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ABSTRACT 

A theory of discrete-time optimal stopping is presented within 

the more general framework of countably additive gambling theory. 

In particular, offered here is a substitute for a fundamental theorem 

of optimal stopping due to Chow, Robbins, and Siegmund. 
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Introduction: This paper offers a substitute for what is perhaps the most fun

damental theorem of~ Theory of Optimal Stopping by Chow, Robbins, and Siegmund, 

namely [3, Theorem 4.10]. From the point of view of this paper, optimal stopping 

problems are special gambling problems, namely those associated with stop-or-go 

gambling houses. In such a house there is, at each fortune f, at most one gam

ble a(f) other than the trivial one-point, Dirac delta measure, o(f), which 

may or may not be available. A basic question is to determine those strategies, 

if any, which are optimal for stop-or-go problems. 

Suppose that u(f) is the utility of the fortune f and that W(f) is 

the supremum over all strategies cr available at f of the utility of cr. If 

cr stagnates at f, that is, if cr uses 6(f) forever, then the utility of cr 

is taken to be u(f). Plainly, then, if f is inadequate, that is, if 

u(f) < W(f), it is not optimal to stagnate at f. Nor can a strategy cr be 

persistently optimal, that is, be conditionally optimal given every partial his-

stagnates at 

if, after any p for which f is inadequate, n cr then 

f. Other strategies, too, are easily seen not to be optimal. n In 

particular, if r is a gambling house, ye f(f) and yW < W(f), then no 

strategy which employs y initially can be optimal at f. Nor can a strategy be 

persistently optimal if after any p = (f1 , ••• , fn) 

employs y. 

for which f = f it then n 

A strategy which avoids the two non-optimal modes of behavior described above 

will be called eromising. A fundamental problem for conventional stop-or-go prob

lems is to determine whether every promising strategy is persistently optimal and, 

if not, what additional condition is necessary. 

A Markov kernel y for which y(f) e r(f) for every f is a r-selector. 

Let y~(f) be that strategy whose initial gamble is y(f) and which, after the 
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employs and call 
00 

y a stationary 

As is implied by Theorem 3 below, all stationary families of promising 

strategies are indeed optimal for conventional stop-or-go probleim if u is 

bounded. 

For unbounded u's additional difficulties are encountered. First, two 

natural methods--henceforth to be called the "gambling" and the "conventional" 

methods--of evaluating the worth of a strategy, which are equivalent for bounded 

u's [14, Theorem 2], can yield different values for unbounded u's. Second, at 

least for the conventional method, it is no longer enough for a stationary family 

of strategies to be promising for it to be optimal. A growth condition must al

so be imposed. For the conventional method, Siegmund [10, Theorem 4] found such 

a condition (domination in the sense of Lebesgue) that is sufficient, and Chow, 

Robbins, and Siegmund [3, Theorem 4.10) a less restrictive one (uniform inte

grability) which is necessary and sufficient, for a promising, stationary strateg~ 

to be optimal. 

One problem encountered in studying stopping time problems, and more general 

gambling problems, in a countably additive framework, is that suprema of uncount

ably many measurable functions are encountered, and these suprema are not auto

matically measurable. In the theory as presented in [11] and [3], this problem 

is met by considering, when necessary, essential suprema rather than suprema. The 

present paper concerns itself with a class of problems including, but not confined 

to, stop-or-go problems, in which W is demonstrably measurable. Hence, the sim

pler and more satisfactory notion ofsupremum is adequate for this paper, and in 

particular, for Theorem 3 below. 
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The study of stop-or-go problems in which the so-called gambling evaluation 

of strategies is employed is to be included in a forthcoming paper concerned with 

the general topic of stationary strategies. 
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§1. Summary. Throughout this paper, (r, g) is a Borel measurable, 

invariant, gambling problem, and W is the most that is achievable if only 

analytically measurable a available in r are employed. (For precise 

definitions, see §2.) 

The main purpose of this paper is to report three results: a characteri

zation of W (Theorem 1), a characterization of optimal strategies (Theorem 

2), and a determination, as in Theorem 3, of all stationary families of opti

mal strategies for stop-or-go problems with conventional utilities, a species 

of gambling problem defined in §7. 

