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CONTRIBUTIONS TO THE THEORY OF RANK ORDER STATISTICS-THE TWO SAMPLE GASE: 

FINE STRUCTURE OF THE ORDERING OF PROBABILITIES.OF RANK ORDERS 

Io Richard Savage and Milton Sobel 

1. Introductiona 

In constructing adm1-sible two sample rank order tests one needs information 

on the ordering of probabilities of rank ordersa Specifically, if, under some 

restriction of the clasa of alternatives, the rejection region of a teat contains 

the rank order z then it should contain all rank orders more probable than Zo 

This paper contains several theorems on such orderings under varaus 

alternatives, especially the location parameter case for symmetric distributions. 

2. Notation and Assumptio~. 

X = (x1,o •• ,Xm) and Y = (Y1,aoo,Yn) are samples drawn from absolutely 

continuous populations with densities f ( 0 ) and g( 0
), respectively. F( 0

) and 

G( 0
) denote the corresponding diatributionsa 

W = (w1,ooo,W ) denotes the order statistics of the combined sample, 
m+-n 

(X, Y) = (X1,oa•,Xm, Y1,aoa,Yn), and Z ~ (z1,.o.,Zmt-n) is a randcmveetor of 

th ) zeros and ones whose i- component, Zi, is O if Wi comes from £( 0 and 1 if 

Wi comes from g(•). 

Let z = (z1,aao~Z ) be a fixed vector of zeros and ones; we define the mt-n 
C (C C) t (t t) complement of z, Z = z1,ooo,Zm+n and the transpose cf z, Z = z1,ooo 9 Sm+n, 

th 
to be the vectors whose :f:-·- components are 1-zi and zmtn+l-i' respectively. 

P(z) = Pr{Z=z} denotes the probability of the rank order Zo 

Since th' fcllewing restrictions off and g are assumed in several results 

below, we list them now along with a shorthand nctationo 
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Restrictions: 

ST: f(x) = f(-x) and g(x) = f(x-6), where 6 is a non-negative eonstanto 

U: f ( X) E f ( X 9 ) if O ~ X < X' or X' < X ~ 0 0 

MLR: g(y)/f(y) E g(x)/f(x) if x ~ Yo 

N: f( •) and g( 0 ) are normal densities with common variance 1 and 

~ means O and 6• respectively, where 6 E Oo 

Note: ST stands for ~ymmetry and _!ranslation and U implies that f( •) is 

_!!nimodal. It is assumed, without loss of generality, that the mode off(•) 

¥ is the origin. MLR stands for Monotone Likelihood Ratio and N stands for 

!ormalitya Of course N is the strongest and implies the other threeo Under 

ST and/or N we use the notations P(z) and P(zlB) interchangeablyo 

3. Theorems on the Ordering of Rank Order Probabilities. 

The general express ion for P ( z) is 

(3.1) 
m+n 

P(z) = m!n! J ... J JI hz (t1}dt1 , 
i=l i 

where h (ti) 
zi 

, and the region of integration is 

-co < t
1 
~ ••• ~ t < oo. In particular, under ST 

mt-n 

(3a2) 

Theorem 1: 

If ST holds, then for all e 

i) P(zlB) = P(zt(-6) and 

ii) P(z(e) = P(zcl-B)o 
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Proof: 

Recall the definition of zt and zc and note that f(x) = f(-x). In the 

integral (3.l) (using (3~2)) make the transformation 

i I) t = -t' i m+n+l-i (i=l,2, ••• ,m+n) 

or 

ii') ti = e+ti' . . ) . 
( 1=1,2, ••• ,mt-n) 

and i) or ii) follows at once. 

Theorem 2: 

If ST holds, then for all e 

(See Savage (1957) p. 975.) 

Proof: 

Note that ztc = (zt)c. Thus, by Theorem 1, 

Remark 

If a result of the form P(zlB) ~ P(z'IB) fore er is true under ST, then, 

by Theorem 2, the following are also true when e er: 

Theorem 3: 

P(ztcle) ~ P(z'IB) 

P(ztcle) ~ P((z')tcle) 

.. , P ( z I e) ~ P (( z' ) tc I e) • 

th .th If MLR holds and z and z' differ only in their t- and J- components (i < j) 

with (zi, zj) = (0, 1) while (z1, zj) = (1, o), then P(z) ~ P(z'). 

(See Savage (1956) p. 594.) 
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Remark 

If z and z' have a common number of zeros and ones and are such that 

i 1 2 p 
E (zj-zj) ~ 0, for i=l,ooo,m+n, then there exist z ,z , ••• ,z, where 

j=l 

k k' k k ) 1 , p z = (zl,z2,ooo,Zm+n for k=l,ooo,P and z =Z, z =Z, such that for k=2,oo•,P, 

zk-l and zk differ in exactly two components, ~ and jk (~ < jk) with 

( k k) ( ) ( k-1 k-1) ( ) z~, zjk = 0, 1 and z~, zjk = 1, 0. 

