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Abstract 

Some parametric models for stochastic permutations of integers 

are discussed in relation to comparison of predicted and realized 

rankings. Part of the purpose of the paper is to respond to a challenge 

by· a rank correlation afficionado, Io Do Hill (1974), and to re-analyse 

Hill's data~ 
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lo Introduction. 

In a recent article, Berry (1975) has discussed a novel parametric 

model for stochastic permutations of (1,2, ••• ,N), parametrized so as to 

produce trends in the permutations, except in the null case when permutations 

are completely randomly generated. The model is intended to apply to a 

situation where rank correlation analysis is customarily applied, namely 

the comparison of two sets of rankings of N individuals or objectso 

One particular motivation for Berry's work was a challenge to the likelihood 

and Bayes "schools" by Io Do Hill (1974) in an article comparing predicted 

and realized ranks of British soccer teams. 

My purpose here is to examine parametric models which I think might 

better represent the prediction situation, and which deserve attention 

as serious competitorso The models involve a ·simple notion of group prediction, 

complemented by a model for the order of permutations. These are described 

in Section 3, and fitted to the soccer data in Section 4. Section 2 contains 

a brief review of Berry's model with some further discussion of its properties. 
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2. Stochastic Permutations: Berry's Model 

The data under consideration constitute a single permutation of the 

integers (1,2,o•o,N), each possible permutation having equal probability_ 

(N!)-l only under a null hypothesis of completely random stochastic 

permutation. If an arbitrary permutation is I= (11 , ••• ,IN), we then 

define the vector X = (x1, •• o,~) to be the positions of 1,2, ••• ,N 

in I; that is, 

xj = k if and only if Ik = j • 

A stochastic model for such permutations that tends to produce trends 

(correlation with the natural order l,o•o,N), proposed and discussed by 

Berry (1975), is 

N 
P(Xl = x1,o••,Xn = ~) = q(x1;8)j'!k q(xjlx1,.oo,Xj-l;8) , (2.1) 

where -e x. 
q(x.lx1,•o•,x. l;e) = ___ J __ 

J J- i a-e 
a s 

, (j = 2, ••• ,N) 

s=l,oeo,j-1 

and ~ denotes summation over 1 ~2, o o. ,N. Key properties of the model 
a 

(2ol) are as followso 

(i) 8 = 0 corresponds to completely random permutation; 

(ii) a> o corresponds to a tendency for the x. 
J 

to be increasing, 

the tendency being stronger for large 0; 

{iii) 9 < 0 corresponds to a tendency for the x. 
J 

to be decreasing, 

the tendency being stronger for large lal; 

(iv) The most probable sequences are x = (1,2,oeo,N) when 8 > 0 

and x = {N,N-1,ooe,1) when 9 < Oo 

- 2 -

I I 

I . 
~ 

i : w 

I 

i..J 



'-

-
-
-
-
lat 

.. 

.. 

-
lat 

1..1 

lad 

la! 

... 
lat 

-
.. 
.. 

-

The joint probability (2.l) will be thought of as a likelihood, 

and is best expressed as 

(N! )-8 
li~(alx) = N (~ 

8

-0 ) 

-~ /__ X • J=v a~l,oo•, J 

, XO= 0. (2.2) 

This likelihood is unimodal, so that the maximum likelihood estimate is 

well-defined, but (2.2) is asymmetric, in the sense that 

li~(8Jx = {c1 ,.o.,cN)) ~ likB(-8lx = (cN,••o,c1))o Qualitatively, 

when 8 > O, the trend in x is strongest at the beginning of the 

sequence and weake~rt at the end of the sequence. 