These results, especially Theorems 1 and 3, were strongly influenced by 

similar results already in the literature. For predecessors of Theorem 1, 

see (11, Theorem 3.6], (5, Theorems 2.12.1, 2.14.1, and 3.3.l] and [17, 

Theorems 3.l and 3.2]. Among the predecessors of Theorem 3 are [11, Theorem 

3.7], (5, Theorem 3.9.5], [16, Theorem 2], and [3, Theorem 4.10]. 

Of more fundamental interest than W is W', the most that is achievable 

by all strategies, including of course those which are not measurable. Left 

open by the present paper, however, is the basic question whether W' can 

exceed W. Under certain assumptions on (r, g), W' is demonstrably no 

larger than W (12, Theorem 1], (14, Theorem 6.4]. The question whether W 

equals w' leads to the preliminary question whether w' is absolutely 

measurable. These problems have been open at least since 1960 (when the 

second mimeographed edition of [5] appeared), so this paper confines its 

attention to W only. 
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§2. The formulation of Theorem 1, a characterization of W. Throughout this 

paper, (F, 3) is a standard space (B is the set of Borel subsets of a Borel 

subset F of a Polish space); P is the set of all countably additive proba

bility measures defined on B, and, as in (12], the Borel gambling house r 

is a Borel subset of F x P such that, for each feF, r(f), the f-section 

of r, is nonempty; the utility of a history h = (f1 , f
2

, ••• ) is an exten-
. 

ded real number g(h). It is assumed that g is Borel measurable and 

invariant. That g is invariant means g(fh) = g(h) for all f and all h 

where, as in [5], fh = (f, f 1 , f 2 , ••• ). The product of a finite or a denu

merable number of standard spaces is a standard space, as is the set of count

ably additive probability measures defined on the Borel subsets of a standard 

space ([9], Chapter II). So, for example, P, and F X P are standard 

spaces, as is H = F X F X ••• 

A mapping from one standard space to another is analytically measurable 

or a-measurable, for short, if the inverse image of every Borel set is in 

the sigma-field generated by the analytic sets. In conformance with a notion 

given in [1], a strategy cr is analytically measurable or a-measurable if 

cr0eP and every crn is analytically measurable from Fn to P. (Terms 

such as "strategy" and symbols such as "cr" which are frequently used in n 

(5) will not be defined here.) Each a-measurable cr determines, as usual, 

by the theorem of Ionescu Tulcea (Proposition V-1-1,[8]), a countably additive 

probability measure, say m(cr), defined on the Borel subsets of H. Let r°(f) be 

the set ·of all m(cr) as cr ranges over all a~measurable strategies available in 

rat f. Often, m(cr) will simply be designated by cr. Thus 'cr' refers 
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sometimes to a strategy and sometimes to its distribution, a hannless ambiguity. 

In some previous papers, [12], [13], and (14], attention was restricted to 

a subfamily of the a-measurable strategies, namely, the Borel, or a-measurable, 

strategies. This restriction is somewhat unsatisfactory for, as mentioned in 

[13], there exist Borel houses in which no B-measurable strategies are available. 

Furthermore, as can easily be seen, if there are a-measurable strategies avail

able, then the set r00

(f) of their distributions is· the same whether cr ranges over 

B-measurable or a-measurable strategies available at f. This explains why here, 

as in (1), it is the full class of all a-measurable cr which is of primary 

interest. 

Assume henceforth that, for all a-measurable cr available in r, Jg dcr, 

or crg for short, is well-defined, possibly - oo, but strictly less than + 00 • 

Introduce the optimal return function, thus. 

(2.1) W(f) = sup{crg: cr e r00

(f)}, 

and assume throughout this paper that W is everywhere finite. Of course, Wis 

the mcst the gambler can achieve if he employs nothing but analytically measurable 

strategies. 

Associated with any extended real-valued function Q--in particular W--defined 

* on F, are the functions Q1, Q
2

, ••• , Q , and Q* defined for all 

h = (f
1

, f
2

, ••• ) e H, thus. 

(2.2) Q (h) = Q(f) for 
n n 

n = 1, 2, ... , 
* Qn Q = lim sup 

n 

Q* = lim inf Qn n 
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If, for all a-measurable cr available in r for which crg is finite, 

* the integral oQ exists and 

* aQ 2: crg, 

then Q r-dominates, or, more briefly, dominates, g. 

