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CONTRIBUTIONS TO THE THEORY OF RANK ORDER STATISTICS-THE TWO SAMPLE CASE:

FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK ORDERS

I. Richard Savage and Milton Sobel

1., Introduction,

In constructing admisgible two sample rank order tests one needs information
on the ordering of probabilities of rank orders. Specifically, if, under some
restriction of the class of alternatives, the rejection region of a test contains
the rank order z then it should contain all rank orders more probable than z.

This paper contains several theorems on such orderings under varicus

alternatives, especially the location parameter case for symmetrie distributicns.

2, Notation and Assumpticns.

X = (Xl,...,Xm) and Y = (Yl, “”’Yn) are samples drawn from absolutely
continuous populations with densities £(-) and g(-), respectively. F(-) and
G(°) denote the corresponding distributions.

W

(Wl,”.,W m+n) denotes the order statistics of the combined sample,
(X, ¥) = (xl,.,..,xm, Yl’“"’Yn)’ and Z = (Zl"“’zm+n) is a random veetor of

zeros and ones whose 1.--’:—1‘-l component, Zi, is 0 if Wi comes from £(-) and 1 if

W, comes from g(*).

Let 3 = (zl,,”,zm_n) be a fixed vestior of zeros and ones; we define the

(3 t

complement of z, z

c c t t
= (21,,..,,zm_n) and the transpose of z, z = (sl,o.ogmm_n),

te be the vectors whose 1.-1:'ll compenents are 1l-z, and 2 mrntlei? respectivaly,

i
P(z) = Pr{Z-z) denotes the probability of the rank order z.
Since the follewing restrictions of f and g are assumed in several results

below, we list them now aleng with a shorthand neotation.
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Restrictions:

ST: f(x) = £(-x) and g(x) = £(x~6), where 6 is a non-negative eonstant.
U: f(x) 2z £(x*) 1if 0=x<x' or x'<xs 0,
MR:  g(y)/£(y) = s(x)/£(x) if x=7y.

N: £(+) and g(°) are normal densities with common variance 1 and

means O and O, respectively, where € 2 0.

Note: ST stands for Symmetry and Translation and U implies that £(-) is
Unimodal, It is assumed, without loss of gemerality, that the mode of £()
is the origin. MLR stands for Monotomne _I:ikelihood Ratio and N stands for
Normality. Of course N is the strongest and implies the other three, Under

ST and/or N we use the notations P(z) and P(z|@) interchangeably.

3. Theorems on the Ordering of Rank Order Probabilities.

The general expression for P(z) is

mHn
— | o |
(3'1) P(z) - MmN, fooof H hz (ti)dti ’
i=1 1
f(ti) z,=0
where h_ (t,) = { , and the region of integration is
z,' 1
i g(ti) z,=1

- < t:1 S.0e5 tmi-n < o, In particular, under ST

(3.2) hzi(ti) f(ti-ezi).

Theorem 1:
If ST holde, then for all 6
1) p(z|e) = P(ztl-e) and

11) p(z|6) = B(°|-0).
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Proof:

Recall the definition of z° and z° and note that f£(x) = £(-x). In the

integral (3.1) (using (3.2)) make the transformation

i') t = -t (i=1,2’aoc’m+n)

1
i mintlei
or

ii') ¢ (1=1,2,. 0., mn)

'
i 9+ti<

. 1.
and 1) or ii) follows at once.
Theorem 2:

If ST holds, then for all €

P(z|6) = P(ztcle)o (See savage (1957) p. 975.)

Proof:

Note that z'® = (zt)c. Thus, by Theorem 1,

P(ztcle) = P(ztl-e) P(z|6).

Remark

If a result of the form P(z|6) = P(2'|6) for 6 e I' is true under ST, then,

by Theorem 2, the following are also true whem 6 ¢ I':
P(z"|0) = B(2'|6)
P(z™|0) = 2((2")*|6)
- P(z]6) = P((2')%|6) .
Theorem 3:
If MR holds and z and z' differ only in their 12 and jEll components (i < j)

with (zi, zj) = (0, 1) while (zi, z3) = (1, 0), then P(z) = P(2').

(See savage (1956) p. 594.)
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Remark

1f z and z' have a common number of zeros and ones and are such that
! 1 2 P
= (z j z 0, for i=1,...,mn, then there exist z ,z7,...,2" , where
j

= ,z ,.”,zk for k=1,...,p and zl—z', zp—z, such that for k=2,...,p,
s R

257 and ¥ differ in exactly two components, i, and j_ (i.k < jk) with

S, 25 ) = (0, 1) and (7, 27 = (1, 0).
k

(zik i; * Thy

For example:
z = h = (0,0,1,0,1,0,1)
23 = (0,0,1,0,1,1,0)
2 = (0,0,1,1,0,1,0)
z' = 2! = (0,1,0,1,0,1,0) .

