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Abstract 

Let r; be an n X n positive definite matrix with eigenvalues 

••• :?! X > O 
n 

and let M = {x,yfx e Rn, ye Rn, x F O, y F 0, 

x'y Clo}. Then sup x' r; y 
= 

x,y e M Jx' Lx y' !'.;y 

If ~ = ( ;_l ;_2 ) is a partitioning of ~, let a
1 

be the largest 

421 422 
canonical correlation associated with the above partitioning. The above 

Al - An 
result yields e1 ~ A + A • 

1 n 
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Let ~ be an n X n positive definite matrix with eigenvalues 

Al~ A
2 
~ .•• ~An> 0 and associated eigenvectors x1, ••• , x , llx. II = 1, n I. 

., 
i = l, ••• ,n, xi xj = 0 if if j. The main result of this note is 

Theorem 1 : Let 

M = {x,yfx e Rn, ye Rn, x F 0, y F 0, x'y = o}. Then 

( 1) sup x' 2} y 
= 

x,y e M Jx' 2,.;x y' !; y 

Equality in (1) is achieved for x = x1 + xn and y = x1 - xn. 

The proof of Theorem 1 is based on the following two lennnas. 

Lennna 1: 

(2) 

Proof: 

S ii!" Rn uppose w ... 
0 

and n 
v e R are both non-zero. 

0 

sup ( u ' v ) 2 = llv 11 2 - ( w' v ) 2 
• 

llull= 1 o o o o 

u 'w =o llw0 ll 2 

0 

Then 

Let p = I 
n 

so p is the orthogonal projection onto the 

orthogonal complement of w • 
0 

Then 

(3) 

= 

sup 
llull=l 
u 'w =o 

0 

u 'w =O 
0 

( u 'v ) 2 
0 

= sup 
llull=l 
u 'w =o 

0 

( (Pu) 'v ) 2 

0 

by the Cauchy-Schwartz inequality. But equality in the above inequality is 

- l -
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Pv 
attained by setting u = ll~oll when Pv0 'F O (the case of Pv

0 
= o is 

obvious). Noting that 
, (w 'v ) 2 

IIPv 11 2 = llv 11 2 - o O , the proof is complete. 
o o llwoll2 

Lemma 2: Suppose X is a random variable with Pr(m ~ X ~ M} = 1 where 

m > O. Then 

( 4) _1_ ;;? 4mM 
ex ex- 1 (m-+M) 2 

Proof: This follows innnediately from Lemma 2.2 in Marshall and Olkin 

(1964) by setting (in the Olkin-Marshall notation) Z = 1, s = 1 and r = 

-1. Of course, (4) is just the Kantorovich Inequality. 

Proof of Theorem 1: 
n Fix x ~ 0, x e R. Then 

(5) sup 
yf() 
, 

X y=Q 

( '"" )2 X LY 
Jy'!]y = 

y/-0 X ~-,, y 2 sup ( , 1. 

x' E\,=o .Jy' Y ) = 

sup [( ~x)'y]2 = ll:E-lxll2 -lltl 
(Q;\x) '~ x) 2 

11~~ xll 2 

(:E x) 'y=o 

x'~x- (x'x) 2 

, ""-1 
X t..J X 

= 

where the next to the last equality follows from Lennna 1 with v = 'E\ x 
0 

and w = :E-.\ x. Here, L)-! is the unique positive definite square root 
0 

of E and L)-.\ = (rfaf 1. 

- 2 -
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(6) 

Thus, 

sup 
x,y e M 

sup 
xkJ 1 -

(x" ~ y)2 

x'~x y':Ey 

(x 'x) 2 

, "" , "-1 
X L.J X X /..J X 

= 

= 

sup 1 ( , "" ( x 'x) 2 
) _ 

X LJX - -x/0 , ,, , "----1 
X LJX X LI X 

1 -
inf 

llxll=l 
1 

, "" , ""-1 
X LJ X X L-1 X 

Now, write 6 = f D f,. where r is an n X n orthogonal matrix 

and D is a diagonal matrix with diagonal elements A1, ••• ,An - the 

eigenvalues of 2) • Then, with w = fx, 

(7) inf 1 inf 1 
llxll=l 

= 
llwll=l 

= 
, .._, , ~-1 w' Dw w' D -1 

X LJXX X w 

inf 1 
llwll=l 

n n 1 ~ 2 ~ 2 -( w. X.) ( w. A. ) 
1 1 1 1 1 1 

n 
Since llwll = 1, 2)w_2 = 1. 