For each cr, let T(cr) be the collection of all cr-stopping times, 

that is, Borel mappings t from H to the positive integers with + oo 

adjoined such that the event [t < + 00 ] has cr-probability one and, for 

every n, the event [t ~ n] is measurable with respect to the first n 

coordinates of H. For t&T(cr) and h = (f1 , f 2 , ••• ), set 

when t(h) < 00 • Say that Q is excessive (for r) if, for all feF, all 

crer
00

(f), and all teT(cr), cr(Qt) exists and 

(2.4) crQt~Q(f). 

The characterization of W can now be given. 

Theorem 1. W is the smallest a-measurable function which is excessive and 

dominates g. 

The proof is given in §4. 
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§3. Regular supermartingales. Let Q be an extended real-valued, a-measurable 

function defined on F and let cr be an a-measurable strategy. If the expec

tation oQt exists for each t e T(cr), then the collection (aQt, t e T(cr) J 

becomes a net when T(cr) is given its natural partial ordering, so 

lim sup aQ = inf sup oQt t t 
s t>s 

is well-defined as is the limt sup 

Lenma 3.l. Each of the following inequalities holds whenever the expectations 

occurring in it exist: 

Proof: For each n, there is a Borel measurable function Q (h) = Q (f ) which n n n 

equals Q (h) 
n 

a-almost surely, for analytic sets are universally measurable 

(7, III.24]. The final inequality holds for the Qn [15, Theorem. 1), and, hence, 

for the Qn as well. The first inequality is equivalent to the final one, and 

the middle one is obvious. D 

If ~ is a function with domain H and p = (f1 , ••• , fn), then, as in 

[5], cpp is that function on H whose value at h' = (£1, f~, ••• ) is 

~(ph') = ~(f1 , ••• , fn, fi, f~, ••• ). If, in addition, ~ is extended real

valued and ~ exists, then cr[p](~), or cr(~lp) for short, is a version 

of the conditional expectation of ~ given p under c,-. Consequently, for 

each a-stopping time t, 
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where pt(h) = pn(h) = (f1 , ••• , fn) when t(h) = n [8, Prop. III.2.1). 

The sequence {Qn) is a regular supermartingale under a if, for s, 

teT(a) and s ~ t, crQt exists and the inequality 

holds a-almost surely. The next lennna includes a criterion for almost sure 

convergence which is similar to that of Dvoretzky [6]. 

Lennna 3.2. Each of the following conditions implies its successor. 

(a) {Q) is a regular supermartingale under a. n 

(b) crQ > crQ whenever s < t e T(o). 
s - t -

(c) The net {crQt, t e T(a)} converges. 

* (d) The equality oQ = aQ* holds if both expectations occurring in it 

are well-defined. 

(e) * {Qn) converges a-almost surely if crQ and crQ* are finite. 

Proof: To see that (a) implies (b), integrate with respect to a in (3.3) 

and use (3.2). Obviously, (b) implies (c). Lemma 3.l applies to show (c) 

implies (d). The final implication is trivial. Cl 

Here is a lemma which indicates why the study of gambling problems leads 

to an interest in regular supermartingales. 

Lemma 3.3. If Q is excessive for r, then {Qn) is a regular supermar

tingale under every a available in r. 
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Proof: Let s ~ t e T(cr). If s(h) = t(h), then (3.3) obviously holds with 

equality. So suppose t(h) > s(h) = n. Set p = p
8

(h) = (f1 , ••• , f
0

) and 

define t[p](h') = t(ph') - n for all h' e H. Then for a-almost every p, 

The first equality is by definition of cr(Qtjp); the second holds because 

Qtp = Qt[p); the inequality is by the excessiveness of Q together with the 

facts that cr[p] e r00
(f) and t[p] e T(cr[p]) a-almost surely. D n 
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§4. Proof of Theorem 1. What must first be shown is that W is 

a-measurable. To this end, let P(H) be the Borel set of countably additive 

probability measures defined on the Borel subsets of H, and let r00 
be the 

subset of F X P(H) such that, for each f, 
00 

the £-section of r is 

Lenuna 4.1. 
00 r is a Borel subset of F X r(H). 