Therefore we have the following result.

Corollary:

If MLR holds and z and z' have the same number of zZeros and ones and are

i
such that = (z! -zj) z 0, for i=1,...,min, then P(z) 2 P(z'). The properties
j=1

of the orderings implied by Theorem 3 are discussed in detail in Savage (1962).
In succeeding pages we employ the notation (z, w), where w = (wl,...,w o+ q)

and z = (%Z;50.0.,2, ), to denote the combined vector (B1s0eesz s wl,...,wp+q).

Theorem L:

If ST and U hold, € 2 O, and z contains the same number, r, of zeros and
ones, then
tC)

i) p(0,0,1,z ") = P(2,0,0,1)

and

11)  2(1,0,0,z"%) = P(2,1,0,0) .



Proof:

i) By Theorem 1, a necessary and sufficient condition for the conclusion

is that
p(z,0,1,1) = ?(z,0,0,1) ,
which, by (3.1) and (3.2) is equivalent to the inequality

(3.3) 1= f H(x) F(6-x)[£(x-0)-£f(x)]dx =z O, for all 6 = 0,

=00

2r
- ] o . ° -
where H(x) = (x+2)!(r+1)! M/\ I& f(ti zie)dti f(t2r+1)dt2r+1 .
x 1=

-0 < tl Seo0o= t2r+1 =

We note here for future use that

(3.4)  H'(x) = = H(x)

2xr
£(x)(x+1) ! (x4+2)? y/‘ o e . ;/\]I f(ti'ezi)dti
. 1=1

=06 o= é
1 2r

f(x) 6(x), say.
Let i(x) denote the integrand in (3.3) and let

0 e/2
I =f i(x)dx , I, = f i(x)dx .
8/2 -0
In 12 make the change of variable x = 6-x'. This yields, after replacing x'
by x in the transformed 12 and adding 11 and 12,

-]

B H(x) _ H(6-x) x x %0) £ (x
: 9[2 B - 5= = ) 2(00)(£(e-0)-t(a) e .




1
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It is easily seen that STU implies [£(x-0)-£(x)] = O for x = 6/2,

Therefore, a sufficient condition for I to be non-negative is that

H(x) ., H(6-x)

F(z) ° F(6ex) for x = 6/2,

Since x 2 6/2 implies x 2 6-x it suffices to show that M is non-

F(x)

decreasing for all x., And for this to be true it is sufficient that ?(%
has a non-negative derivative, i.e., that

H'(x)F(x)-H(x)E(x) =2 O
or, by (3.4), that

G(x)F(x)-H(x) = O.

Since G(x)F(x)-H(x) = 0 at x = — it suffices to show that G(x)F(x)-H(x)

is non-decreasing for all x, or that
G'(x)F(x)+£(x)6(x)-H*'(x) =2 O
or, by (3.4), that
G'(x) = o,

which is clearly so.
ii) The proof is identical with that of i) with the following trivial
modification: (3.3) is replaced by

-}

I= f nl(x)F(-x)[f(x-e);f(x)]dx z 0, for all 6 2 O,

=00

2r
- t t ° . . . - -
where H(x) = (r+2)!(r+1)! f f f.(i:i zie)dti f(t2r+1 9)dt2r+1 .

i=1
- < tl Saees t2r+1 =x

The proofs of the next three theorems have several features in common which
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we note here, They all state that if N holds then P(z) = P(z'). Equivalent
conclusions are P(ztc) 2 P(z') and P(2) 2 P(z'tc); one or the other is noted in
each theorem and is in fact what is proved,

The first step is to replace each P(+) with its equivalent under (3.1) and
(3.2) and to change the order of integration so that a particular pair of
variables is Integrated last., For the convenience of the reader this pair of

variables will be indicated by adding primes (') to the corresponding entries

in the z-vectors the first time they appear.

At this point we have an inequality of the form

[ sten e = c
=00 X

as a necessary and sufficient condition for the inequality P(z) = P(z'). By
making the transformation y-x' = w, x = x' we obtain the equivalent inequality

(omitting primes)

(-] (-}

f f S(x, x+w)dxdw = O,

0 =

A sufficient condition for this inequality is that the immer integral is

non-negative for w2 0, i.e.,, that

-]

I(w) = f S(x, xiw)dx = 0,
forwz 0,
(6-w)/2
Let Il(w) = S(x, x+w)dx and Ia(w) = I(w)-Il(w). in Il(w)

make the transformation x' = 6-x-w; this makes the ranges of integration of

=



a

Il(w) and IE(W) coincide,
By adding Il(w) and Ie(w),,we obtain
-]

I(w) = T(x, w)dx ,
(0-w)/2

where T(x, w) = [S(x; x+w)+S(0-x-w; 6-x)].

