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A SURVEILLANCE MODEL: TIWO MACHINE CASE

Vidya Sagar Taneja

0. Summary,

This paper deals with an economic model for the surveillance of a production
process, The process consits of a single machine with two components or of two
machines, The output of the process is a single stream of goods. At each
instant the distribution of the quality of the output depends on the current
state of the two components., These cemponents are assumed to be statistically
independent. The production process has the tendency to wear after each
adjustment, This paper deals with "continuous surveillance" where it is
possible to observe the production process without cost at all timas of
production, In this case optimal strategies are found; a strategy which tells
the producer when to make adjustments,

In Section 1, the model is described in detail. It is assumed that the
production process is a two dimensional random walk with state space a lattice
of points in the plane. This walk has the property that in a transition the
system moves one unit either to the right with probability p or upwards with
probability q=1-p. It is proved that if P¥(x, y) denotes the steady state

probabilities of being at (x, y), then
P*(x, Y) = P*(O, 0) P(X, Y)

where P(x, y) denotes the probability that a path starting at (0, 0) goes
through (x, y) before the process stops for adjustments (Lemma 2).

The set of points on which the random walk occurs is called the continuation
set and is denoted by C. When x(t)=x, y(t)=y; 1i(x, y) denotes the income per

unit time, C is optimal if and only if it maximizes the long run income per
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unit time, Let K denote the cost of repair per unit time, It is proved in
Section 2, that a sufficient conditon that the optimal set C be'finite and
non empty is that 1im sup i(x, y) < -K and that i(0, 0) > K.

Section 2 also deals with the properties of optimal C. A continuation
set C is full if (x, y) € C implies that (x', y') e C for Osx'sx, 0=sy' sy.
When 1i(x, y) is non increasing in each coordinate, it is proved that the optimal

C is full (Theorem 1) and is of the form C,» where

C}\ = {(xa Y)Ii(xs Y) z A}

and A is real (Theorem 3).

Finally Section 3 considers in detail an application of the above model.
It is assumed that the components of the production process (x(t), y(t)) are
independent Poisson processes. It is indicated how the discrete model is

applicable to the continuous case. Section 3 also contains numerical examples.

1. Introduction.

This paper deals with a production process which tends to wear unless
repairs are made. Under the assumption that the process is kept under surveillance,
optimal strategies are found. An optimal strategy is a rule which tells the
producer when to stop production and make repairs in order to maximige the
long run average income per unit time,

We consider the case where the preduction process is vector valued. To be
specific, mathematical procedures for the case where the production process
consists of two machines (two components of the same machine) are developed.
The machines (components) change states independently of each other. Production
1s continued when neither of the two machines (components) are in repair.

The following assumptions are made concerning the inspection procedure:
(1.1a) It is assumed that the results of the inspection are available immediately.
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(1.1b) It is assumed that the decision to continue production or stop and repair
follow immediately after inspection.

The strategy consists in specifying a set of points C (with non negative
integér coordinates) in the plane. As long as (x(t), y(t)) € C, production is
continued. As soon as (x(t), y(t)) & C, the production process is stopped and
repairs begin.

It is assumed that the production process is a two dimensional random walk
with x(0)=y(0)=20. This random walk consists of moving to the right one unit
with probability p or moving upwards with probability q=1-p, for all points
of C. A realization of this random walk is a 'path' in the plane. When the
random walk (or more exactly the path of the random walk) leaves C, it returns
to (0, 0). The production process is a discrete parameter Markov chain with
transition probabilities:

P{(3, k), (3+1, k)} =p 53 P{(§ k), (4, k#1)} = 1-p=gq, 1,k=0,1,2,...
(1.2) and all other transition probabilities are zero except that the process
' returns to (0, O) with probability one as soon as it leaves C,

The only form of surveillance considered in this paper is "continuous
surveillance", where it is possible to observe the production process without
cost at all steps of production. The basic problem is to form a strategy (or
equivalently a set C described above) as to when to stop production and send
the machines (components) to repair. Associated with each point (x, y) in the
plane is a number i(x, y) called the "income"., For most of the results it is
agsumed that for x,y = 0, i(x, y) i8 non increasing in each coordinate and may
be undounded below in each coordinate. Hence the most desirable state is at