Proof: By a theorem of Mackey and von Neumann [l, Prop. 15], there is an 

a-measurable mapping y from F to P = P(F) such that y(f) e r(f) for all 

f. The argument given for [13, Theorem 2.1] now applies and completes the 

proof. D 

Lemma 4.2. The set of cr e P(H) such that fg dcr exists is a Borel set, and, 

when restricted to this set, the map cr "7 Jg dcr is Borel measurable. 

Proof: For non-negative g, the conclusion holds in view of the lemma in 

(14]. Since any g is the difference of two non-negative g's, the conclu-

sion for general g easily follows. D 

Preparations have now been made to establish the first part of Theorem 1: 

Lemma 4.3. W is a-measurable. Indeed, for each real number r, the event 

(W > r) is an analytic subset of F. 

Proof: The set (W > r) is the projection onto F of the set, S, of all 

(f, cr) such that cr e r°°(f) and crg > r. iQf course, S ·is a Borel set by 

Lennnas 4.1 and 4.2. So (W > r) is analytic. D 
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As was shown by Strauch (12], W need not be Borel measurable. 

The purpose of the next three lemmas is to prove that W is excessive. 

Let e 2: o. A strategy cr e r®(f) is e-optimal at f if crg 2: W(f) - e. 

Call cr an a-measurable family of e-optimal strategies if cr is an 

a-measurable mapping from F to P(H) such that for all f, ;(f) is e-optiml. 

Lemma 4.4. For every e > 0, there is an a-measurable family cr of e-optimal 

strategies. 

Proof: For every integer n, let 

A = [(f, cr): cr e r®(f) and crg > ne}. n 

That A is Borel is clear from Lennnas 4.1 and 4.2. Let rr be the projection 
n 

mapping, rr(f, cr) = f and notice that rr(An) = (f: W(f) > ne). By (1, Prop. 15], 

there is an a-measurable map ; : rr(A) ~ P(H) such that (f, a (f)) e A for n n n n 

all f e TT(An). Define ~(f) to equal ;n(f) when (n + l)e 2: W(f) > ne. As is 

easily verified, cr is an a-measurable family of e-optimal strategies. D 

Let I(g) be the collection of a-measurable cr for which crg exists. 

Lemma 4.5. Each of the following conditions on g implies its successor. 

(a) g is invariant. 

(b) gp = g for all p. 

(c) cr(gp) = crg for all p and all cr e I(gp). 

(d) cr(p]gp = cr[p]g for all p and all cr with cr[p] e I(gp). 

(e) crg = J cr[pt (h) ]g dcr(h) for all cr e I(g) and all a-stopping 

times t. 

(f) crg = f cr[pn (h) ]g dcr(h) for all cr e I(g) and all integers n. 
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(g) cr[f1 , ••• , fn]g ~ g(f1 , f
2

, ••• ) with a-probability 1 for all 

cr for which g has finite expectation. 

If g assumes only finite values, then the conditions are equivalent. 

Proof: Assume (a). An induction on the length n of p = (f1 , •••, fn) 

establishes (b). Obviously, (b) implies (c). If (c) holds, then (c) holds with 

cr replaced by cr[p], which yields (d). That (d) implies {e) is evident in the 

light of (3.2). Plainly, (e) ~ (f). If (f) holds and crg is finite, then the 

left-hand side of (e), being the integrand in the right-hand side of (f), is a 

version of the conditional expectation of g under CJ given ••• ' f • n 
Nm·.: 

Paul Levy's martingale convergence theorem applies and yields {g). Lastly, assume 

g has only finite values and suppose {g) holds. Fix h = (f1, f
2

, ••• ), let 

cro be o(f1 ), and let crn(fl, ••• , f ) be o(fn+l), so CJ is the one-point n 

measure o{h). The left-hand side of (g) is then equal to g(fn+l' f n+2' ••• ) and, 

by (g), converges to g{fl' £2, ... ) . Plainly, it then necessarily converges to 

g(f
2

, f
3

, ••• ) also. So g(f1 , f
2

, ••• ) equals g{f2 , f
3

, ••• ), and (a) is 

established. D 

The strategies CJ and cr' agree prior~! stopping 2, t if 

Lemma 4.6. For f e F, CJ e r00
(f), and t e T(CJ), the integral CJW(ft) exists 

and 

(4.1) crW(ft) = sup{cr'g: cr' e A{cr, t)J, 

where A(cr, t) is the set of CJ 1 in r00
{f) which agree with CJ prior to t. 
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Proof: Let e > 0, and choose cr as in Lemma 4.4. Let cr' be that element 

of A(cr, t) such that cr'[pt(h)] = ;(ft(h)) for t(h) < oo. Calculate thus. 