In each case we show that T(x, w) 2 O for x 2 (6-w)/2 and w 2 O, which, of
course, implies I(w) = O for w2 O.

In the proof of Theorem 5 we shall repeat in detail the argument just
outlined. By Theorem l.i it is necessary to consider only € > O in proving

Theorems 5 and 6,

Theorem 5:
If N holds and 6 4 O, then »(1,0,0%,0,1) > P(0,1,0°,1,0) or, equivalently,

P(1,0',0°,0',1) > P(1,0',1%,0',1). (x* denotes a vector of r x's.)

Proof:

By (3.1) and (3.2), the inequality
r r
¢(1,0,0 ,0,1)-P(1,0,1°,0,1) = O

is equivalent to the inequality

+3
f .. f £(e,-0)(e,)E(e,, IE(e, -0 [ £(t,)
<0 <t Seest ) <w if3
+2
-1 £(t,-0)]dt ...t ) = 0.
i3

Integration of the above with respect to all the varilables but t_, and tr+

2
(call them x and y, respectively), ylelds the equivalent inequality

3

[ [ #-e)m(ey) (e ()-#(x) F-x(7-6)¥(x-0) ) (x)e(r)eex = o
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If we transform the integral by letting x = x' and y = x'+w and drop the

primes we get the inequality

0 ©

(3.5) f f F(x-6)F(0-x-w) { [F(x+w)~F(x) 1* - [F (x+w=0) ~F (x-0) 1° } £ (x+w) £(x )dxdw = 0.
[o -}

Let I(w) denote the inner integral. If I(w) 2 O for all w = O, then it is

(-4}
clearly so that f I(w)dw = O, therefore a sufficient condition for (3.5)
oA
(hence for the conclusion of the theorem) is that I(w) 2 0 for w =z O,

Let S(w, x) be the integrand in (3.5). Then

© (G-W)/Q
I(w) = S(w, x)dx + f S(w, x)dx .
(6-w)/2 -
In the second integral let x' = 0-x-w; the result, after omitting primes and

combining the two integrals, is

I(w) = f F(x)F (0-x~w ) f (x+w)£(x~6) { [F(x+w-6)-F (x-6) 1"
(6-w)/2

1y [F(-x-w) £(xsw=6) _ F(x-6)£(x)
- [F(z+w)=F(x)]") f(xfw‘)vF(G-x-W) - f(:-G)F(:)] ’

Clearly, a sufficient condition for I(w) to be non-negative for w = O is
that the integrand above, call it T(x, w), is non-negative for w = 0 and
xz (6-w)/2,

The express:l‘.on in braces in T(x, w) is non-negative if and only if

[F(x+w-0)~F(x-0)]-[F(x+w)-F(x)] = O,

for w2 O and x 2 (6-w)/2. This is clearly so since the left member of the



inequality is the difference of the probability contents of two intervals one
of which is more central than the other.
By the corollary to Lemma 1 of Appendix I, the term in square brackets is

non-negative for x = (6-w)/2 and w 2 0. Therefore T(x, w) 2 O.

Theorem 6:
If N holds and 6 4 0, then P(0",0,1,1,0,0") > P(0",1,0,0,1,0°) or, equivalently,

p(1%,1',0,0,1',1%) > »(0%,1',0,0,1',0%).

Proof:
Proceeding as was outlined above, one obtains, as a sufficient condition
for the inequality p(1%,1',0,0,1',1%) = p(0%,1',0,0,1',0"), the inequality

(2r+2)!

T, W) = 5T

£ (x-6)F (x+w-0) £(x) £ (x+w) [62(x; W)
- G2(x-6; w)]([F(x-8)F(6mx-w) I*~[F(x)F(-x-w)T"} 2 o,
for 62 0, wz 0, and x 2 (6-w)/2, where

.6 ; - 1 F(XW)-’F(X)
(3-6) W HEHE ()
5

VRN

By the cerollary to Lemma 2 of Appendix I, with r = w/2, y = x-r, the term

in square brackets is non-negative for 6 = 0, w2 0, and x =2 (0-w)/2.
Theréfora T(x; w) is non-negative provided the term in braces is nen-negative,

This term is non-negative if and only if
[F(x=0)F(O~x—w)-F(x)F(-x-w)] = O, for x 2 (6-w)/2 .

This inequality is proved in the corollary to Lemma 3 of Section 5.

Theorem 7:

If N holds and 6 = 0, then P(0,1,1,0,2z) = P(1,0,0,1,2) fer any z or,

-10n



equiyalently, P(z,1',0,0,1') = P(2,0%,1,1,0').