(0, 0). Some interesting forms of i(x, y) are:

0 xory<o

(1.38)  1i(2) = i(x, y) = {

A-Bx-Dy =x20; y20; A20; B>0; D>0



L

0 xory<o
(L3)  1(a) = 165, 5) = {
A-Bxy x20; y20; A20; B>0
o xory<o
(1.3¢) i(z) = i(x, y) = { A 0sx<b; 0sy<d; b>0; d>0; Az
0 x>b or y>d

I1f the production is stopped when x(t)=x, y(t)=y; then it is assumed that m
"time" units will be required to bring the process to x(0)=y(0)=0 through repair
and the cost per unit time of repair is K., For the purpose of Section 1 and 2,
"time" is measured in terms of steps during the random walk and m is expressed
in the same units. The case where m and K depend on x, y,.is not considered.
The objective is to maximize the long run average income per unit time,

In the more general case where at the time when the production is stopped,
we make one of the following decisions: 1) repair both the machines (com-
ponents), i.e., bring the process back to (0, 0), 2) repair one of the two
machines (components), i.e., project either on the x-axis or y-axis (in cases
where repair is very costly) and start production. This general case is not
considered in this paper,

Definition 1: The set of poiﬁts C on which the random walk occurs is called

the continuation set. Every non empty continuation set includes (0, 0). A set

in C consisting of points which cannot be reached by paths from the origin

through points of C is said to be a null set in C.

Definition 2: The set of points characterized by the following two prdperties

and denoted by B is the boundary of the sget C:
(a) The process reaches a point of B as soon as it leaves C.

(b) The process stops for repair as soon as it reaches any point of B.

Let T denote the length of the path, i.e., the number of steps required

to reach B, and I be the income associated with a path, i.e,. the sum of values
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of i(x, y) over all points in C which the path passes through. A fundamental

economic quantity is,

(1.4) E(I)-mK

E(T)+m °

This corresponds to the long run income per unit of "time'" (see Johns and

Miller [1963]). The value of the fraction (1.%) depénds on the choice of C.

An optimal strategy consists of finding a C which maximizes the above quantity.
In this paper we give several properties of such optimal C's including algorithms
helpful in finding the best choice of C as well‘as the maxifum income per unit .
time,

Definition 3: A cycle is the "time" from beginning production, i.e., starting

at (0, 0), through repair until the recurrence of that event, i.e., the beginning
of production,
Let Pc(x, y) denote the probability that a path starting from (0, O) goes

through (x, y) before reaching B. Then

Lemma 1:
(1.5) BT) = = Rlxy) = 5 (xty) Blx, ¥) .
(x, y) eC (%, y) e B
Proof:
Since z Pc(x, y) = 1, i.e., the process reaches B with probability
(x, y) eB

one and the number of steps required to reach any point (x, y) € B is (x+y). it

is clear that

BT = 3 () 2y ) -
(x, y) €B

For each point the path .goes .through before :leaving the continuation set, the .

number of steps to reach the boundary of C is increased by one. Hence we have



= Z X, .
E(T) S e Po(x, )

This proves the result,

Let Pg(x, y) denote the steady state probability of being at (x, y) in C.
To see that P¥(x, y) exist we note that tha Markov chain is irreducible, with
all states eréodi.c and therefore possesgses a unique stationary distribution

(see Theorem on page 356 of Feller [1957]).

Lemma 2:
P¥(x, y) = P¥(0, 0) P (%, ¥) .

Suppose we observe a very large number N of paths. For n=1,2,3,...,N} let
tn de the number of steps teo cemplete the n-'-:-l-}- path. Observe that tn does net
include the repair "time". Let

1 if ntB path gees through (x, y)

oy 1
X,¥,0 0 otherwise.

note that LO,O,n = 1.