+ oo > W(f) 

~ cr'g 

= J er' [pt (h) ]g der(h) 

= [cr'(ft (h) )g der(h) 

::: Jw(f/h)) der(h) - e. 

This calculation demonstrates the existence of erW(ft) and proves one of the 

inequalities needed to establish (4.1). 

For the reverse inequality, let er'eA(er, t). Then 

er ' g = J cr ' [pt ] g dcr ( h) 

~ Jw(ft) der. D 

Corollary 4.1. W is excessive. 

Proof: Use (2.1) and (4.1). D 

That W dominates g is established next. 

Lemma 4.7. For every a-measurable cr available in r for which erg is finite 

finite, 

(4.2) g ~ W* er-almost certainly. 

Consequently, W dominates g. 
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Proof: Since -(£1 , ••• , f] ~ r00
(f ), -[f f ]g < W(f) 

v n ~ n v 1' ••• , n - n' 

follows, as Lennna 4.5(g) makes evident. 

Lennna 4.8. If Q is excessive, and dominates g, then Q ~ W. 

Q(f) > sup oQ(ft) 
- teT(cr) 

~ oQ* 

~ crg. 

so (4.2) 

0 

The three inequalities hold because Q is excessive, by Lemma 3.1, and because 

Q dominates g, respectively. Since W(f) is the supremum of crg over all 

such cr, Q(f) ~ W(f). 

In view of Lemmas 4.3, 4.7, and 4.8, and Corollary 4.1, the proof of 

Theorem 1 is complete. 

D 

!_~. Lemma 4.8 does not require the assumption otherwise in force that g 

is Borel measurable; it suffices that crg exist for all a-measurable cr 

available in r, for then W is well-defined. 
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§5. A Characterization of Optimal Strategies. The W which was characterized 

in the preceding section exists for each (r, g). In contrast, optimal strate

gies need not exist. But when they do exist, they can be characterized as in 

Theorem 2. Assume, until the proof of Theorem 2 is completed, that f e F, 

a e r®(f), and ag is finite. 

Theorem 2. For a to be optimal at f it is necessary and sufficient that 

* ag = crW and any (all) of the following three conditions be satisfied. 

(a) 

(b) 

(c) 

(5.1) 

* = W(f). crW 

W(f), W(f1 ), 

W(f), W(f1 ), 

satisfies: 

. . . is a uniformly integrable martingale under cr • 

is an L1-bounded martingale under a which 

cr(W(ft)) ~ W(f) for all teT(cr). 

To say that W(f), W(f
1
), ••• is L1-bounded under cr means, of course, 

that for some constant K < ®, f IW(fn) Ida~ K for all n. 

The next three leunnas comprise part of the proof of Theorem 2. 

* Lemma 5.1. (i) aW ~ W(f) and, for all n and a-almost every h, 

* (ii) cr(p (h)]W < W(f ). n - n 

Proof: The expectation aw* exists because ag is finite and w* 2: g cr-almost 

surelv bv Lemma 4.7. Inequality (i) now follows from Lemma 3.l and Corollary 4.1. 

By Lemma 4.5(f), a[p
0

(h)]g is finite with a-probability one and, hence, (ii) 

follows from (i). D 

As an immediate corollary to (4.2) and Lemma 5.l(i), one obtains a part of 

Theorem 2. 
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Corollary 5.1. For cr to be optimal at f it is necessary and sufficient that 

* * crg = crW and crW = W(f). 

* Lemma 5.2. If crW = W(f), then, for all n and a-almost all h, 

Proof: 

* cr[p (h)]W = W(f ). 
n n 

Calculate thus. 

* * crW = Jcr[pn(h)]w dcr(h) 

~Jw(fn) dcr(h) 

~ W(f) 

* =~, 

where the first equality holds by Lemma 4.5(f); the first inequality is by 

Lemma 5.l(ii); the second inequality holds because W is excessive, and the 

final equality is by hypothesis. (5.3) now follows with the aid of Lemma 

Lennna 5.l(ii). D 

Lenuna 5.3. Conditions (a), (b) and (c) of Theorem 2 are equivalent. 