Proof:
Proceeding as was outlined above, one obtains as a sufficient condition

for the inequality p(z,0,1,1,0) = P(2,1,0,0,1), the inequality

T(x, w) = [H(x)-H(8-w-x)]{G®(x; w)-G3(x-0; w)}£f(x)E(x+w)£f(x~0)F(x+w-0)

v
o
-

for w2 0 and x 2 (6-w)/2, where G(x; w) is defined by (3.6) and

' ' mn
Bx) - (mt2)lme): f o f H1 £(ey-0m,)dt,
<x *

= =
=00 < tl =0 e 0= tm.n

m and n being the number of zeros and ones in z.

It is shown by the Corollary to Lemma 2 of Appendix I that the term in
braces in T(x; w) is non-negative for w =2 O and x 2 (6-w)/2.

Clearly, H(x) is everywhere non-decreasing. Since x = (6-w)/2 implies

X 2 0-w-x, we have
H(x) 2 H(O-wx) ,

for wz 0, x 2 (6-w)/2. Thus, the term in square brackets is non-negative, and,

therefore, so is T(x, w).

4. Examples and Conjectures,

The following diagrams illustrate the theorems of Sectien 3. The symbol
z 5’259 z' means P(z) 2 P(2') for 6 2 O (under ST, STU, or N) under conditions
abe, C stands for Conjecture, The table accompanying some of the diagrams is
extracted from an unpublished table of probabilities of rank orders under N
computed by Jerome Klotz (1962). Noteé MLR implies a simple ordering of the

P(z) for n=1. Hence the first interesting case is m=n=2. All diagrams derived

-11l=~
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are distributive lattices but the conjectured'diagram for m=4 and n-2 is not
distributive; in particular it does not satisfy the Jordan-Dedekind chain
condition, i.e., not all chains from an arbitrary fixed z to (say) the least

probable rank order are of the same lemngth.

z
The notation, crossover-{ gt denotes the fact that there exist two

values of 6, 6, > 6, 2 0, such that P(zlel) >~r(z'|el) but P(z|62) <'p(z'|92)°

m=n=2 m=3, n=2

0011 00011
MLR \LMER

o101 00101

J}ER J}ma.
o110 3L 1001 01001
MLR
1010
MLR

1100

00110

ST and U
10001

N
01010

MLR
01100

10010
MLR

10100
MLR

11000

=10m



m=l, n=2

000011
MLR
000101
MLR
001001

N
000110
~

S
001010 010001
MR, _.— "C MLR
S
001100 100001
N N
010010
MLR
010100 109010
MLR ~-cC
&
011000
v
100100
MLR

4
101000

Z

A\
110000

-13-

Ordering from Klotz Table

000011
000101
001001
000110
010001
001010
100001
001100
010010
010100.
100010
011000
100100
101000
110000



ST

010011 = 001101
%\%

001110 2%\}00011 010101

\\“\\C MLR
~

~
011001

N

100101 3T 010110
\bﬁﬁR
101001 2% 011010

N

100110
S
MLR ™~ C

~a

101010 011100 = 110001
MLR%

110010 2% 101100
MLR
110100
MLR
111000

=14

Orderiqg from Klotz Table

000111
001011
001101 = 010011
010101
100011 = 001110 } *

011001
100101 = 010110
101001 = 011010
100110
110001 = 011100
101010
110010 = 101100
1101000
111000

* crossover



m=l, n=3

0000111
MLR
0001011
MLR MLR
0001101 0010011
MLR MLR
MLR 001Ql101 MLR
MLR
MLR
0001110 0011001 0100011
MLR
MLR N 0100101
-
0010110 1000011 0101001
, LR
N
MLR ‘ 5L MR
0011010 001
| .
0011100 . 1001
N
0101 0110
MLR
011Q100 - '110090% 1001010
MLR
1010010
MLR
0111000 1001100 : 1100010
MLR
IMLR
MLR 1010100 MLR
MLR N
1011000 1100100
HLR /
1101000
MLR
1110000

-15-



Ordering from Klotz Table

m=4, n=3

0000111 0101010
0001011 1000110
0010011 | 1010001 }*
0001101 0110010
0100011 0101100
0010101 1001010
0001110 } * * {1100001 } *
0011001 0110100

* {1?100101 1010010
1000011 }* 1001100
0010110 0111000
0101001 1100010
0011010 1010100
1000101 | 1011000
0100110 1100100
0110001 }'* 1101000
0011100 1110000
1001001

¥ crossover

For fixed m and n we define N(z) and N'(z) to be the number of rank orders
less p;obable and more probable than z, respectively. The ideal situation for
constructing tests of hypothesis is to have N(z)+N'(z) = (m:n)-l, i.e., the
rank orders form a chain. The following table gives N(z), N'(z) and N(z)+N'(z)
for m=4, n=3 for the ordering implied by Theorem 3 alone and for the ordering
implied by Theorems 1 through 7. Note that the second ordering is an improvement
over the first in the sense that N(z)+N'(z) for the second ordering is not
smaller than that for the first, In particular there is considerable improvement

in z = (1,0,0,0,0,1,1), (o0,0,1,0,1,1,0), (0,1,1,0,0,0,1) and (0,0,1,1,1,0,0).