1f P(':(x, y) denotes the observed proportion of steps at (x, y) in C, then

N N

Z Lo s Le,y,n/ N

=1 27 n=1 2J 3
(1.6) L

1 —

Pc(x’ Y) N - N °
= tn z tn N
n=1 n=1

Note that
1
' = A ————————————
(1“7) Pc(o’ 0) - N .
z tn N
n=1

e



But the long run value of P'(x, y) is P*(x, y) (Chung [1960]) and by the strong

law of large numbers (Feller [1957] p. 37h4),

(1.8a) lim [ % g tn] = E(T)
N = o n=1
and
(1.8b) e [ ZoL 1= P y) .
N = o N =] Xo¥sm c?

Therefore from (1.6), (1.7), (1.8a) and (1.8b),

1 Pc(xs Y)
Pé(o’ 0) = E(T)’ ’ Pé(x, y) = —_-E-(TT
or
Pé(x: Y) = Pé(o’ O) PC(X, y) °

In general Pc(x, y) = np°q’ , where n=(number of paths from (0, 0) to (x, y))

and if all paths are possible, i.e., if the set C is full, then
-+
(1.9) po(x, v) = ()% .

If the region C is not full, the computation of Pc(x, y) can be tedious.
Let T and T denote respectively the "observed" income and "observed"

length in the nEE cycle, Define

N

Z I
n=1 n
S T

n=1 ©

Then Johns and Miller [1963] have shown that with probability one the limit of

In(C) exists. Call this 1limit I(C). They have shown that

1c) = E(I)-mK

T TE(T)m



with probability one. Hence from (1.5)

Z Pc(xs Y) i(x3 Y) - mK

_ (x,y)ec
(1.10) I(¢c) = = Pc(x, o -
(x, y) eC

with probability one.

2. Properties of optimal C.

Lemma 3:

There exists a continuation set C such that
1(C) =z K.

Proof:

Consider the empty continuation set, C In this case the process starts

00
at (0, O) and goes to repair immediately; comes back to (0, O) after repair
and goes back to repair without any production. In fact the process always

remains in repair. From (1.10),

O-mK
1C) = Tm = -

This proves Lemma 3.

Definition k4: A continuation set C is said to be optimal if and only if it

maximizes the long run income per unit time,

Lemma L4g
If

lim sup i(x, y) < -K,

then there exists a finite optimal set.
Proof:

Since 1im sup i(x, y) < -K, there exists RZ such that i(x, y) < -K,
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if x%+y® > R®?, Let Ek = {(x, y)|x?+y® > R®) and Cp be its complement. Let C¥

be the optimal set, Define

From Lemma 3, we have

z P..(x, v) i(x, y) + z Poy(x, y) i(x, y) - K
(x, y) ec, © (x,y) ec, ©
? 1 . ’ 2 . s K
z P..(x, y)+ z Poy(x, y) + m B
(x, y) ec, & (x, ) €€, °©
? 1 R ? 2
or
( Z). c PC*(xa Y)[i(x3 Y)"’K] + ( Z) c Pc*(x’ y)[i(xs Y)+K] z 0.
X, ¥y) € X, ¥) € i
1 . -2
But for each (x, y) € C,» i(x, y) < -K, therefore
(2’1) ( z) c Pc*(x’ Y)]i(x’ Y)+K] 2 0.
X, ¥) €
1
Now
I(Cl) z 1I(C¥)
or
( 2) o Pc*(xs Y) i(x’ y) - X
X, V) €
1
z P..(x, y)+m
(x, y) ec; &
z Poy(xs ¥) i(x, y) + z Pox(xs ¥) i(x, y) - K
(x, y) e C) (x, ¥) € C,
S )
- by P..(x, y) + z P..(x, y) +m
(x, ) ec;, & ’ (x, y) ec, &
2
if
z Pc*(x’ Y)[ z Pc*(x’ Y) i(X, Y) - mK]
(X, Y) € 02 (x’ Y) € C
. 1
- 2 Pc*(x, Y) i(x, Y)[ Z PC*(X, Y) + m]
(x, y) eC (x, y) ecC
2 - 1
-9-



or, if

.2 z P .(x, i(x, z K z P _.(x, .
ea Seo ox(®s ¥) 1(x, ¥) sl ec, ox(xs 7)

(2.2) is true because of (2.1). Hence

1(c1) z I(C*) .