Proof: Assume (a). * Since ~ is finite, * cr(W (f1 , ••• , fn) is a uniformly 

integrable martingale, as is well-known [7, V, T18). In view of Lenmas 4.5 and 

5.2, this martingale is almost certainly the same as W(f ). n So (b) holds. 

That (b) implies (c) is part of standard measure theory. Suppose now that (c) 

holds. Since W is excessive, (5.1) holds with equality and consequently, (b) 

too holds, as the Corollary in [4] asserts. Now 



-18-

assume that (b) holds. Then W(f), W(f1 ), ••• converges cr-almost surely to 

* * W, and aW = lim cr(W(f )). But cr(W(f )) is independent of n and equals 
n n 

W(f). So (a) holds. O 

Theorem 2 now follows from Corollary 5.1 and Lemma 5.3. 

Corollary 5.2. If cr is available in r and crg is finite, then 

* W = W* cr-almost surely. 

* Proof: By Lemmas 5.1 and 4.7, the integrals crW and crW* exist as finite 

numbers. Now use Corollary 4.1, and Lemmas 3.3 and 3.2. D 

To be applied in §6 is this easy consequence of (4.2) and Lemma 5.1. 

Lemma 5.4. For each f e F and all e, 6 > 0, 3 cr e r00
(f) such that 

(5.4) * cr(g > W - e) 2: 1 - &. 

In fact, (5.4) holds for all cr which are e6-optimal at f. 

This section concludes with a result on e-optimal stationary families. 

Proposition 1. Let e ~ 0 and let y be an a-measurable r-selector. If 

00 
y is an 

and (ii) 

00 00 * e-optimal family, then, for every f, (i) V (f)g 2: V (f)W - e 

the process {W(f )) is uniformly integrable under y
00

(f). Con
n 

versely, if, for all f, (i) and (ii) hold and, in addition, (iii) y(f)W 

= W(f), 
00 

then y is e-optimal. 

Proof: First assume (i), (ii) and (iii) for all 

is a uniformly integrable martingale under y
00

(f) 

Use {i) to conclude that v00

(f) is e-optimal. 

f. Then, W(f), W(f1), ••• 

* and, hence, y
00

{f)W = W(f). 
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00 

For the other implication, assume y is everywhere e-optimal and 

compute as follows: 

(5.5) 

The first inequality is by Lenuna 4.7, the second is by the assumed e-optimality, 

and the third by Lemma 5.1. Condition (i) is now clear, and (ii) is a conse

quence of (5.5) and the next lemma, which applies to all Markov kernels y. 

Lemma 5.5. Let Q:F ~ R and y:F ~ P be analytically measurable. 

has a finite integral under every y
00

(f) and 

suply
00

(f)Q* - Q(f)j < 00 , 

f 

* If Q 

then Q(f1), Q(f2), ••• is uniformly integrable under y
00

(f) for all f. 

00 * Proof: Plainly, Y (fn)Q is a version of the conditional expectation 

00 *1 y (f)(Q fl' 

has a finite 

* ••• , f ), which sequence is uniformly integrable because Q 
n 

y
00

(f)-integral (7, V, T 18]. Since Q(f) differs from n 
00 * y (f )Q by at most a fixed constant, Q(f) too is uniformly integrable n n 

under Y
00 

( f). 0 

Except for the special class of problems studied in §7, we do not know 

necessary and sufficient conditions for the existence of e-optimal stationary 

families. 
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§6. Conventional utilities. Throughout this section and the next, u is a 

fixed, real-valued, Borel measurable function defined on F and g is specialized 

* * to be the conventional utilitJ u where u (h) = lim sup u{f ). 
n 

The purpose of 

this section is to record several facts for Borel houses r with conventional 

utilities u*. 

* Suppose, for the next two lemmas, that cr is a-measurable and cru is finite. 

