

For each (e, K), let u(e, K) satisfy (4.1) and define 

(4.2) rr(e, K)(B) = 
h(U{e, K}nB) 

h{U(e, K)) , 

for every B e 18.. Then (rr ( e, K) } is a net in the space 
18. [O, 1] , and this 

space is compact when given the product topology. Consequently, there is a 

subnet {rr} (with corresponding sets u ) which converges to an element rr a a 

of [O, 1]8 • Ih other words, rr (B) -+ Tf(B) 
a 

for every B e B, and, hence, 

Sf drr -+ Jf drr for all bounded, di-measurable f. It follows easily that rr a . 

is finitely additive and left-invariant. Throughout this section, this rr 
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will be used as a prior. (As pointed out in [9], there are often many such 

left-invariant means rr. Anyone of them will do in what follows.) 

If a fixed element Pe of P(X) is "translated" by elements of the group 

X = 9, then it generates a conditional probability p on X given 9 which 

is defined by 

for bounded, a-measurable functions f. Here e is the identity element of 

the group. _Such a conditional probability p is called a translation family. 

(By taking X to be real n-dimensional space considered as an additive group, 

one sees that the present definition does include the traditional translation 

families of distributions. Additional examples are given below.) 

An element a of P(X) is tight if a(B) = sup{a(K):K SB, K compact} 

for every Be B. A tight probability a is easily seen to be countably 

additive ([1], Exercise 7, p. 11) and, conversely, if X is complete and 

separable, then every countably additive 

A translation family p is tight if p 
- e 

a is tight ([1], Theorem 1.4). 

(and, hence, each p
8

) is tight. 

Theorem 3. Suppose~ p !!, !. tight translation family. ~,under~ 

~-invariant prior rr, !. posterior!!,~ tight translation family q 

where 

(4.4) ff(e)q (de) =ff{e-1 )p (de) _ e e 

£2!: every bounded, a-measurable function f on e. 

Proof: Let cp be a bounded, B x IB-measurable function on 9 X X. The first 

step of the proof is to establish the following equality: 
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To verify (4.5), calculate thus. (Recall that sets are identified with their 

indicator functions.) 

(4.6) IS [~(e, xe) - ~(x-1e, e)]h(de)I = IS ~(x-1e, e)h(de) - J ~(x-1e, e)h{de)I 
U xU U a a a 

=fJ'~(x-1e, e)[(xU ){e)-U (e)]h{de)I a a 

=ll~llh(xU au), a a 

where \lcp\l = sup{l~(e, x) f: (e, x) e ® Xx}. 

Formula (4.5) now follows easily from (4.1) and the tightness of 

Next calculate again. 

= lim h(ii;;> vq,(e, xe)pe(dx)h(de) 
a a 

= lim h(ii) rrcp(xe, e)qe{dx)h(de) 
a a 'tf 

a 

p • 
e 
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= lim h(ii ) Jrcp(x, e)qe(dx)h(de) 
a a if 

Cl 

The succ.essive lines in (4.7) are, respectively, by (4.3), definition of TT, 

Fubini 1s theorem for the countably additive measures pe and h, (4.6), 

Fubini again, (4.4), definition of a translation family, definition of TT 

again, and obvious. 

Let Be B and take q> to be the indicator function of ® x B. Then 

(4.7) becomes 

and, hence, TT is the marginal on X. Consequently, it follows from (4.7) 

that q is a posterior. 

p is. 
e 

It is easy to verify that q is tight because 
e 

CJ 

Corollary 2. ,ll p .!!.! tight translation family,~~ translation family 

q defined !?I, (4.4) !!_.!coherent conditional probability. 

Proof: Use Theorem 3 and Corollary 1 of Section 2. 

In the following examples, s is an X-valued random variable with dis­

tribution p. By (4.4), q is the distribution of s·l. It follows from e e 

(4.3) that p is the distribution of se and likewise that qx is the dis­
e 

-1 tribution of s x for every e and x. 

Example 4.1. Let X = ®=Rn and regard Rn as an additive group. That Rn 

is amenable is well-known and easy to check with the aid of Follner's condition. 