For example: 

4 (0,0,1,0,1,0,1) z = z = 

z3 = (0,0,1,0,1,1,0) 

2 (0,0,1,1,0,1,0) z = 

z' = 
1 (0,1,0,1,0,1,0) z = 0 

Therefore we have the following result. 

Corollary: 

If MLR holds and z and z' have the same number of zeros and ones and are 

i 
such that E (zj'-zj) ~ 0, for 1=1,ooe,m+n, then P(z) ~ P(z'). The properties 

j=l 

of the orderings imp lied by Theorem 3 are discussed in detail in ·savage ( 1962) • 

In succeeding pages we employ the notation (z, w), where w = (w1, ••• ,w ) 
p+q 

and Z = (z1,o•o,Zm+n), to denote the combined vector (z1,a •• ,zm+n' w1, ••• ,wp+q)o 

Theorem 4: 

If ST and U hold, 9 ~ 0, and z contains the same number, r, of zeros and 

ones, then 

i) P(0,0,1,ztc) ~ P(z,0,0,1) 

and 

11) P(l,O,O,ztc) ~ P(z,1,0,0) o 
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Proof: 

i) By Theorem 1, a necessary and sufficient condition for the conclusion 

is that 

P(z,0,1,1) ~ P(z,0,0,1) , 

which, by (3ol) and (3.2) is equivalent to the inequality 

00 

I = J H(x) F( 9-x)[f (x-9)-f (x) ]dx ;;:; O, for all e ~ o, 
-co 

2r 

where H(x) = (r+2)!(r+1H J • • • J IT f(tcz19)dti f(t2r+l)dt2r+l • 

< t ~ ~ t ~ X i=l 
-co 1 - • 0 

o- 2r+ 1 -

We note here for future use that 

(3.4) H'(x) d 
= dx H(x) 

= f(x) G(x), say o 

Let i(x) denote the integrand in (3o3) and let 

00 

11 = J i(x)dx , 
9/2 

9/2 

12 = J i(x)dx . 
..00 

In 12 make the change of variable x = 8-x'. This yields, after replacing x' 

by x in the transformed 12 and adding 1
1 

and 12 , 

00 

I = f ~~=~ -:~:::fl F(x) F(El-x)[f(x-9)-f(x)]dx • 
8/2 
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It is easily seen that STU implies [f(x-8)-f(x)] ~ 0 for x ~ 8/20 

Therefore, a sufficient condition for I to be non-negative is that 

R(x) :;,, R( 6-x~ 
F(x) - F(8-x 

for x ~ 8/20 

Since x;;; 6/2 implies x;.; 6-x it suffices to show that :~:~ is non

decreasing for all x. And for this to be true it is sufficient that H(x) 
F(x) 

has a non-negative derivative, ioe., that 

H'(x)F(x)-H(x)f(x) ~ 0 

or, by (3.4), that 

G(x)F(x)-H(x) ~ O. 

Since G(x)F(x)-H(x) = 0 at x = ..oo it suffices to show that G(x)F(x)-H(x) 

is non-decreasing for all x, or that 

G'(x)F(x)+f(x)G(x)-H'(x) ~ 0 

or, by (304), that 

G1 (x) ~ O, 

which is clearly so. 

ii) The proof is identical with that of i) with the following trivial 

modification: (3.3) is replaced by 

00 

I = J R1 (x)F(-x)[f(x-8).f(x) ]dx ;;; O, for all 8 ~ o, 
..00 

The proofs of the next three theorems have several features in common which 
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we note hereo They all state that if N holds then P(z) ~ P(z') o Equivalent 

conclusions are P(ztc) ~ P(z') and P(z) ~ P(z'tc); one or the other is noted in 

each theorem and is in fact what is proved" 

The first step is to replace each P( •) with its equivalent under (3.1) and 

(3.2) and to change the order of integration so that a particular pair of 

variables is integrated lasto For the convenience of the reader this pair of 

variables will be indicated by adding primes(') to the corresponding entries 

in the z-vectors the first time they appear. 

At this point we have an inequality of the form 

co co 

J J s(x, y)dydx <ie o 

-co X 

as a necessary and sufficient condition for the inequality P(z) ~ P(z')o By 

making the transformation y-x' = w, x = x' we obtain the equivalent inequality 

(omitting primes) 

co co 

J J S(x, x+w)dxdw <ie O. 
0 -00 

A sufficient condition for this inequality is that the inner integral is 

non-negative for w ~ O, ioe., that 

co 

I(w) = J s(x, x+w)dx <ie o, 
-co 

for w ~ o. 
( B-w)/2 

Let 11 (w) = J S(x, x+w)clx and I 2 (w) = I(w)-1
1 

(w). In 1
1 

(w) 
..co 

make the transformation x' = B-x-w; this makes the ranges of integration of 
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I 1(w) and I 2(w) coincide. 