Lemma 6.1. If cr is available in r, then 

(6.1) a(lim inf .(W(f ) - u(f ) ) < 0) = a(W* = u*). n n -

Proof: - By Lenunas 4.7 and Corollary 5.2, 

(6.2) 

almost surely under cr. A routine calculation now suffices to deduce (6.1). D 

00 

Lenuna 6.2. For cr in r (f) to be optimal at f it is necessary and sufficient 

that W{f), W(f1 ), ••• be a uniformly integrable martingale under cr and 

Proof: Use (4.2), (6.1), and Theorem 2. 

For e > O, define 

In view of Lemma 4.3, A is analytically measurable~ from which it easily 
€ 

follows that B too is analytically measurable. 
e 

D 
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Lemma 6.3. For each feF and e, & > 0, there is a cref
00

(f) such that 

cr(B) > 1 - &. 
€ -

Proof: Plainly, * * B :::> (u > W - e). Now use Lemma 5.3. 
e - D 

An examination of the proof of Lemma 6.3 reveals that it is applicable to 

various other g f s' for instance, to u and u* where: 

u(f1) + ... + u(f) 
u(h) lim n . u*(h) lim inf u(f ) • = sup ' = n n 

However, this is in contrast to Lenuna 6.2 which would be false were g equal 

to either u or u*, as Example 7. 3 shows. 

Suppose y is an a-measurable r-selector, and define 

(6.4) Q (f) = 1 for f e A, 
e e 

= y
00

(f)(B) for f e F-A. 
e e 

Lemma 6.4. Each Q is universally measurable, and 
e 

y{f)Q = Q (f) for feF-A. 
e e e 

Proof: Let B: be the event that, for some k ~ n, fk e Ae' and let 

Q0 (f) = y
00

(f)(Bn). As [1, Cor. 41] implies, each Qn is universally measurable. 
e e e 

Therefore, so is lim Qn. 
n e 

Since this limit agrees with Q on F-A, 
e e 

also universally measurable. It is now simple to verify (6.5). 

is 

D 



Lenuna 6.5. For any 

-22-

e > 0 for wnich Q 
€ 

is excessive for r, Qe - 1 and 

(6.6) y
00

(f)(lim (W(f) - u(f )) < e) = 1, 
- n n -

for all f. Consequently, for any such e, 00 * v (f)(u ::: W* - e) = 1. 

L * _L ~: Consider a new gambling problem (r, v) where r · is the leavable 

closure of r, that is, r1'(f) = f(f)U{o(f)} for all f, and where v is the 

indicator function of A • Because Q€ is excessive for r, it is also 
e 

* * * excessive for rL. Obviously, Q > v. So Q > V that is, Q€ dominates V • 
€ - e -

By Lemma 4.8 and the remark which follows it, w1, the optimal return function 

for (r1 , v*), is well~defined and Q > w1. Thus, to show Q = 1, it suffices 
€ - € 

to show ~ = 1. Let f e F, 6 > 0 and, by Lemma 6.3, choose o e f
00

(f) such 

that o(B) > 1 - &. Define o' to be that strategy which agrees with 
e -

o prior to the time of first entrance into ·A and which then stagnates. Cal-

culate thus: w1(f) > o'v* = o'(B) > 1 - 6. This completes the proof that 
- € -

Q = 1. As is now easily seen, for example, with the help of [2, Exercise 9, 
e 

Chapter 5], for every f, the y
00

(f)-probability that fk e Ae for infinitely 

many k is 1. This completes the proof of (6.6). D 

. 
' 
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§7. Stop-or-go muses with a conventional utility. In this final section, u 

* and the utility g = u are as in §6, but r is now specialized to be a 

Borel stop-or-go house, that is, 

r(f) = (a(f), o(f)) for f e D, 

= {a(f)) for f e F-D, 

where D is a Borel subset of F, possibly equal to F, and a is a Borel mapping 

from F to P. Plainly, the mapping f ~ o(f) is a continuous and, hence, Borel 

mapping from F tor. The graphs of the Borel mappings a and & are Borel subsets 

of F X r (9, Theorem I.3.3]; so their union, namely r, is also. 

Let y be an a-measurable r-selector. The associated stationary 
00 

family y is called promising if (i) y(f) = o(f) implies u(f) = W(f) and, 

(ii) for all f, y(f)W = W(f). 