Let p be a countably additive probability on B, Think of p as the dis-e e 
.... 
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tribution of an n-dimensional random variable s• Then p is the distri­
e 

bution of S + e, is the distribution of 

of -s + x. Suppose now that is symmetric. 

and 

Then 

the distribution 

For a 

specific example, take s to be N{O, I); that is, normal with mean zero 

and covariance the identity matrix. Then, by the above, the posterior dis­

tribution given x, is N(x, I) and this posterior is, by Corollary 2, 

coherent. For this same example, consider the usual estimation problem with 

A= Rn and L{e, a)= He - all2 • It is easy to see, with the aid of Lemmas 

3.3 and 3.4, that the Bayes rule for the invariate prior rr is 6(x) = x, 

and so, by Theorem 2, 5 is weakly admissible. This 5 has a constant risk 

function and its weak admissibility is thus equivalent, as follows from (3,3), 

to its being minimax. That 6 is minimax follows also from a general theorem 

of Kiefer [11]. Finally, 6 is not admissible for n ~ 3 as was shown by 

Stein [14]. 

Example 4.2. This example treats the problem of inference from a univariate 

normal distribution with unknown mean and variance. To formulate the problem 

in the setting of this section, it is convenient to regard an observation of a 

random sample as being an observation of the sufficient statistics, namely, 

the sample mean and variance. Formally, let X = ® = ((µ,, a2): µ e R', a2 > OJ. 

The group operation is that of the affine group in one dimension: 

(µ., a2)~( v, ,-2) = ( rrµ + "' (arr)2
). 

In essence, (µ., a2) is identified with the mapping x ~ax+~ and the operation 

is composition of functions. Notice that The amena-

bility of this group is shown in ( [9], pp. 68-69). 

Let Y1 , ••• , Yn be independent, N{O, 1) variables and let (Y, s2 ) be the 

sample mean and variance. Take Pe to be the distribution of S = (Y, s2 ). 
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P is the distribution of the sample mean and variance 
e 

of a sample of size n from a N(µ, cf) variable. Furthermore, qe is the 

S-2 ). Set T = -Ys-1 • <Jn=i,T has a Student t distribution of -1 
I; 

distribution.) Then the posterior distribution of c~, a2) given X = G, s2 ) 

is which is the distribution of 

In particular, the posterior distribution of µ is specified by the fact that 

( -) -1 ~ - y ~ has the same distribution as T. 

Example 4. 3. Consider now independent sanples from two normal populations each 

with unknown means and variances. The notation of the previous example will be 

used with subscripts 1 and 2 to indicate the two populations. In particular, _, 

x1 and x
2 

are taken to be the group of the previous example and the X of 

this example is taken to be the direct product of x1 with x2• 

= ( ,;; 2) Iv 2) ) -1 ( ( -2) ( -1) ) ~ \Y1 , s1 , \Y
2

, s
2 

• Then ~ = T1 , s1 , T2 , s2 

x = ((y1 , s1), (y
2

, s~)), ~ is the distribution of 

Let 

and, for 

In particular, the posterior distribution of the difference of the two means is 

that of s1T1 + Yi - s2T2 - Y2 • 

The coherence of the posterior distributions of the last two examples 

.... 

is closely related to the fact that, if these distributions are used to calculate 111111 

confidence intervals for the mean and difference of the means, respectively, 

then there exists "no negatively biased relevant selection" as was shown by 

Robins on [ 12 ] • 

I .... 
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5. Improper priors_£!!! result~ incoherent posteriors~ uniformly 

inadmissible decision rules. The object of this section is to begin an 

exploration of the relation of finitely additive priors to improper priors. 

By an improper prior is meant, as usual, a countably additive measure v 

on B(®) such that v(®) is infinite. To avoid unnecessary technicalities, 

assume throughout this section that X, ®, and A are Borel subsets of 

some Euclidean space and are equipped with their usual Borel fields of 

subsets. By a density is here meant a density with respect to Lebesgue 

measure. Suppose that each of the measures p has a density 
8 

X and that v has a density g(e) on ®· Define 

(5.1) h(e(x) = f(xle)g(e) 
Jf(x(t)g(t)dt 
® 

f(xle) on 

whenever the denominator is finite and not zero. By a posterior for v is 

meant a regular conditional probability q on ® given X such that, for 

each e, q{•lx) has a density h{e(x). If v were a proper, countably 

additive prior, then Bayes formula (5.1) would, in fact, define the density 

of its posterior. In the improper case, (5.l) is often used as a formal 

device without theoretical foundation. Nevertheless, it sometimes leads to 

a genuine posterior which could also have been obtained from a proper, 

finitely additive prior. 