The latter remarks are particularly relevant since the model (2.2) 

applies to data for which the classical statistical analysis is based on 

rank correlationso Both Spearman's rho and Kendall's tau coefficients 

are syunnetric statisticso Recall that 

Spearman rho 

and that 

t u -,Kendall a -

6 :E (x. - 1 )2 

= 1 - J 
N(N2- 1) 

N-1 N 
where S = 2 .. ~ k ~ l h(x.. - X.) - ~(N-1) J=l. =J+ --k J (2o3) 

with h{u) = 1 and O according as u ~ 0 and u < Oo As an example, 

consider the two sequences 

x = (5,4,3,2,1,6,7,8,9,10) and x' = {i,2,3,4,5,10,9,8,7,6) • 

The values of rho and tau are respectively Oo76 and 0.56 for both 

sequences, but the likelihood functions likB(elx) and likB ( 81 X 
1

) 
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have maxima at 1.0 and 3.4 respectively, and relative likelihoods 

(relative to maximum values) at 0 = 0 are 0.15 and 0.04 respectively. 

Of course it may be that in practice one would want the extra emphasis 

on "early" integers that lik_s(9lx) possesses, but the lack of correspond­

ence with rank correlation is unfortunate for comparison of "likelihood 

inference" and "sampling· theory inference". A synunetric parametric model 

for X is defined in Section 3. 

Neither 0 nor rank correlations have strong physical interpretation 

without appeal to an underlying continuous-variate from which the ranks 

are defined. Since any systematic permutation is, by definition, non-random 

the search for a physically interpretable parametrization is probably futile. 
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3. Alternative Models for Prediction Applications 

3.1. Motivation. 

The specific focus of our discussion is the following problem, a 

special case of which occupied Hill (1974): A set of N individuals 

are to take a test, following which they will be rankedo Prior to the 

test an expert predicts the post-test ranks, and we wish to compare the 

two sets of ranks so as to determine whether the results of the test are 

predictable, and ~f so to what degree. 

The particular data we have for analysis are predicted and actual 

end-of-season ranks for each of six British soccer leagues in the 1971-2 

season. A typical example is 

X = (6,2,7,3,5,9,15,8,l,4,19,16,ll,18,17,lQ,l4,21,12,13,22,20) 

which is the set of actual positions of English Football League Division 1 

teams predicted to finish in first place, second place, etc. 

Now it is not unnatural to suppose that the prediction is carried out 

in at least two stages, the first of which is a classification into categories 

such as "good", "medium" and "poor", or simply "above average" and "below 

average"o Further stages in the prediction process would then lead to the 

ranks attached to individuals. For simplicity, and to maintain a degree 

of objectivity, we shall assume that there is an initial classification 

·into two groups of roughly equal size, following which individuals are 

ranked within groups. 

After defining suitable models for relationships between predicted 

and actual ranks, our interest will naturally be in determining whether 
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the predictors can do more than classify into groups. The remainder of 

this section is devoted to defining plausible models and some comment on 

their analysis. 

Models for Group Identification. 

We shall suppose, without loss of generality, that predictors place 

individuals 1,o•o,m in group G+("above average") and individuals 

m+l, .. o ,N in group G-("below average"), and that individual j has 

predicted rank_ jo The final order of the individuals defines the positions 

of the N individuals as x1,.oo,~, but the success of group class­

ification is determined solely by the unsequenced values of x1 ,o •• ,xm. 

It is convenient to introduce the notation 

j e (xl' • •• ,xm) 

j e (xm+l' o o o ,~) 

N 
with the restriction LJ Y. = mo There are 

1 J 

(j = l, ••• ,N) , 

(N) 
m 

possible sequences 

(y
1

, ••• ,yN), each equally likely if group classification is random. 

The simplest general model for Y is the logistic probability function 

m 

exp(l f y) 
lik.___(ljx) = P(Y1 = y1, ••• ,Y.N = yN) = . , 

--i, mn m, n m n 
( ){ )exp(ls) 

s- s m-s 

where n = N - mo The emphasis here is on how many of those individuals 

predicted to be in G+ do not actually belong to G+. The model corresponds 

to a 2 x 2 contingency table, the independence hypothesis corresponding 

to 1 = Oo 

A more practical model for prediction is obtained by paying attention 

to which individuals are incorrectly classified (if any). We take as our 

second model 
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li¾(wlx) = p(Y1 = y1 ,.o.,YN = yN) 
exp ( -w :B y . x . ) 

J J 
= N ( ) 'E exp{-wt)p { t) 

m t m,n 

(3.3) 

where p ( •) m,n 
is the probability distribution of the Wilcoxon rank-sum 

m 

statistic W = f Xj under the null hypothesis of complete randomness, 

which corresponds to w = O. The exact evaluation of p (•) m,n 

straightforward using the recurrence relation 

p (t) = N~ p 1 (t-N) + N!!: p l(t) m,n m- ,n m,n-

is 

together with the identities: W = 0 if m = 0, -~-- if n = O. 