=16~



MLR MLR or STU or N
z N(z) | N'(2) N§z)+N' (z) | N(2) | B*'(2) | N(z)+W*(=)
0000111 | 34 o 3 3 0 3™
0001011 | 33 1 34 33 1 34
0010011 | 30 2 32 30 2 32
0001101 | 29 2 31 29 2 31
0100011 24 3 27 25 3 28
0010101 27 4 31 28 y 32
0001110 19 3 22 22 3 25
0011001 | 21 5 26 24 5 29
0100101 | =22 6 28 22 6 28
1000011 14 L 18 19 5 2l
0010110 18 6 2 21 7 28
0101001 20 8 28 20 8 28
0011010 15 8 23 17 8 25
1000101 13 8 21 16 8 24
0100110 15 9 24 15 11 26
0110001 12 9 21 16 9 25
0011100 9 9 18 11 11 22
1001001 11 11 22 12 12 2
0101010 13 13 26 13 13 26

Te complete the table note that N(zt) = N*'(z).

Properties of Some Functions Related to the Normal Density Functien

In the folleowing £(+) and F(-) dencte the standaid inermstwdedsity dnd

distributicon, function. ,, respectively.

Lemma 1:
F(x-0)£(x)
I1f 6 is a positive constant, then G(x) = F (=) E(x-0 is non-increasing

for all =,

-17~-
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Proof:
A sufficient condition for the monotonicity of G(x) is that its first

derivative is non-positive for all x, or, equivalently, that
G, (x) = 6F(x)F(x~0)+F(x-0)£(x)-F(x)£(x-6) = O,

for all x,
Since Gl(-oo) = 0, a sufficient condition fer Gl(x) z 0 is that Gl(x) is
everywhere non~decreasing, which is so provided the first derivative of Gl(x)

is non-negative.

Now,
d _ xF(x) (x~6)F(x-6
% G(x) = f(x)f(x--a)l:_é(.,3 - ﬁ_ﬂ-x_-%rl‘] .
Let Ga(x) = XI;. : « GClearly, the term in square brackets is non-negative

(hence 3;:‘* Gl(x) 2z 0) if Ge(x) is non-decreasing for all x, that is, if

f'l(x) [xf(x)+F(x)(x2+1)] z 0.

This is clearly so for x 2 O. To see that it follows for x < 0, let
G3(x) = [xf(x)+F(x)(x3+1)]. Since G3(-m) = 0 we need, as was noted abeve,

show only that GB(x) is non-decreasing for all x, or that

% G3(x) = 2[xF(x)+£(x)] = 0, which follows at once from the Feller-Laplace
inequality:
F(x)éﬂ—_:—)- for x<0 .
Cc;rollary:
I1f w and 6 are non-negative constants, then G(6-x-w) = G(x) for x = (6-w)/2.
‘ The conclusion fellows at once from the fact that f-x-w = x whemever
X2 ‘(9-w)/2.,

-18—



Lemma 2¢

F(y+r)-F(y-x)
£( L yg( X )

NERMN

If r i8 a positive constant, them H(y, x) =

non-decreasing for y =2 O,

Proof:

A sufficient condition for H(y, r) to be non-decreasing for y = 0 is that

its first derivative is non-negative, or, equivalently, that
Hy(y, r) &£ (y+r)-E(y-r)+y[F(y4x)=F(y-r)] 2 0.

Since Hl(y, 0) = 0 it is sufficient te show that Hl(y, r) is increasing

in r for r 2 O and fixed y = 0, or that

7}1; B, (y, r) = r[f(y-r)-f(y+r)] 2 O,

for y2 0 and r 2 0, which is clearly se.

Corollarys
Let 6 be a positive constant, then [H3(y; r)-H2(y-6; r)] = 0 for all

y2z 6/2 and r 2 O,

Proof:

It is evident that H(y; r) is symmetric about y=0 (for fixed r z 0),
therefore H(y-8; r) is symmetrie about 6. In the interval [6/2, 6], H(y-6; r)
is decreasing while.H(y; r) is increasing. Since the two are equal at y = 6/2,
clearly, H(y-9; r) is f?esg‘-than or equal to H(y; r) in this interval., Since
H(y-6; r) is increasing .t:o'the right of this peint and, y 2 y-0, one has

H(y; r) 2 H(y=-9; r). Since H(:) is non-negative, the result follows at once.