!xample 5.1. n Let X = ® = R and suppose p
8 

is a normal distribution with 

mean e and covariance the identity matrix. Let v be Lebesgue measure on 

Rn. Then (5.1) yields the same posterior as that obtained from an invariant 

finitely additive prior as in Example 4.1. {The normal distribution is not 

essential here and any translation family would work equally·well.) 
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However, as the next example illustrates, the use of (5.1) with an 

improper prior can result in an incoherent posterior. 

Example 5.2. Let + S=X=R, the set of strictly positive real numbers. For 

every e, let p be the uniform distribution on the interval [e/2, 3e/2] so e 

that p has the density e 

f(x(e) -1 
= e for e/2 S x S 3e/2, 

= 0 elsewhere. 

Let v be Lebesgue measure on ® so that g{e) = 1 for all e. Then (5.1) 

leads to a posterior q with density 

(5.2) g(e(x) = (e log 3)-l for 2x/3 Se S 2x, 

=0 elsewhere, 

for every x. 

Consider the simple betting system A, b where b = 1 and A= 

((e, x):e ~ x S 3e/2J. Then, for every x, Ax= (e:2x/3 Se S x} and 

1 Jx ! de= q(Axlx) = ,~h? 2x/3 e 

The corresponding expected loss is 

log 3 - log 2 
log 3 

E{e) = J[A{e, x) - q{Ax(x)] p(dx(e) 

= 1/2 - log 3 - log 2 
log 3 

> o. 

Hence, q is incoherent. 
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Improper priors are also used to calculate decision rules. In fact, the 

Bayes rule for an improper prior is taken to be that rule which minimizes 

the expected posterior loss if such a rule exists. Example 5.2 can be used 

to show that the Bayes rule for an improper prior need not be extended admissible 

even for a measurable decision problem with a bounded loss function. 

Example 5.2. (continued). In addition to the structure already specified, 

introduce A =R+ and L{e, a)= min{a-1)e - a), 3}. 

To compute the Bayes rule f for the improper prior v, it suffices to 

find, for each x, that action a= f(x) which minimizes JL{e, a)g(efx)dx, 

where g is given by (5.2). Since the density g(•)x) is concentrated on the 

interval I(x) = [2x/3, 2x], it is clear that a must lie in I(x) and it 

follows that e Sa S 3e and, hence, L(e, a)= a-1)e - a)~ 3. Thus a must 

minimize 

a 2x 

Ja-
1

le-alg{elx)dx =J {1-e/a) 
8 

i!g 3 de+ J (e/a - 1) 
8 

i!g 3 de. 
2x/3 a 

By differentiating, one can see that a= 4x/2, the midpoint of I(x). 

. () -1 Consider now any decision rule of the form fa X = a X where 

2/3 S a·l S 2 so that f(x) e I(x) for each x. Then its risk is 

3e/2 

r{e, fQ) = J ax-1 le - a-1
x1e-1dx 

~ e/2 

= 2~[(log(2/A/'3')- 1) + log al+ 1}. 

The risk does not depend on e, but only on the constant a. The unique 

a which minimizes r(e, fa) is easily seen to be a = 2//3. Every other 
0 

fa, including the Bayes rule for v which is £
413

, is uniformly dominated 
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by fa and, therefore, is not extended admissible. 
0 

An obvious problem, which is suggested by Example 5.2, is to determine 

which improper priors do lead to coherent posteriors and extended admissible 

decision rules. This problem is, in view of Corollary 1 and Theorem 2, 

almost the same as that of finding those improper priors whose posteriors 

could also be obtained from proper, finitely additive priors. 

... 

... 

I .... 
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