Since both ~ Y. and ~ X. Yj are asymptotically normal for large 
J J 

m,n under complete randomness, large-sample approximations may be deduced 

from (3o2) and (3.3). These are 

I N -1 m m2 m2 n2 
lik:r, (1 x) ~ ( ) exp(l ~ y .- 1-N - ½ 12 

--) 
m 1 J N2 (N-1) 

and 

li¾(wlx) ~ (N f 1 
exp(-w i: y .x. + wu....- ~ 2 ~T) m J J ,~T 

where and cr2 = mn(N+l) 
T 12 • 

Unfortunately it turns out that-·these approximations are not accurate for 

the sizes of samples (N ~ 24) considered in Section 4 • 

3o3o Models for the Sequence X. · 

We suppose that after prediction of G+ and G the order within 

each group is predicted. To examine whether or not this prediction of 

order is successful, aside from group classification, we require probability 

models for the actual sequences <x1,•o•,xm) and (xm+l'oeo,~) 
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conditional on which individuals finally belong to 

is, we must model the final term in the equation 

P(X = x) = P(Y = y)P(X = xlY = y) 

+ G and G. 

to arrive at a model for the complete sequence X = (x1 , •• o,~)o 

Let + ( + +) r = r1,••o,rm 

That 

let r = (ri,ooo,r~) be the ranks of xm+l'ooo,XN within G-o For 

example if x is given·by (3.l), then 

and 

r+ = (6,2,7,3,5,9,10,8,l,4,11) o ... 

We assume, with loss of generality, that R+ and R are independently 

distributed. One possible model for X conditional on Y is then 

(3.4) 

where li\(01 •) is Berry's model defined in (2.2). We may be particularly 

interested in comparing predictability of orders within G+ and G, in 

+ which case comparison of 0 and 8 would be of interest. See, however, 

the discussion of Berry's model in Section 2; possibly r should be replaced 

by n - r + 1 to emphasise the predictability of the worst individuals, 

rather than those near the middle. I have not studied this possibility in 

the context of the soccer data. 

The lack of symmetry of Berry's model (Section 2), in particular its 

incoherence with rank correlation statistics, leads me to consider· 

an alternative syonnetric model for stochastic permutations. Here the 

device used in defining (3.3) is used again, namely embedding a classical 

test statistic, such as Spearman's rho, as sufficient statistic in an 

.... 

I 

exponential family. The difficulty with this is calculation of the denominator. ._ 
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Since the exact distribution of Spearman's rho is very difficult to 

compute, we shall use Kendall's tau, so that corresponding to (2.2) 

we define 

likc(Ylx) = exp(-ys) 

~p·:(t)exp(-yt) 

* where S is given by (2.3) and pN( •) is the probability distribution 

of S under complete randomness of permutation. It is well-known 

(Kendall, 1962, p. 67) that 

* 1 k * . 
pk+l (t) = k+l j~ pk(t - k + 2J) 

* with t = -~(k-1), -~(k-1)+2, ••• , ~(k-1) as the support of pk(•) 

* and p 1 ( 0) = 1 o 

For the two-group model we must apply (3.5) twice and then our alter­

native to (3.4) is 

In summary, we now have two possible models for group classification, 

viz. (3.2) and (3o3), and two possible models for the order of X within 

each group, viz. (3.4) and (3.6)0 The combinations into overall models 

for X will be denoted with mnemonic suffices as 

etc. It should be noted that such three-parameter models do not overlap the 

one-parameter models lik_s(0lx) and likc(Ylx) except for the null case of 

complete randomness. 

\ 
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3.4. Inferential Use of the Likelihoods. 