But C¥* is optimal, therefore

1(01) = I(C¥*) .

Note that C, is finite. This proves Lemma b,

Lenma 5:

A sufficient condition for the optimal set to be non empty is that
i(0, 0) > K .

Proof:

Consider the continuation set C = {(0, 0)}. From (1.10),

1e) = (0 0)-mk o o (since 1(0, 0) > —K).

1+m
Hence the empty set cannot be the optimal set (Lemma 3).

From Lemmas L and 5, we conclude that a sufficient conditfon for the

optimal gset to be finite and non empty is that
lim sup 1(x, y) < K, and that

GO
i(0, 0) > K .

Definition 5: A set C is said to be full if (x, y) € C implies (x', y') e C

for 0sx'sx, 0sy'=sy.
Theorem 1:

1f 1(x, y) is non increasing in each coordinate and lim sup i(x, y) < -K,

=10=



then an optimal C is8 full with the exception of null sets,
Proof:
Since exclusion of null sets does not change the value of I(C), they can

be disregarded.

Let I* be the maximum of I(C), i.e., the value of I(C) for optimal C.
At this point optimal C and I* are unknown, but it is assumed that they

exist (Lemma L4). Then for any other continuation set C

T Po(x, y) i(x, y) - K

(x, Y) €C
- z Pc(x, y) +m =z 0.
(%, y) eCc ~ -
Or
(2.4) z Pc(x, y[Li(x, y)~I%¥] - m(K+I*¥) = O,
(x, y) ecC :

Equality holds when and only when C is optimal. From (2.4) we notice that
(a) for C optimal, i(x, y)~I* =2 0, (x, y) € C. Otherwise if for some
(x*%, y*) € C, 1(x*, y*)-I* < 0, then since i(x, y) is non increasing in each

coordinate, we can increase the value of the left hand side of (2.4) by taking

- out of C, the point (x¥*, y*) and all other points which can be reached by paths

through (x*, y*).

(b) again the value of the left hand side of (2.4) would be increased by
adding to C any point such that i(x, y)-I* > O, This follows since i(x, y)
is non increasing in each coordinate.

These two steps assure that optimal set C is full,
Let the optimal C be denoted by C* and I(C¥) = I%,

Corollary 1:

Suppose there are n points for which i(x, y) = U, where n 2 O and U are

any constants. Then if one or more of these n points are included in C¥%, then

~]lle



all the n points are included in C¥; i.a,, C* iz determined by the contours of
the income fumetion 1(x, y).
Proof:

From (2.%4), for amy C,

(2.4") = Pc(x, y)[i(x; y)-I*] = m(R+I¥) = O
(xa Y) §C

with equality for eptimal C.
From part (a) of the proof of Theorem 1,
i(x, y) 2 I¥, for (=, y) € C¥ ,

Now suppose that a part of a particular contour of i(x, y) is included in
C*, Then for eaeh point of this eontour, i(x, y) 2 I¥, Hence the left hand
side of (2.4') can omly increase by adding to C* the poi.ni:s of this particular

contour which are not included in C¥, This prm-res the result,

Theorem 2;

If 1(x, y) is non increasing in each ccordinate; them for each choice ef

A, the set Ck9 where

¢ = (& Pilx, y) 2 2
is full,
Proof:

Let (x¥, y*) € G, . Then since i(x%, y) is non increasing in each coordinate,
it follows from'the definition of the set c:x that (2%, y') € C)\ vhere
Osx'sx*¥ and O0sy'sy*

which assures that C)\ is8 full,

Theorem 3:

I1f i(x, y) is non increasing in each coordinate, then the optimal choice

nlelﬂ



of C is a CK'

Let C¥ denote the optimal set. From Theorems 1 and 2, C¥ and all CK are
full, Froﬁ Corollary 1, we know that the optimal set is determined by the
contours of the income function. Hence it follows that optimal C is of the

form
(2.5) ¢, = =, )iz, y) 22}

which proves the theorem,

Lemma 6:
If
N-ab > E
D=a ~ D°?
then
N N+a'b'
D - “D+a'

where D>0, a>0, a'>0 and bz b',

Proof:

From the given condition

therefore, since a > O,

(2.6) N 2 bD.
Now
D = pD+a'
only if

<13



a'N 2z a'b'D.
But a' > 0, therefore the desired condition holds only if
(2.7) N 2 b'D.