By adding I 1 (w) and I 2(w), .we obtain 

co 

I(w) = J T(x, w)dx , 

( 0-w)/2 

where T(x, w) = [S(x; x+w)+s(0-x-w; 0-x)]o 

In each case we show that T(x·, w) ~ 0 for x ~ (0-w)/2 and w ~ O, which, of 

course, implies I(w) ~ 0 for w ~ O. 

In the proof of Theorem 5 we shall repeat in detail the argument just 

outlined. By Theorem loi it is necessary to consider only 0 > 0 in proving 

Theorems 5 and 60 

Theorem 5: 

If N holds and e + o, then P(l,o,or,0,1) > P(o,1,or,1,0) or,.equivalently, 

'9 P(l,O',Or,o',1) > P(l,O',lr,0',1). (xr denotes a vector of r x's.) 

-

Proof: 

By (3.1) and (3.2), the inequality 

is equivalent to the inequality 

r+3 J • • • J f(t1-B)f(t2)f(tr+3)f(tr+4-6)[ II f(t1) 

-co < t 1 ~ ••• ~ tr+4 < co 1~3 
r+2 

- IT f( t 1-e) ]dt1 ... dtr+4 ~ o. 
1=3 

Integration of the above with respect to all the variables but t
2 

and t 
3 . r+ 

(call them x and y, respectively), yields the equivalent inequality 

co co 

J J F(x-El)F( 6-y}{ [F(y )-F(x) t-[F(y-6)-F(x-6) tJf(x)f(y)dydx i!. O • 
..co X 
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If we trarisform the integral by letting x = x' and y = x'+w and drop the 

primes we get the inequality 

co co 

(3.5) J J F(x-El)F( El-x-w){ [F(x+w)-F(x) f-[F(x+w-El)-F(x-EI) f }f(x+w)f(x)dxdw il: 0, 

0 -co 

Let I(w) denote the inner integral. If I(w) ~ 0 for all w ~ o, then it is 

co 

clearly so that J I(w)dw il: O, therefore a sufficient condition for (3,5) 

0 

(hence for the conclusion of the theorem) is. that I(w) ~ 0 for w ~ o. 

Let s(w, x) be the integrand in (3.5). Then 

co (0~)~ 

I(w) = J s(w, x)dx + J s(w, x)dx • 

(0-w)/2 -co 

In the second integral let x' = 0-x-w; the result, after omiJ:j:ing primes and 

combining the two integrals, is 

co 

I(w) = J F(x)F( El-x-w )f(x+w)f(x-EI){ [F(x+w-El)-F(x-EI) f 

( 0-w)/2 

_ [F(x+w)-F(x)]r}tF(-x-w)f(x+w-0) _ F(x-B)f(x)]dx 
0 

lf(x+w)F(0-x-w) f(x-9)F(x) 

Clearly, a sufficient condition for I(w) to be non-negative for w ~ O is 

that the integrand above, call it T(x, w), is non-negative for w ~ O and 

X ~ (0-w)/2 0 

' 
The expression in braces in T(x, w) is non-negative if and only if 

[F(x+w-0)-F(x-0)]-[F(x+w)-F(x)] ~ 0, 

for w ~ 0 and x ~ ( 0-w) /2. This is clearly so since the left member of the 
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inequality is the difference of the probability contents of two intervals one 

of which is more central than the othero 

By the corollary to Lemma 1 of Appendix I, the term in square brackets is 

non-negative for x ~ (B-w)/2 and w ~ Oo Therefore T(x, w) ~ Oo 

Theorem 6: 

If N holds and Bf O, then P(Or,0,1,1,0,0r) > P(Or,1,0,0,1,or) or, equivalently, 

P(lr,l',O,O,l',lr) > P(Or,l',O,O,l',Or)o 

Proof: 

Proceeding as was outlined above, one. obtains, as a sufficient condition 

for the inequality P(l~,1 1 ,0,0,1',lr) ~ P(Or,1 1 ,0,0,1•,or), the inequality 

T(x, w) = 

for B ~ O, w ~ o, and x ~ (B-w)/2, where 

(3.6) G(x; w) = _!_ F(x+w)~F(x) 
~27r f( !±! )f( ~) 

'12 '12 

0 

By the corollary to Lemma 2 of Appendix I, with. r = w/2, y = x,..r, the term 

in square brackets is non-negative for B ~ o, w ~ O, and x ~ (B-w)/2 0 ., 

Therefore T(x; w) is non-negative provided the term in braces. is non-negative
0 

Thia term is non-negative if and only if 

[F(x-B)F(B-x-w)-F(x)F(-x-w)] ~ O, for x ~ (B-w)/2 o 

This inequality is proved in the corollary to Lemma 3 of Section 5
0 

Theorem 7: 

If N holds and B ~ o, then P(0,1,1,0,z) ~ P(l,O,O,l,z) fer any z or, 
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equiyalently, P(z,1',0,0,l') ~ P(z,0',1,1,0'). 