Lemma 7.l. If y agrees with a on 
00 

F - A, in particular, if y 
e 

is 

promising, then Q is excessive for r, where Q is defined in (6.4). 
e e 

Proof: By (6.5), a(f)Q = Q (f) for feF-A. For all other 
e e e 

(y, f) with 

yer(f), it is trivial that vQe ~ Qe(f). Thus, under every available cr, 

the process Q (f), Q (£
1
), ••• is a bounded supermartingale and therefore, 

e e 

oQe(ft) ~ Qe(f) for every t e T(cr) [7, V, T 28]. 0 

Theorem 3. For every a-measurable r-selector y, these two conditions 

are equivalent. 

(a) Yoo 1 is everywhere optima. 

(b) Yoo ( ) ( ) is promising and W £1 , W £2 , ••• is uniformly integrable 
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under every strategy y
00

(f). 

Proof: Assume (a). By Theorem 2, W(f), W(f1), ••• is a uniformly integrable 

martingale under y
00
(f). Plainly then y(f)W = W(f). To compl~te the proof 

00 ) ) 00 * that y is promising, let y(f = o(f), and verify that u(f = y (f)u = W(f). 

Therefore, (b) holds. 

Now assume (b). By Lemmas 7.1 and 6.5, Formula (6.3) plainly holds. Fur-

thermore, W(f), W(f1), ••• is a martingale under y
00

(f) 

promising. So, by Lemma 6.2, y
00

(f) is optimal at f. 

00 
because y is 

D 

* There exist (r, u) for which no stationary family is optimal as Example 

7.1 below illustrates, Consequently, there is interest in· the possible existence 

of e-optimal stationary families. Define 

(7.1) y (f) = o(f) if u(f) ~ W(f) - e and o(f)er(f), 
€ 

= a(f) otherwise. 

Proposition 2. For each e ~ 0, these three conditions are equivalent: 

(a) There is available an a-measurable, e-optimal stationary family. 

(b) The family 
00 

ye is e-optimal. 

(c) For every f, (W( fn)) is uniformly integrable under ·t(f). 
e 

00 

Proof: First assume (a) and let y be an a-measurable, e-optimal sta-

tionary family. By Proposition 1 of §5, 

under each y'°(f). Since, in addition, 

(c) holds. 

(W(f )} is uniformly integrable 
n 

y
6
{f) = y(f) whenever y

6
(f) t o(f), 

r Observe that y (f)W = W(f) for all f and, therefore, the implication 
e 
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(c) ~ (b) will follow from Proposition 1 once it is verified that 

00 * * V (f)[u > W - e] = 1 
e -

for all f. To check (7.2), use Lemma 7.1 to see that Q is excessive and 
€ 

* 00 ) then use Lenuna 6.5 together with the fact that W = W* ye(f -almost surely as 

follows from the martingale convergence theorem [7, V, T 17]. 

Since (b) obviously implies (a), the proof is complete. 0 

Here are two examples in which F is the set of nonnegative integers 

and u is the identity function. In the first, there is no optimal stationary 

family and yet, for every e > 0, there is an e-optimal stationary family. 

In the second, for some e > 0, there is not even an e-optimal stationary 

family. 

Example 7.1. Let r(o) = (5(0)} and, for n > 0, let r(n) = [o(n), o(n)}, 

where a{n) = (½ + 1/(n + 1)2 )6(2n) + (½ - 1/(n + 1)2 )6(0). 

Example 7.2. Let r(o) = (6(0)} and, for n > 0, let r(n) = (o(n), a(n)}, 

where 'a(n) = ½6(2n + 1) + ½6(0). 

The following example, noticed during a conversation with David Gilat, 

* shows that Theorem 3 would not hold if the conventional payoff u were 

replaced, say, by.!:!. or by u*. 

Example 7.3. Let F = (1, 2, ••• ); u(f) = 1 - 1/f for feF; 

r(f) = (a{f), 6(f)} for every f where a(f) = 6(1) for f > 1 and a(l) 

gives positive measure to every set of the form (f, f + 1, ••• ). If g =u or if 
00 

g = u*' then W = 1 and the family a is promising, but not optimal. In 

fact, there are no optimal strategies. 
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I 

Some cOlinnent on the relationship of the work in this paper to the formul-

ation of optimal stopping problems in [3] is in section 4 of [16]. Except for 

measurability technicalities, the stopping problem of [3] corresponds to a 
I 

leavable, stop-or-go problem with a conventional utility. 

.. 
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