1 ]. 
Denoting by X the random variable which 

takes on the value 

llwll = 1, 

1 

A. with probability 
]. 

w. 2 , we see that for all w, 
]. 

1 
(8) 

r,:-~~---~ --

(~ Ai w. 2 ) (t w. 2 A: l) = ex ex-1 ~ 

4 >i.1 An 

(Al+ An)2 
1 1 1 1 1 

by Lennna 2 with m = An and M = A1. 

- 3 -
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(9) 

Thus, combining (6), (7) and (8), 

sup 
x,y e M 

(x'~y)2 

x'~x y'Liy 
= 

1 
4 A.l A.n 

(Al+ An)2 
= 

(A. - A. )2 1 n 

(Al+ An)2 

1 - inf 
llxll=l 

Taking square roots, we now have the inequality 

(10) sup 
x,y e M 

x' ~Y. 

Jx''tx y'!;y 
s 

A. - A. 1 n 

},l + A.n 

1 
, .... -. , ""'-1 

X .l..JX X .l..J X 

s 

However, setting x = x1 + xn and Y = x1 - xn, we see that in (10), 

we actually achieve equality. This completes the proof of Theorem 1. 

Corollary 1: Let E and A be two n X n positive definite matrices and 

let MA= {x,ylx e Rn, ye Rn, x :! 0, y :! O, x' Ay = O}. Then 

(11) sup 
x,y e MA Jx' Ex y' !; y 

x' E Y. = 
µ,l - µ,n 

µ,1 + µ,n 

where µ,l is the largest eigenvalue of A-l ~ and 

-1 
eigenvalue of A E . 

Proof: This follows immediately from Theorem 1. 

- 4 -
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Consider (~1 ~2) 
~ = ½l ~

2 
where ;_1 is p X p and ~ 2 

is q X q 

with p + q = n. As is well known, (Anderson (1958), p 289 - or Eaton (1972) 

Chapter 10) the largest canonical correlation coefficient, say e
1

, is 

given by 

(12) = 

Theorem 2: For any partitioning of ~ , 

( 13) 

where Al ~ ... ;a: A >o are the eigenvalues of £. 
n 

a e RP Rq, * = (a) e Rn * (~) 
n 

Proof: For and b € set a and b = e R • 
0 

Then we have 

*, ~ * 
( 14) 81 

a b 
= sup 

0:/: a* e Rn Ji*, 2_; a* b*'L b* 

Oil: b * e Rn 

x' ~l A - A 
s = 1 n sup 

x,y e M Jx.'2.;x y'l.;y Al +A 
n 

by Theorem 1. 
*, * The inequality holds because a b = 0 so the second 

- 5 -
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sup is over a larger set of vectors than is the first sup. The proof 

is complete. 

The inequality in (13) was also established by Haberman (1974) 

using a different method. 

To show that the inequality (13) is sharp, consider p ~ q and 

where n
8

: p X p is diagonal with diagonal entries 1 ~ 0
1 
~ 0

2 
~ ••• ~ 

8P ~ O. For ~ partitioned as in ( 15), 01 is the largest canonical 

correlation and it is not hard to show that Al= 1 + e1 and An= 1 - 01• 

Hence 81 = (A1 - An)/(A1 + An) so (13) is sharp. One can also show that 

when p ~ 2 and for ~ given in (15), we have 82 = (A
2 

- An_ 1)/{A
2 

+ An_ 1) • 

This might lead one to conjecture that for general 6 and p ~ 2, q ;;a:: 2, 

the inequality e2 ~ (A
2 

- An_ 1)/(X2 + An_ 1) holds. However, it is 

possible to construct a 4 x 4 ~ where the inequality does not hold. 

- 6 -
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