Proof: 

Proceeding as was outlined above, one obtains as a sufficient condition 

for the inequality P(z,0,1,1,0) ~ P(z,1,0,0,1), the inequality 

T(x, w) = [H(x)-H(9-w-x)]{G2 (x; w)-G2 (x-9; w))f(x)f(x+w)f(x-B)f(x+w-9) ~ o, 

for w ~ 0 and x ~ (6-w)/2, where G(x; w) is defined by (3.6) and 

m+n 
( ) c m+2, ! c n+2 > ! f . 0 • f II c , H x = 2 - f ti-Bzi dti, 

..co < t
1 

~a. o~ t < X i=l 
m+n 

m.and n being the number of zeros and ones in Za 

It is shown by the Corollary to Lemma 2 of Appendix I that the term in 

braces in T(x; w) is non-negative for w ~ 0 and x ~ (6 ... w)/2. 

Clearly, H(x) is everywhere non-decreasing. Since x ~ (9-w)/2 implies 

x ~ B-w-x, we have 

H(x) ~ H(6-w-x) , 

for w ~ o, x ~ (B-w)/2. Thus, the term in square brackets is non-negative, and, 

therefore, so is T(x, w) • 

4. ExaJ!1Ples and Conjectures. 

The following diagrams illustrate the theorems of Section 3.. The symbol 

z ~ z' means P(z) ~ P(z') for e ~ O (under ST, STU, or N) under conditions 

abc. C stands for _£onjecture. The table accompanying some of the diagrams is 

extracted from an unpublished table of probabilities of rank orders under N 

computed by Jerome Klotz (1962) .. Notet MLR implies a simple ordering of the 

P(z) for n=l.. Hence the first interesting case is m=n=2. All diagrams derived 
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-

are distributive lattices but the conjectured diagram for m=4 and n.=2 is not 

distributive; in particular it does not satisfy the Jordan-Dedekind chain 

condition, i.e., not all chains from an arbitrary fixed z to (say) the least 

probable rank order are of the same length. 

The notation, crossover { :, , denotes the fact that there exist two 

values of e, el> e2 ~ o, such that P(zlB1) > P(z'l61) but P(zl82) < P(s'IB2)e 

m=n.=2 m=3, n.=2 

0011 00011 

JMLR '1,MLR 
0101 00101 

!MLR JMLR 
0110 ~ 1001 01001 

JMLR ~ 
00110 1010 

'1YT and U JMLR 
10001 1100 

JN 
01010 

tMLR 
01100 

~ 
10010 

tMLR 
10100 

tMLR 
11000 
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-- 4" .... 
) 

_, m=4, n=2 

000011 - ~ 
000101 - t.u 
001001 .. $ 
000110 Ordering from Klotz Table 

~-',c 000011 
e,I --...:~ 

001010 J).10001 000101 t.u~ -- c:- t.u 001001 
~ 001100 100001 000110 

~/- 010001 

&\Iii 0100.10 001010 

0R~ 100001 - 010100 199010 001100 

~k,;,,,.c 010010 

000 010100. 
'W 

~ 100010 

100100 011000 ... 1?-D:.R 100100 

101000 101000 - t.u 110000 

110000. 

-
--
_, 

-
-
- -13-
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-- ,.. .. . 
> 

--
--
-.. 
-.,; 

--
• 

.,., 

.. 
.... 

_,. 

-
... 
411!9 

-
-
... 
al 

m=n.=3 

000111 

iMLR 
001011 

1MLR 

~~ < .l!'ll,K 010101 
ST 100011 ~ 001110 ....__ MLR 

" ............. c 
.......... ~ 

011001 

~ 
ST OlOllO 

100101 ~ 

1 ST 011010 
10100 $ 

100110 

~ 
......... , ......... c 

' .......... ~ 
MLR ST 001 

011100 - 110 101010 ~ 

~MT.R ~MLR 

- - - -~101100 110010 I, 
'-VMLR 

110100 

~ 
111000 
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Ordering from Klotz Table 

000111 

001011 

001101 = 010011 

010101 

100011 = 001110 

011001 

100101 = 010110 

101001 = 011010 

100110 

110001 = 011100 

101010 

110010 = 101100 

1101000 

111000 

* crossover 

}* 



~-
~ .• ... .. 