Since b > b', (2.7) is satisfied because of (2.6), which completes the proof

of the lemma.

Theorem L4:

2 2
Let A, >\, > Mg if I(Cxl) 2 I(CKQ), then I(CKE) 2 I(Cx3) .

Proof:

>"1 > >\2 > A, implies

3

c. Cc Cec since C = {(x, y)|i(x, y) 2 A} .
1 o h3 A

Let Il, 12, 13 5 Tl’ T2, T3 be the total expected income and expected
duration of a cycle when the continuation set is C 1, Cke’ CK3 respectively.
Since C}\'1 C C)"g,
T1 s T2 .
Similarly
T2 s T3 .
Let T, >0, I, = T2-a, T3 = T2+a‘ where a > 0 and a' > 0. Denote
I,=N, I, = N-ab, I3 = N+a'b' .
The given condition I(C>"1) 2 I(C%'z), can be written as
(2.8) e
2 2

-1h-



From (2.8) and Lemma 6, we have

N N+a'b'
I(C, ) = /= 2 == = I(C, )
Ay I, To+al s

provided b > b'.
Since i(x, y) is non increasing in each coordinate, the income per umnit
"time" in the region C)\ —CA. is greater than the income per unit "time" in the
2 "1

region C)\. -Ch , therefore b ;/ b'. This completes the proof of Theorem l.
3 "2

3. Applications.

Ag an application of the above model consider the case when the production
process is a vector valued stochastic process {(x(t), y(t)), t =2 0O} with state
space a lattice of points in the non negative part of the plane. ' When the
process moves, it moves one step' either to the right with probability p or
upwards with probability g=1-p. Let the waiting times between moves be
independent and identically distributed random variables with finite e.xpect:atidn

H. Consider the maximization of the quantity

' E(I')-mK
(1) E(T')+m °

where T' and I' are the time and income associated with a path and m and K are
defined above. The quantity in (1.4') correspords to the long run income per
unit time (Johns and Miller [1963]). :
In this case the inspection process corresponds to observing the process
{(x(t), y(t)), t =2 0} continuously. The problem is simplified because it is
necessary to observe the process only at the times {tn} corresponding to
the moments when the successive moves occur. Therefore T' and I' can be ex-

pressed respectively as H times the number of steps in a path and H times the

-15-



sum of the values of i1(x, y) over all points in C which the path passes through,

i.e.,
T' = HT, I' = HI .

Thus the discrete model discussed in Section 1 can be used in this continuous
case and the quantity in (1.4') can be maximized. It follows from Johns and

Miller [1963] that I(C), the limit of In(C), the observed incomes per unit

. ]
time in the nit cycles, exists with probability one and that I(C) = Eé%E%SEE
with probability one. Therefore, from (1.10),

(1) 1) H ( % Po(x, v) i(x, y) - =
\ _E(1')-mK _ HE(I)-mK _ (x, y) €C
(1.10') 1(c) = E(T')+m T "HE(T)+m H > Pc(x, y) +m :
(x> Y) €C

3.1. Poisson Process.

As a special case let the two components of the preduction process
(x(t), y(t)) be independent Poisson processes with parameters A, and A,
respectively. This case is a generalization of the problem considered by
Savage [1962].

The following are some of the basic properties of (x(t), y(t)) process

(disregarding repair state):

T
a. P(x(t')-x(t*) =x) = e 1 (a,7)*/x!

P(y(t')-y(t*)

[
<
S

|
o
“N
n§>
&
S”
N
<

where x 2 0, y2 0, t'-t¥=T2 0.

b. As functions of t, both x(t), y(t) are non decreasing and with probability

one whenever x(t) or y(t) increases; the size of increase is one.