Lemma 33
Let r be a pesitive constant., then F(y-r)F(-y-r) iB non-increaging in y

for y = O.



N

Proof:
It i8 enough to shew that the first derivative is nen-positive, or,

equivalently, that
£ gz+r; < E(r-y)

= - H
F(y+r F(r-y)

for r =0, y= 0.
Since equality holds for y=0 it is enough tc show that —if% is non-

for all t, Ift=0

~tF(t)-£(t) = O,

increasing for all t, or that
this is clear, if t < O apply the Feller-lLaplace inequality

F(t) = f_t) .

Corollary:
If 6 and w are non-negative constants, then

F(x=6)F(Omx-w)~F(x)F(-x-w) 2 O

for x = (6-w)/2.

Proof:
Let H(y; r) = ~F(y-r)F(~y-r), using this notation we are to show that

H(y; r)‘=H(y-9; r) 2 0

for y 2 6/2 and r 2 O where H(y; r) is non-decreasing for y 2 0 and symmetric

about y=0. This is proved as in the corollary to Lemma 2,

Appendix II,

Selected Numerical Results
The following tables give for several z's, values of P(z) for different

These tables were extractied from an unpublished

values of 6 under condition N.
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table of Klotz. Attention is directed towards z = (1,0,0,0,0,1,0,1) and

z' = (0,0,1,0,1,0,1,0). This was the first example of a pair of rank orders

with common m and n values for which we have found the function P(z|6)-P(z*|6)

to change sign on the positive 6 axis. The second example of such a "cross-
over"* on the positive 6 axis that we found was with the vectors z = (0,1,0,1,0,1)
and 2z' = (0,0,1,1,1,0) [or its equivalent by ST, z" = (1,0,0,0,1,1)], where m=n=3.

An exhaustive search has not been made of the Klotz tables.

*
crossover defined on page 12,

P(z) for selected valuss of € under condition N when m=3 and n=2 (from Klotz)

el .25 .50 1.0 1.5 2.0 3.0 4.0 5.0 6,0

00011 | 14772 | .20814 | .36243 | .5hO1k | .7OTLT | .92051 | .98746 | .99883 | .99993
00101 | .12978 | .15869 | .19948 | .20069 | .16348 | .06050 | .01115 | .00112 | .0,6

01001 | 11445 | .12202 | .1176% | .08837 | .05260 | .00968 | .00080 | .0)3 | .OL6k
00110 | .10975 | .11333 | .10088 | .07097 | .03976 | .00655 | 00049 | .02 0g3k

10001 | 09706 | .08874% | .06209 | .03439 | .01517 | .0015L 20,7 .05153 .071

01010 | .09669 | .08741 | .05838 | .02982 | .01166 | .00081 0,2 -0¢17 0
01100 | .08568 | .06899 | .03710 | .01552 | .00505 | .00025 .05h63 -0,3 0
10010 | .08193 | .06290 | .03041 | .01125 | .00317 | .00011 ,05125 0 0
10100 | .07253 | .OkGk6 | .01905 | .00567 | .00130 | .0)3 -0423 0 0
11000 | .064L43 | .03942 | .01255 | .00318 | .00064 | .0,1 0.7 0 0

Subscripts on the first zero after the decimal indicate the number of zsros

to be entered; for example, .0,6 stands for .00006.
in



i | X ] i i ( 0 i f
P(z) for selected values of 6 under condition N when m=4 and n=2 (from Klotz)

i;“‘-fi .25 .50 1,0 1.5 2.0 3.0 k.0 5.0 6.0
000011 J1045h | 15548 | ,29662 | Ju4Th30 | 65377 | .90079 | .98380 | .99847 | .99991k
000101 .09313 .12192 . 17290 .19240 .17020 .07084 .01398 .001k45 .0,85
c01001 .08400 | .09871 | .1110k | .09580 | .06k12 | .0L411 | .00132 | .0,57 05121
000110 -07955 | .08871 | .09032 | .0709% | .0k3k0 | .00B0Ok | .00064 | .02k -0gh6
010001 .07521 .07903 .07080 .04837 02547 .00341 .00019 .05h7 0
oolo10 | .07170 | .07158 | .05712 | .03397 | .01510 | .00127 | .0,35% | .03 0
100001 | .06450 | .05843 | .03941 | .02055 | .00835 | .00068 | .0,23° | .037" 0
001100 06433 .05781 .03771 .01853 | .00688 .000k1 .058 .076 o}
010010 06415 05717 .03607 01674 .00572 .00027 .o5h -0,1 0
010100 .05753 04606 .02357 ,00892 00250 -0, 79 075 0 0
100010 -05500 | .ok219 | .01992 | .C0698 | .00181 | .0,48 .0438 0 o
011000 .05317 | .03810 | .016k7 | .00537 | .00131 | .0,33 -0426 0 0
100100 0k929 [ ,03392 .01291 .00366 .000TT .0,13 0.7 0 0
101000 Mo T .02798 .00893 ,00215 .00039 -0553 .071 0 0
110000 .04022 .02290 00620 .00130 .00021 +0523 .071 0 0