) m=4, n=3 

,_ 

-
- 0010011 

- MLR MLR 

0001110 -
MLR 

.tale, 

...: 

---
.. 
~ 

~ 

1-' 
MLR 

-- 0111000 

- MLR MLll 

-' 

~ 1101000 l}U 
.... 1110000 
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Ordering from Klotz Table 

.... m=4, n=3 

0000111 0101010 

0001011 1000110 

}* 0010011 1010001 

0001101 0110010 

0100011 0101100 

0010101 

}* {1001010 }* 0001110 * 1100001 

(11001 0110100 

* 0100101 

}* 
1010010 

}: 1000011 1001100 

0010110 0111000 

0101001 1100010 

0011010 1010100 

1000101 1011000 

0100110 

}* 
1100100 

0110001 1101000 

0011100 1110000 

1001001 

* crossover 

For fixed m and n we define N(z) and N'(z) to be the number of rank orders 
I' 

less probable and more probable than z, respectively. The ideal situation for 

constructing teats of hypothesis is to have N(z)+N'(z) = (m+n)-1, i.e., the 
n 

rank orders form a chain. The following table gives N(z), N'(z) and N(a)+N'(z) 

for m=4, n=3 for the ordering implied by Theorem 3 alone and for the ordering 

imp lied by Theorems 1 through 7. Note that the second ordering is an improvement 

_,. over the first in the sense that N(z)+N'(z) for the second ordering is not 

smaller than that for the first. In particular there is considerable improvement 

in z = (1,0,0,0,0,1,1), (O,O,l,0,1,1,0), (0,1,1,0,0,0,l) and (o,0,1,1,1,0,0). 
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MLR MLR or STU or N 

z R(a) N' (z) N(z)+R' (z) N(z) B' (z) N(z)+B' (z) 
I 

i 

0000111 34 0 34 34 0 34 
0001011 33 1 34 33 1 34 
0010011 30 2 32 30 2 32 

0001101 29 2 31 29 2 31 

0100011 24 3 27 25 3 28 

0010101 27 4 31 28 4 32 

0001110 19 3 22 22 3 25 

0011001 21 5 26 24 5 29 

0100101 22 6 28 22 6 28 

1000011 14 4 18 19 5 24 

0010110 18 6 24 21 7 28 

0101001 20 8 28 20 8 28 

0011010 15 8 23 17 8 25 

1000101 13 8 21 16 8 24 

0100110 15 9 24 15 11 26 

0110001 12 9 21 16 9 25 

0011100 9 9 18 11 11 22 

1001001 11 11 22 12 12 24 

0101010 13 13 26 13 13 26 

To complete the table note that N(zt) = N'(z)o 

Appendix I. 

Properties of Some Functions Related to the Normal Density Function 

In the follewing f( •) and F( •) denote the ~¢eonal~:fi.ty.,1.and 

dis.ta';ttbutLon,:fiune.eion i.,, respectively. 

L~l: 

If 9 is a positive constant, 

for all x. 

is non-increasing 
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Proof: 

A sufficient condition for the monotonicity of G(x) is that its first 

derivative is non-positive for all x, or, equivalently, that 

G1(x) = 8F(x)F(x-6)+F(x-6)f(x)-F(x)f(x-6) ~ o, 

for all x. 

Since G1 ( ..oo) = O, a sufficient condition for G1 (x) ~ 0 is that G
1 

(x) is 

everywhere non-decreasing, which is so provided the first derivative of G1 (x) 

is non-negative. 

Now, 

d G ( ) _ f( )f( e) [xF(x~ x-9):F x-B l1 
dx 1 x - x x- [ f(x - f x-6 ] 0 

Let G2 (x) = ~~=~ . Clearly, the term in square brackets ia non-negative 

d (hence di G1 (x) ~ 0) if G2(x) is non-decreasing for all x, that is, if 

f-1(x)[xf(x)+F(x)(x2 +1)] ~ 0. 

This is clearly so for x ~ O. To see that it follows for x < O, let 

G/x) = [xf(x)+F(x)(x2 +1)]. Since G/..oo) = 0 we need, as was noted above, 

show only that G
3

(x) is non-decreasing for all x, or that 

d 
dx G

3
(x) = 2[:xF(x)+f(x)] ~ O, which follows at once from the Feller-Laplace 

inequality: 

F(x) ~ F(x) 
-x for x < 0. 

Corollary: 

If w and 9 are non-negative constants, then G(9-x-w) ~ G(x) for x ~ (9-w)/2. 