~16-



c. The changes in the values of x(t) are independent of the changes in

y(t), i.e., each machine change states independently of the other.

d. For ¢t z ty zt,zt; and x5, x,20, P(x(th)-x(t3) =x, and

v

1

x(te)-x(tl) = xe) = P(x(th)—x(tB) xl) P(x(t2)-x(t1) x2) and a

similar expression for y(t).
e. The waiting time between the points of increase of x(t) and y(t) are
exponential with parameterslal and AQ, i.e., the exprected waiting times

respectively are A{l and Aél. The respective variances are.Ai2 and Aée.

f. Each component of the z(t) process is Markovian, i.e., to compute the
probability distribution for the future of either of the two components,

only the most recent history of that component is required.

g. Each component of the z(t) process has stationary increments, i.e., the

distribution of x(t')-x(t*) or y(t')-y(t*) depends only on T = t'-t* = 0,

Properties (a. through c.) imply (d. through g.).
In this case the process starts at (0, O) and when it moves, it moves a

step either to the right with probability p or a step upwards with prebability q.

It can be shown that

= __zil;.. and = ]_..p = __j‘_g__
P KA, 4 A,

Note further that H = ZT%Z; » 1l.e., the expected timg spent by the process at
1 !

any point during preduction is L .
Alhae

From (1.10'),

g 2)' c Pc(x: Y) i(xa Y) - mK(Al"‘Ae)

n X, €

(1.20%) HQ) = S TR
(x, y) ecC

-17-



Now we consider various examples in the Poisson case to illustrate the

results obtained in Section 2 and to compare our results with Savage [1962].

3.2. Examples (Poisson case):

Example 1,

Consider the symmetric case of the income function (1.3a) when B = D, i.e.,
(3.1) i(x, y) = A-B(x+y) .

It is required to find A so that
C}\ = {(x’ Y)Ii(x: Y) = A‘B(x"'Y) 2

is the optimal set.

CK can be written as

CL = ‘{(x, y)|x+y < h) where h = é%& .

Without loss of generality we can assume h to be an integer. Otherwise we

A-N

define h = [ 5 ] where [x] stands for the largest integer less than or

equal to x. Now

h h AeB
(3.2) zr(x,y) £ P (x,y) = 2[2()’”"=h+1=+3->~
k h —O x+y=j A j=0 x=0
h X+y, X y
(3.3) =P, (x,y)i(x,y)= = = (7 .7)p ¢ (a-Bx-By)
Ck A j=0 =x+y=j
h h(h+1) (A
- £ [A-Bj] = A(h+1) - B 2(B¥L) _ (AA)(AYB-A)
520 5 2B

Hence (1.10") reduces to

2A(h+1)—Bh(h+1)-2(A1+A2)mK
2(h+1)+2(A1t62)m ?

or

(3.4) I(CK) =
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(A+B-\) (A+\)-2BnK (A1+A2)
(3.5) I(c,) = SAFBN)PeBmA,h,)

Note that equations (3.2), (3.3) and (3.4) correspond exactly to Savage [1962]
equation (18), equation below (21') and equation (22), provided A = Dy,
In working with critical equation (3.5), A is treated as if it is a continuous

variable and it follows from equation (23') of Savage [1962] that

(3.6) h* = A';‘* = Am([1+(2A+B+2K)/ABm]%-1) -1,
or
(3.7) NE = 2A+B+2K ]}5

A+B+Bm(A +A, ) -Bm(A +A,) [1 + Ba(a, )

To find I* = I(C

k*)’ we can use (3.5) or from equations (24), (25) and (26)

of Savage [1962], we have

) - EAXB
-2,

(3.8) I* = I(C)\*
Note that equations (3.4) and (3.7) are of correct dimensionality when it is
realized that:

h is a pure number,
m is dimensionality (time),

A = A+, is dimensionality (time)—l, and

1

A, B, K are dimensionality (money/time).