The composite models with three parameters, such as li1\m(w,e+,e-lx), 

are competitors to lik:s(elx). Within such a three-parameter family there 

is a natural hierarchy of hypotheses, fo~ example 

+ - I + -H1: 0 = 9 = 0, w ;= 0, H/ 0 , 0 ,w all non-zero. 

will focus on H1 , and the likelihood under H
1 

+ -H0 : e = e = w = o, 

Particular attention 

vis a vis the correspond-

ing one-parameter likelihood, lik:s(elx), since overall preference for H
1 

suggests that prediction does little more than identify groups. 

In comparisons of two models each with one free parameter, the ratio 

of maximized likelihoods is a natural measure of which model fits better. 

This is not entirely satisfactory, but a loose .justification is as follows: 

The two single-parameter functions li¾c(w,O,Ojx) and likc(yjx) may 

be thought of as belonging to one likelihood family, continuous in the sense 

that both components go through the common uniform null distribution. 

Therefore that component with larger maximum indicates the likelihood 

estimate of best model in the combined family. Unfortunately the combined 

family is not smooth {the two component families meet at a sharp angle) and 

the likelihood estimate may well be biased. 

Comparison of a three-parameter likelihood such as li1<wc(w,y + ,v-lx) 

with a one-parameter likelihood such as likc(yjx) is difficult, because 

-the families have only one common point {H0). In general one might 

complement the likelihoods with relevant prior distributions of parameters, 

but I find the task of assigning reasonable priors formidable here. For 

statistical problems such as comparison of alternative linear models, there 
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is some justification for offsetting the ratio of maximized likelihoods 

by the factor exp{~2 (d - d )} num den ' where d and d are dimensions num den 

of numerator and denominator parameter sets; see Kanemasu (1973). 

Personally I feel that a somewhat larger discount factor is required for 

N near 20, as in the soccer data. 

I am not aware of a satisfactory account of pure likelihood model 

comparision; if a sampling-theory approach were taken, Cox's (1961) work 

would be relevant, but.would require more effort to implement than our 

expert predictors probably merit! 

One possible general approach was suggested to me by some comments 

of G. Ao Barnard, namely that the observed likelihood ratio can be calibrated 

by determining the·corresponding likelihood ratio based on neutral data. 

Two difficulties with this idea are, first, that the choice of neutral 

data is to some extent subjective and, second, that one individual may 

choose two sets of ostensibly neutral data which lead to different likelihood 

ratios. Nevertheless, I think the approach may be useful. 

This discussion will prepare the reader for some rather ad hoc like­

lihood data analysis in the next section. 
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4. Model Fits for the Soccer Prediction Data. 

A prime motivation for the discussion in Section 3 was the data 

analysed by Hill (1974). Briefly, for each of the top six British 

professional soccer leagues an expert panel of journalists predicted 

end-of-season team places within the league prior to the 1971-2 season. 

The actual places of teams with predicted ranks 1,2,o •• ,n define the x 

vector discussed above for each of the six leagues. These vectors are given 

in Table 1. 

Each of the models described in Sections 2 and 3 was fitted to each 

x vector, with group sizes m = n in each but the last case,where 

m = 10, n = 9. The basic summary for e.ach likelihood fit is the maximum 

likelihood relative to the likelihood at the null parameter value, which 

we denote simply by LRA for models A = B ,c ,L,W o For models B and C 

fitted to G+ · and G as described in Section 3.3, the superscripts 

+ and are addedo Thus, for example, 

LR+= sup lik(ylr+) 

c lik(olr +) 

These likelihood ratios are given in Table 2. 

Consider first the various two-group modelso With one clear exception 

(SLDl), the Wilcoxon model better describes the success of group classifica-

tiono Thus, generally, as expected, when misclassification occurs it is 

not random, but rather in favor of the middle-rank teams~ Success at group 

classification is high, with the exceptions of FLD4 and, possibly, FLD2o 
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.- · TABLE 1 