Subscripts on the firat zero after the decimal indicate the number of zeros to be

entered; for example, .Ou85 stands for .000085.

*
This appears te be another crossover but it is not clear that the eighth decimal

should be trusted in this caleulation,
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i i ] | i 1 1 { ] i
P(z) for selected values of 6 under condition N when m=n=3 (from Klotz)

‘:;\\\Jz .25 .50 1.0 1.5 2.0 3.0 k.0 5.0 6.0
000111 .08222 .12748 .26025 L3721 .62357 .88989 .98186 .99827 .99990
001011 .07392 .10181 15726 .18692 .17369 07673 .01554 .00162 .00010
001101 .06603841| ,08081 .09679 .08695 .05941 .01301 .00116 -0),5 -0£97
010011 same as 001101
010101 | .05896 .06396 | .05878 | .03906 | .01889" | .o0176" 0,5 048 0
001110 .05654021| .05935 .05249 .03492 ,01768* .00212" | .o0o0o010 .0523 .072
100011 same as 001110
011001 .05335 0524 03974 .02190 .00884 .00059 .0, 1255 .079 0
010110 .05045053| .O4686 .03156 01530 400535 .00025 .0533h ,071 0
100101 same as 010110
011010 .Ol561 .03830 .02108 .ooaag .00238 °oh7h25 .0666 0 0
101001 | same as 011010
100110 04315 03427 .01682 .00589 .001h7 -0y, 3305 0619 0 0
011100 04101 .03118 .01433 .00L485 .00120 0,3 0622 0 0
110001 gsame as 011100
101010 .03898 .02792 .01109 .00312 .00062 .058h2 .072 0 0
101100 .03503 .02268 .00748 .00178 .00030 .05317 0,1 0 0
110010 game as 101100
110100 | .03146 | .01839 | .00501 | .00100 | .00015 | .0.115 0 0 0
111000 .02859 .0153%4 .00361 .0006L .ohsh 057 0 0 0

ontered' for example, .045 stands fer .00005,

Subseriptas on the first zero after the decimal indicate the number of zeres to be

Thia appears to be a bona~fide crossover,

Thia crossover may have resulted from a computational error,




P(z) for selected values of 6 illustrating a "crossover" and

"gymmetrical displacements” (from Klotz)

” el .25 .50 1.0 1.5 2.0 3.0 .0 5.0

Example of a crossing over.

10000101 | .01911 | .01851 |.01285461| .00601 | .00190 | .0,6 Ol 0

00101010 | .01933 [ .01878 [.01285266| .0057h | .00168 .ohh -0g19 0

Effect of moving in from both ends.

10000001 | .03442 | ,03082 | .01984 .00958 | ,00351 [ .00022 .0.516 | .05

5 7
01000010 | .03419 | .03000 { .O17T78 007 | .00220 .oh6815 -0¢53 0
00100100 | .03418 | .02997 | 01771 .00737 | .00216 .oh65h1 .06h9 0
00011000 | .03426 | 03025 | .01841 .0080Lk | .00253 0,9 .0696 0

o O o o

Subscripts on the first zero after the decimal indicate the number of
zeros to be éntered; for example .0h6 stands for .00006.

Appendix III.

Approximations to P(z|6) under N

Theorem 8:

If N holds, then, for all 6,

P(z) - (m:n)-l e-n92/2

mn
E exp{6 = 2zMW,)
=1 i'i’ ?

where WyseoesW

mn 2F€ the order statistics of a sample of size mtn drawn from

a standard normal pepulation.

Proof:

We note that in this case

-z,02/2 gz t. 6
i i1
f(ti-zie) = a e f(ti) .

Ol



Thus
mn
P(z) = m!n! f . . ° f H f(ti-zie)dti
\ i=1
-0 < £, S...8 tm+n<°§
min mn
_ (m-l-n)-l e'nezlz(m-l-n)! f . . . exp{€ = =zt ] H £(t,)dt, .
n i=1 i1 i=1 i
=00 < tl é.c'é tm‘i“n < o
Remarks

The first terms in the Maclaurin expansion of P(zle) give approximations

to P(z} 6) for small O, For example

palo) = (™ l1s0D am) .
i=1

Tables of the approximation got by including the next (62) term in the Maclaurin
expansion of P(z|6) are in preparation.