Example 2.
Consider again the income function (1.3a) and 1let
B=2, D=3, m=1, k=25

Al =%, A2 = % and therefore



We consider three cases corresponding to three values of A, i.e., A = 10, 11, 12,

Note that Cj denotes the set of points {(x, y)|i(x, y) 2 i}. Therefore for A = 11,

C)'l' contains (O’ o)’ (1, 0), (O’ 1)) (2’ o)’ (0’ 2)’ (1, 1)’ (3’ O), (2’ 1)

and

C. contains (0, 0), (1, o), (o0, 1), (2, O) etec.

7
For A = 10 [values of I(C) are approximated to 2-decimal places.]
2
s ) - 5 (U - 2
(x, y) € C, ¢,
z Pc(xa Y) = % ’ z PC(xs Y) = 19;
Cc C6
5
z Po(x, v) ilx, y) = = (F7)p"¢[10-2x-3y] = 23
X
(x, y) € G, c,
z Pc(x’ Y) i(x’ Y) = 21.5, z PC(X’ Y) i(x’ Y) = 19
C Cc
5 6
and
) = prgey = 436

1(05) 4 ko, 1(06) = 4,31,

We find that c5 is optimal and A* (optimal A) satisfies; U4 < A¥ = 5 and I¥* = k,LoO.

For A = 11 [values of I(C) are approximated to 3-decimal places.]
T _ 25
2 Po(x, y) = 5 2 Pe(x, y) = %
L 5
11
SRy(x,y) = 3, ER(xy) = £
C6 C7

-20-



ZR(x, y) L=, y) = HE,  Drglx y) ilx, ) = 22
5
_ 91 _ 85
Z PC(X, Y) i(x, Y) = T z PC(X, Y) i(x, Y) i
Cg c
T
and
I(Ch) = 5.028 , I(Cs) = 5,121
1(c6) = 5,133, 1(c7) = 5.000 .

Therefore Cg is optimal and A* satifies; 5 < A¥ S 6 and I¥* = 5,133,

Far A = 12
ZPC(X) Y) = %" Z.Pc(xs Y) = '2'2
c c 8
5 6
11 _ 9
% PC(X, Y) = T ’ zc: PC(X’ Y) = '}I
7 8
Z Po(x, y) i(x, y) = ?-%2 ,  ERy(x, y) i(x, y) = _li_'(
c C
5 6
z PC(X, Y) i(x’ Y) = 27, z Pc(x, Y) i(x, y) = 12—7
c7 Cg
and
1(cg) = 5.806,  1(Cg) = 5.879
1(07) = 5.867 , I(Cg) = 5.692 .

Therefore \* satisfies; 5 < A¥ = 6 and I* = 5.879.

Example 3:

Consider again the income function (1.3a) and let
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B=L4, D=3, m=1, K=14

A = 1/3, A, = 2/3 and therefore

p=1/3, q=1-p=2/3.
Again we consider three cases corrésponding to three values of A, i.e.,

A = 14, 15, 16,

For A = 14

1(c7) = 7.029 , 1(c8) = 7.031, 1(09) = 6.889 ,
Therefore 7 < A*¥ s 8 and I¥* = 7.031,
For A = 15

1(06)

TeT5

7.63 , 1(07)

I(c8) T.74 .

TTT » 1(09)

Therefore 7 < A*¥ =8 and I¥ = 7.77.

For A = 16

1(07)

8.39 , 1(08) = 8.50

1t

I(Cg) 8.514% , 1I(C 8.45 .

10) =

.Therefore 8 < A* = 9 and I¥ = 8.51k4,

Example J4:
In example 3, we specialize the case when A = 15 and D = 4 instead of 3,
i.3., the income function is of the form (3.1) of example 1 with A = 15, B = L,

In this case;

1(c,) = 1(c5) = 1(cg) = I(cy) = 7.250 ,
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1(cg) = I(Ce) = I(Cyy) = I(C;) = T7.333,

1(C;,) = 5.50 .

Note that 1(012) is a one point set,

(3.9) S, T<a*¢s 11
and

(3.10) I* = 7.333 .

Now from (3.7),

(3.11) A¥

19+4-4[1 + %? ]% = 9.

and frem (3.8),

(3.12) ¢ - *B . 1.8 o,

2 2

Note that the value of I* given by (3.10) is sufficiently close to the approximate
value of I* given by (3.12); hence example L illustrates numerically the results

obtained in (3.7) and (3.8).