Pro~£: 

The conclusion follows at once from the fact that 9-x-w ~ x whenever 

X ~ ( 9-w )/2a 
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Lemma. 2: 

If r is a positive constant, then H(y, r) = F(y+r)-F(y-r) is 
f( y+r )f( y-r) 

'12 ~ 
non-decreasing for y ~ O o 

Proof: 

A sufficient condition for H(y, r) to be non-decreasing for y ~ 0 is that 

its first derivative is non-negative, or, equivalently,_that 

H
1 

(y, r) ~:~(y+r)-f(y-r)+y[F(y+r)-F(y-r)] ~ O o 

Since H1 (y, 0) = 0 it is sufficient ~ .. show that H1 (y, r) is increasing 

in r for r ~ 0 and fixed y ~ O, or that 

for y ~ 0 and r ~ 0, which is clearly SOo 

Corollary: 

Let 9 be a positive constant, then [H2 (y; r)-H2 (y-B; r)] ~ O for all 

y ~ 9/2 and r ~ Oo 

Proof: 

It is evident tl_lat H(y; r) is symmetric about y:=.O (for fixed r ~ o), 

therefore H(y-9; r) is aynmJ9tric about Bo In the interval [9/2, B], H(y-6; r) 

is decreasing while H(y; r) is increasingo Since the two are equal at y. = 9/2, 

clearly, H(y-9; r) is fess than or equal to H(y; r) in this interval. Since 

H(y-9; r) is increasing .to ·the right of this point and, y ~ y-9, one has 

H(y; r) ~ H(y-9; r). Since H( 0 ) is non-negative, the result follows.at onceo 

Lemma 3: 

Let r be a positive constant, then F (y-r )F ( -y-r) a non.-increasing in y 

for y ~ O. 
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Proof: 

It is enough to show that the first derivative is non-positive, or, 

equivalently, that 

~ 
~ 

~_fu:tl 
F(r-y) ' 

for r ~ O, y ~ 0. 

Since equality holds for y.=O it is enough to show that ;~~~ is non

increasing for!'£! t, or that -tF(t)-f(t) ~ O, for all to If t ~ 0 

this is clear, if t < O apply the Feller-Laplace inequality 

F( t) ~ f~~) • 

Corollary: 

If 9 and ware non-negative constants, then 

F(x-9)F( 6-x-w)-F(x)F(-x-w) ~ 0 

for x ~ ( BrmW )/2o 

Proof: 

Let H(y; r) = -F(y-r)F(-y-r), using this notation we are to show that 

H(y; r)-H(y-6; r) ~ 0 

for y ~ 9/2 and r ~ O where H(y; r) is non-decreasing for y ~ O and symmetric 

about y,=Oa Thia is proved as in the corollary to Lemma 2a 

Appendix II. 

Selected Numerical Results 

The following tables give for several z's, values of P(z) for different 

values of e under condition N. These tables were extractted from an UJ.1.Published 



• > • 

' . 
table of Klotz. Attention is directed towards z = (1,0,0,0,0,1,0,1) and 

z' = (0,0,1,0,1,0,1,0). This was the first example of a pair of rank orders 

with common m and n values for which we have found the function P(zl6)-P(z'l6) 

to change sign on the positive e axis o The second example of such a "cross-

* over" on the positive e axis that we found was with the vectors z = (0,1,0,1,0,1) 

and z' = (0,0, 1,1, 1,0) [or its equivalent by ST, z" = (l,0,0,0,1,1) ], where m=n=3o 

An exhaustive search has not been ma.de of the Klotz tables. 

* crossover defined on page 12. 

P(z) for selected values of e under condition N when m=3 and n=2 {from Klotz) 

~ 025 .50 1.0 1.5 2.0 3.0 4.o 5.0 600 

00011 .14772 .20814 .36243 .54014 .70717 092051 .98746 099883 .99993 
-

00101 .12978 .15869 .19948 .20069 .16348 .06050 .01115 000112 .046 

01001 .11445 .12292 .11764 .08837 .0526o .00968 .oooao .043 .0664 

00110 .10975 .11333 .10088 .07097 .03976 .00655 .ooo49 0042 .0634 

10001 .09706 .08874 .06209 .03439 .01517 .00154 .047 .05153 .071 

01010 .09669 008741 .05838 .02982 .01166 .00081 .042 .0617 0 

01100 .08568 .06899 .03710 .01552 .00505 .00025 .05463 0073 0 

10010 .08193 .06290 .03041 .01125 .00317 .00011 .05125 0 0 

10100 007253 .o4946 .01905 .00567 .00130 .043 .0623 0 0 

11000 .06443 .03942 .01255 .00318 .00064 .041 .077 0 0 

Subscripts on the first zero after the decimal indicate the number of zeros 

to be entered; for example, .o46 stands. for .000060 
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P(z) for selected values of e under condition N when m=4 and n=2 (from Klotz) 