End-of-season league positions (x) of soccer teams within each of 

... Football League Divisions 1 through 4 (FLDl - FLD4) and Scottish League 

Divisions 1 and 2 (SLDl - 2), season 1971-1972. Teams in order of 

pre-season predictionso 

League Size N X 

FLDl 22 6 2 7 3 5 9 15 8 1419 16 1118·1710 14 211213 22 20 

FLD2 22 2 6 12 7 19 9 14 3 10 11 13 5 142018 16 15 21817 22 

FLD3 24 1710 4 6 3 17 2 112314 5 2113818 22 12 16 9 20 15 19 24 

~ FLD4 24 1132017 8 16 2 12 9 21241 5 15 13 4 23 6 7 19 14 10 18 22 

SLDl 18 132815 4 9 6 5 12 18 7 10 14 13 111716 

SLD2 19 4 1910 2 11751618 6 14 3 12 19 17 13 8 15 

TABLE 2 

Ratios of maximum likelihood to null para111eter likelihood for component 

models fitted to Table 1 data. [LR = sup lik (alx) 
A A likA(olx) for models 

A= B,C,L,W with parameters a = 8, y, A, w; superscripts + and -
indicate model fitted to G+ and - respectively] G 

FLDl FLD2 FLD3 FLD4 SLDl SLD2 

L¾ 105 6.03 965 2o58 9097 15.3 

LRC 652 17.6 166 1.49 470 15.22 

~ 95.3 2.20 20o0 l.38 303 3.43 

L¾ 340 2.53 61o4 1.05 144 9.46 

~ 1.09 3.40 2.11 1.41 8.50 3o90 

L¾ 2.11 17.2 2o61 5.81 2.23 1.23 

LR+ 
C 

1.68 3.11 2ol8 1.01 3.05 3.05 

LR~ 1.68 5.45 1.41 3.25 1.42 1.004 

LR(W:B} 3.2 o.42 0.064 o.42 0.016 0.62 

LR(w:c) Oo52 0.14 0.37 Oo73 0.31 0062 
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i + 
Also, by inspection of the varues of LRC and LRC, there is not much 

I 

success at predicting the ord~r within groups, particularly in FLDl, 
I 

I 

FLD3 and SLD2. Note that L~ and LR~ values are usually comparable, 
i 

with the exception of SLDl (where the· real "good" group is acknowledged 

to be teams 1,2 and 3). 

Now compare the simple Wilcoxon group classification model with the 
I 

overall trend models, for wh~ch we use ratios 

and 

LR(W:B) = 
li\m(~,0,0) 

li~(a) 

LR(W:C) = I I m.noLRC 

=----

given in Table 2. Here the evidence is in favor of the Kendall tau model 

C as against W, but not strongly. The Berry model, which emphasises the 

top-ranked teams, is definitely inferior to the Wilcoxon m9del for FLDlo 

These results encourage me to believe that the major part of prediction 

success comes from group classification success, but there is a consistent. 

minor ability to predict the order. Comparisons of full group classification 

models with overall trend models, using 

indicate definite superiority of the former. 

and so on, do not 

Following the remarks in Section 3.4 about calibrating likelihood ratios, 

it would probably not be possible to agree on a neutral x for distinguishing 

between W and C, but one possible candidate is 

x = (l,N,2,N-1, ••• ,[½(N-1)] + 1) • 

For the six values of N in our data, the values of LR(w:c) are 

1.02, 1.02, 0.95, 0.95, 1.02, 0.96 and the corresponding values of 
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LR(W:B) are 0.10, 0.10, 0.07, 0.07, 0.16, 0.13. These suggest that the 

Wilcoxon model is as credible as the data values of LR(w:c) naively 

indicate, and more credible than the data values of LR{W:B) indicate. 

Generally Berry's model does not fare well overall relative to the 

Kendall tau model, SLDl being an exception for a reason already posited •. 

All models agree that FLD4 was unpredictable. 

5. Summary. 

Comparison of two sets of rankings is sometimes more meaningfully 

done in terms of groups of ~ndividuals rather than the individuals themselves. 

Some simple parametric models for permutations are available, notably 

those based on Kendall's tau statistic and Wilcoxon's group rank sum 

statistic. Of course similar results might be obtained by computing rank 

correlations within groups, and suitably comparing these with overall rank 

correlations. However, the use of likelihoods is probably more straight­

forward for interpretation purposes. 
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