An interesting asymptotic result is given by Hodges and Lehmann (1962).
This should give approximations to P(z|6) for large 6; this point has not

been investigated, however.

Appendix IV,

Some Nonlinear Relationships Between Rank Order Probabilities

In Savage (1960)p. 520, linear relationships like the following have

been obtained:
r(0,1,1) = [¢(0,1,1,0) + P(0,1,0,1) + 2P(0,0,1,1)]/2 .

A pair of non~linear relationships is obtained below. Note that no restriction

is made of the densities £(-) and g(-).

=25
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Theorem 9:
A:  ?(0,1,1,0) = 2p(0,1,1) - 2P2(0,1)

B: p(0,1,0,1) = 2P3(0,1) -~ 27(0,0,1,1) .

Proof:

We note first that

P2(0,1)

n

[ f F(x)g(x)ax]?

I

in}Pm F(x)g(x)F(y)g(y)dxdy

]

2 f f P (x)F(y)8(x)8(y)dydx .
-0 X

Then to prove A, one has

p0,1,1,0) = 4 [ [ rG)[1r(r)Ise(r)avas

=} f f F(x)g(x)s(y)dydx - 2p3(0,1)
-0 X

= 2P(0,1,1) - 2P3(0,1) .

And to prove B, one has

20,1,0,1) = 4 [ [ F)r)-r) Iss(r)ayas

- 2p%(0,1) - 4 [ [ rPws@srare = 22(0,1) - 26(0,0,1,1).
-0 X .
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Corollary 1:

A's  P(1,0,0,1) = 2p(1,0,0) - 2P2(1,0)

B': »(1,0,1,0) = 2p3(1,0) - 2p(1,1,0,0)

Proof:

Simply interchange F and G (f and g) in the proofs of A and B,

Corollary 2:

r(0,0,1,1) + P(1,1,0,0) = 2[P(0,1,1) + P(1,0,0)] - 1 ,

Proof:
The set of all pessible rank orders for m=n=2 is an exhaustive set of

mutually exclusive events. Therefore
p(0,0,1,1)+(1,1,0,0)+?(0,1,0,1)+P(1,0,1,0)+P(1,0,0,1)+P(0,1,1,0) = 1 ,

Substituting the right members of A, B, A' and B' for P(0,1,1,0), ?(0,1,0,1),

?(1,0,0,1) and P(1,0,1,0), we obtain
r(0,0,1,1) + p(1,1,0,0) = 2[P(0,1,1) + P(1,0,0)] = 1 .

Note that probabilities for all ef the rank orders with m-n=2 can be
evaluated in terms of the probabilities for smaller sample sizes and P(0,0,1,1)

or P(1,1,0,0). More gemerally, fer n=2 and arbitrary fixed m=M let

Z = (‘O\,—t\.’:ﬁ, 1’ O,looc,o, 1, 0,-..,0) 'Y

Qrroosdp e

T T

1 2 3

where r1+::2+::3 = M, Then

P(z) = ;;%';"T f S f P L) [ (y)F(x)] 2118(5)] Sg(x)e(y)dxdy
w<xsy<ow

1ot r r rtr_~(1.+1)) T 4r, -1
e I AT 3T [ [e T G).
1°72%73° 1siysr, 71 "2 o<xSy<m
1§12.$_r3 27 r3+11-12
°F (v)s(z)s(y)dxdy .



For a+b < M, the integral
* ® [ a b
/ [P @smems
w» <X Sy<ow

" ean be expressed as a linear combination of probabilities of rank orders for
m < M and n=1 or 2. Therefore if all rank order probabilities for m < M and

n=1 and 2 have been computed, the only new integrals required are of the form

i M1
= [0 [ sy £20, 4.0 H
<X =Ey<ow

Since

I

Arthy g

f <. f [F (x)F L ()4 L (2P () 1(x) 5 (y ) dxdy
- <X XS y < o

f f r(x)F" L (r)g(x)g(y)dxdy

L[ rwsta [ P rgre]

one needs to compute only one of the pair (A:l.’ AM-:L)'
For n > 2 we must consider n-fold integrals of the form

n 4.
A(il,...,in)=f .« .. f Il Fj(xj)g(xj)dxj,

<%, S,.5x%x <a 1
1 n

. n
as above only those integrals for which T 1

i = M need be evaluated, Then if
1

any of the i j=0 the dimensionality of the integral is easily decreased.
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Generally,

n

T A(L see0sl ) = P(0y.0050, 1)
1 n ;gi L__I;,J

where the summation is over all permutations of (1,2,...,n).
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