~ .25 .50 i.0 1.5 2.0 3.0 4.o 5.0 

000011 .10454 .15548 .29662 047430 .65377 .90079 .98380 .99847 

000101 009313 .12192 017290 019240 .17020 .07084 .01398 .00145 

001001 .08400 .09871 .11104 009580 006412 .01411 000132 .0457 

000110 .07955 .08871 .09032 .07094 .04340 .00804 .00064 .0424 

010001 .07521 .07903 .07080 .04837 .02547 .00341 000019 .0547 

001010 .07170 .07158 .05712 .01510 .00127 * * .03397 .0435 .0632 

100001 .06450 .05843 .03941 .00835 .00068 * * .02055 .0423 .0637 

001100 .06433 .05781 .03771 .01853 .00688 .00041 .058 .076 

010010 .06415 .05717 .03607 .01674 .00572 .00027 .054 .071 

010100 .05753 .04606 .02357 .00892 .00250 00479 .0675 0 

100010 005500 .o4219 .01992 .00698 .00181 .0448 .0638 0 

011000 .05317 .03810 .01647 000537 .00131 00433 .0626 0 

100100 .04929 .03392 .01291 .00366 .00077 00413 0077 0 

101000 .04467 .02798 000893 .00215 .00039 .0553 .071 0 

110000 .o4o22 .02290 000620 000130 .00021 .0523 .071 0 

Subscripts on the first zero after the decimal indicate the number of zeros to be 
entered; for example, .0485 stands for .000085. 

* This appears to_ba another crossover but it is not clear that the eighth decimal 
should be trusted in this calculationo 

I ( ( 

• 

6.o 

.999914 

.0485 

.05121 

oOG46 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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P(z) for selected values of 8 under condition N when m=n=3 (from Klotz) 

~ .25 .50 1.0 1.5 2o0 3.0 4.o 5.0 . 
000111 .08222 • 12748 .26025 .43721 .62357 .88989 .98186 .99827 
001011 .07392 .10181 .15726 .18692 .17369 .07673 .01554 .00162 
001101 .06€io3841 .08081 .09679 .08695 .05941 .01301 .00116 .045 
010011 same as 001101 

.05896 .06396 .05878 .03906 * * .o~8 010101 .01889 .00176 0045 
* * 001110 .05654021 .05935 .05249 .03492 .01768 .00212 .00010 .0523 

100011 same as 001110 

011001 .05335 .05244 .03974 .02190 .00884 .00059 .041255 .079 
010110 .05045053 .o4686 .03156 .01530 .00535 .00025 .05334 .071 
100101 same as 010110 

011010 .04561 003830 .02108 .0083.5 .00238 .047425 .0666 0 
' 101001 same as 011010 

100110 .04315 .03427 .01682 .00589 .00147 ** 0 0433?5 .. 0619 0 

011100 .04101 .03118 !01433 .oo485 ** .00120 .043 .0622 0 

110001 same as 011100 

101010 .03898 .02792 .01109 .00312 .00062 .05842 .072 0 

101100 .03503 .02268 .00748 .00178 .00030 .05317 .071 0 

110010 same as. 101100 

110100 .03146 .01839 .00501 .00100 .00015 .05115 0 0 

111000 .-02859 .01534 .00361 .00064 .0484 .0657 0 0 

Subscripts on the first zero after the decimal indicate the number of zeros to be 

entered; for example, .045 stands. fer .00005. 

* This appears to be a bona-fide crossover. 

** · Thia crossover ma.y have reeulted from a computational error. 

l I ( 
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6.o 

.99990 

.00010 

.0697 

0 

.072 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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P(z) for selected values of 6 illustrating a "crossover" and 

"symmetrical diap lacements" ( from Klotz) 

.~ .25 .50 1.0 1.5 2.0 3.0 4.o 

Example of a crossing overo 

10000101 .01911 .01851 .01285461 .006o1 .00190 .04 6 .06"-

00101010 .01933 .01878 .01285266 .00574 .00168 .044 .0619 

Effect of moving in from both ends • 

10000001 .03442 .03082 • 01984 000958 .00351 .00022 .05516 

01000010 .03419 .03000 .01778 .00744 .00220 .046815 .0653 

00100100 .03418 .02997 .01771 .00737 .00216 .046541 .0~9 

00011000 .03426 .03025 .01841 000804 000253 .049 .0696 

5.0 

0 

0 

.075 

0 

0 

0 

Subscripts on the first zero after the decimal indicate the number of 

zeros to be entered; for example .o46 stands for .00006. 

Appendix III. 

Approximations to P(z(B) under N 

Theorem 8: 

If N holds, then, for all 9, 

P(z) 

where w1, ••• ,wmf-n are the order statistics of a sample of size m+n drawn from 

a standard normal population. 