Example 5:
| Now consider the income functien (1.3b). In this case the contours of

i(x, y) are rectangular hyperbolas; let

By =% A =% 5 P=% 4q4=3%
and A takes the values 9, 10 and 11.
For A= 9
I(c,) = 1(03) = 5.69, I(Ch) = 1(05) = 5.86
1(c6) = I(C7) = 6.11, 1(c8) = 6,00 .
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Therefore 5 < A¥ = 7 and I¥% = 6.11,

For A = 10
1(c3) = I(Ch) = 6.52, I(Cs) = 1(c6) = 6.71
1(c7) = 1(08) = 6.89, 1(09) = 6.75 .

Therefore, in this case, 6 < A* = 8 and I¥* = 6.89,

For A

= 11
1(c,) = 1(cy) = 7.35, I(Gg) = I(C;) = T.57
I(cg) = 1(09) = T.67, I(C;y) = T.25.

Therefore 7 <A¥ = 9 and I¥ = T7.67.

Examples 2, 3 and 5 can be summarized by the table on page 25.

Note: From examples 2, 3 and 5, we note the following:
(a) The optimal C is full,
(b) As A (sure rate of income) increases, the continuation set does not decrease.
(¢) 1I%* increases with A,
(d) Comsider the set C,
C)\. = {(X, Y)Ii(x’ Y) 2 N} .
Note that i(x, y) is defined only for integer values of x and y. Therefore
for any choice of A, there exists a set of A's which give the same
continuation set Cx and we have the following conjecture.
Conjecture: Let A%, A\¥%¥% denote the minimum and maximum of the set of A's which

correspond to the optimal continuation set and if the income function is of the

form (1.3a) or (1.3b), then

(3.13)

A* S I* 5 A**

-2



-ga_

Summary of Examples 2, 3 and 5.

Form of Income Function] A | B | D imjp | q]| K Al A2 C* I*
wl2{3[1|3]|5]5(5 |2 [© 0.1, 0,00, 1),(2, 0),(1, 1) | bbo
1. Linear: T 171 T 1
( ) 11 2 3 1 ‘§ "2" 5 § I} (Oa O),(l, 0)’(0: 1)’(29 0):(1a 1) 5'133
i(x, y) = A-Bx-Dy
le|s|1|2]2]5(2 |2 [0 0).(1, 0,00, 1),(2, 0), 5.879
(0, 2),(1, 1),(3, 0)
b (3|13 [5%]3 [5 [0 0,1, 0.0, 1),(0, 2) 7.031
5 s (313|515 [35 |5 [0 0,0, 10, 2),0, 1) | 7.77
16 0413135 [%[3 [F [ 01 0,00, 1).(0, 2),(1, 1) | 8.5
olel-{1]3]5|3|5 |z [0 0.1 1i0, 5)and (3,0 |61
2. Quadratic: for j=1,2,3,...
L(x, y) - A-Bxy o(2f-|1{5|2(3]5 [# [0 0(1 1)s(0, j) and (3, 0) | 6.89
for j=1,2,354..
ule|-|t{z]3]3]5 [z [0 0.1 i, 5) and (5, 0) | 7.67

for j=1,2’3,oco




X

Acknowledgment:

I wish to express my indebtedness to Professor I. R. Savage for suggesting
this problem to me, for his inspiring guidance, constant encouragement and
valuable suggestions. It has been both a privilege and a pleasure to work

under his direction.

References
[1] Chung, Rai Lai, "Markov Chains with Stationary Transition Probabilities,"

Springer-Verlag, Berlin (1960).

[2] Feller, W, "An Introduction to Probability Theory and its Applicatiomns,"

John Wiley and Sons, Inc. New York.

3] Girshick, M. A, and Rubin, H. "A Bayes Approach to a Quality Control Model,"

Ann. Math, Statist. 23 (1952) pp. 11L4-125.

[h] Johng, M, V., Jr. and Miller, R. G, Jr. "Average Renewal Loss Rates,"

Ann, Math. Statist. 34, No. 2 (1963) pp. 396-L401.

[5] savage, I. R.,, "Surveillance Problems" Naval Research Logistice Quarterly,
L0g1 y

Vol. 9, Nos. 3 and 4, Sep-Dec (1962) pp. 187-209.

-26-