Proof: 

We note that in this case 
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6.o 

0 

0 

0 

0 

0 

0 
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Thus 

Remarks 

The first terms in the Maclaurin expansion of P(zl 6) give approximations 

to P(zi 6) for small e. For example 

P(zfe) ~ 
m+n 1 m+n 

( )- ( 1 + e E ziEWi) • 
n i=l 

Tables of the approximation got by including the next (e2) term in the Maclaurin 

expansion of P(zl 6) are in preparation. 

An interesting asymptotic result is given by Hodges and Lehmann (1962). 

This should give approximations to P(zl 6) for large 8; this point has not 

been investigated, however. 

Appendix IV. 

Some.Nonlinear Relationships Between Rank Order Probabilities 

In Savage (l960)p. 520, linear relationships like the following have 

been obtained: 

P(0,1,1) = [P(0,1,1,0) + P(O,l,0,1) + 2P(0,0,1,l)]/2. 

A pair of non-linear relationships is obtained below. Note that no restriction 

is made of the densities f(•) and g(•). 



: 

Theorem 9: 

A: P(0,1,1,0) = 2P(0,1,1) - 2P2 (0,1) 

B: P(0,1,0,1) = 2P2 (0,1) - 2P(0,0,1,1) • 

Proof: 

We note first that 

co 

P2 (0,l) = [ J F(x)g(x)dx]2 

..co 

00 00 

= J J F(x)g(x)F(y)g(y)dxdy 
..co ...co 

00 00 

= 2 J J F(x)F(y)g(x)g(y)dydx • 

...co X 

Then to prove A, one has 

00 00 

P(0,1,1,0) = 4 J J F(x)[l-F(y) ]g(x)g(y)dydx 
..co X 

00 00 

= 4 J J F(x)g(x)g(y)dyclx - 2P2 (0,l) 
..co X 

= 2P(0,1;1) - 2P2 (0,l) • 

And to prove B, one has 

co OQ 

P(O,l,O,l) = 4 J J F(x)[F(y)-F(x) ]g(x)g(y)dyclx 
...co X 

co co 

= 2P2 (0,l) - 4 J J F2 (x)g(x)g(y)dyclx = 2P2 (0,l) - 2P(O,O,l,l) • 
..co X 
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Corollary 1: 

Proof: 

A': P(l,O,O,l) = 2P(l,o,o) - 2P2 (1,0) 

B': P(l,0,1,0) = 2P2 (1,0) • 2P(l,1,0,0) 

Simply interchange F and ·G (f and g) in the proofs of A and B. 

Corollary 2: 

P(0,0,1,1) + P(l,1,0,0) = 2[P(O,l,1) + P(l,O,O)] - 1. 

Proof: 

The set of all possible rank orders for m=n=2 is an exhaustive set of 

mutually exclusive events. Therefore 

P(0,0,1,l)+P(l,1,0,0)+P(0,1,0,l)+P(l,O,l.o)+P(l,O,O,l)+P(0,1,1,o) = 1 0 

Substituting the right members of A, B• A' and B' for P(0,1,1,o), P(O,l,0,1), 

P(l,0,0,1) and P(l,0,1,0), we obtain 

P(0,0,1,1) + P(l,l,o,o) = 2[P(O,l,1) + P(l,O,O)] - 1. 

Note that probabilities for all ef the rank orders with JB=D;:::2 can be 

evaluated in terms. of the probabilities fer smaller sample sizes.and P(0,0,1,1) 

or P(l,1,o,o). More generally, for tt=2 and arbitrary fixed m=-M let 

= 
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For a+b < M, the integral 

J • • • J F4 (x)Fb(y)g(x)g(y)dxdy 

.a, < X ~ y < oo 

can be expressed aa a linear combination of probabilities of rank orders for 

m < M and n=l or 2. Therefore if all rank order probabilities for m < M and 

n=l and 2 have been computed, the only new integrals required are of the form 

Since 

Ai = J • • • J F1(x)FM-i(y)g(x)g(y)dxdy , 

..co<x~y<co 

i=O, ••• ,M • 

J J i M-i M-i ) i ) ) ) Ai+i\i-i = • 0 
• [F (x)F (y)+F (x F (y ]g(x g(y dxdy 

..co.<x~y<co 

m 00 

= J J F1(x)FM-1(y)g(x)g(y)dxdy 

CO 00 

= [ J F1(x)g(x)dx] [ J :ifl-1(y)g(y)dy] 

one needs to compute only one of the pair (Ai, ~-i). 

For n > 2 we nms.t consider n-fold integrals of the form 

n 
as above only those integrals for which E ij = M need be evaluated. Then if 

j=l 

any of the ij=O the dimensionality of the integral is easily decreased. 
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Generally, 

n 

11 p (p, 0 ~ 0 '3J, 1) 
j=l i 

j 

where the summation is- over all permutations of (1,2, o.,., ,n) a 
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