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Abstract

Let 25 be an n xn positive definite matrix with eigenvalues

)\12>\22...2)\n>0 and let M={x,ylxeRn,yeRn,x#O,y#O,
x’y =0}. Then sup x' 2y S

XyeMk Zxy 2y Aot

gt

canonical correlation associated with the above partitioning. The above
A, = A
0. s B,
1 )\1 + A
n

) is a partitioning of 2, let 61 be the largest

result yields



Let 2 be an n X n positive definite matrix with eigenvalues

A 2 7\2 2 ... 2 )‘n > (0 and associated eigenvectors X seeesX s ”xi” =1,

i=1,...,n, O if i # j. The main result of this note is

R
X, X j
Theorem 1l: Let

M= {x,y|x e R, yeR, x#0, y#0, x'y =0}, Then

(1) sup x' 2y - kl ] )\n

XLyeM Jx Lxy Ly MoEA

Equality in (1) is achieved for x = x, +x and y=x - X .
The proof of Theorem 1 is based on the following two lemmas.

Lemma l: Suppose LA R" and v, € R" are both non-zero. Then

(2) Hzﬁz . (W v )2 = [lv I - (wy v,)2 .
u'w°=0 ”wo”2

g

Proof: Let P = In AR so P is the orthogonal projection onto the
”w ”2
o

orthogonal complement of LA Then

(3) sup (uv)® = sup ((Pu) v )=
Jlul|=1 ° fle|=1 °
u'w =0 u’w =0
(o] o)

= sup (u’Pv )2 < |lpv ”2
[Juf|=1 ° 2%,
u'wo=0

by the Cauchy-Schwartz inequality. But equality in the above inequality is



Pv
attained by setting u = -|-|-P3—n- when Pv_ # 0 (the case of Pv_ =0 is
o

A . s
obvious). Noting that |[|Bv ||Z = [lv || - (¥ Vo)™ | the proof is complete.

\J
(o]

Lemma 2: Suppose X is a random variable with Pr{m < X < M} = 1 where
m > O, Then

(1) 1 LmM

1 2 .

ex ex (m+M)2

Proof: This follows immediately from Lemma 2.2 in Marshall and Olkin
(1964) by setting (in the Olkin-Marshall notation) Z =1, s =l and r =

-1. Of course, (4) is just the Kantorovich Inequality.

Proof of Theorem l: Fix x #0, x ¢ R'. Then

R 2 P ¥ 2
(5) sup X’y ) sup (_x__Z__y_)
W A\NwEY) T R, \wy )T
x y=0 x’ 2 %y=0

s [(EEx)yi2= [2f2- () TEg)2 =
"Y.lel ”2-’5 e
(&%) y=0

x"Tx - _(xx)2
=7 x
where the next to the last equality follows from Lemma 1 with v =Z!5 X

and v, = 2-5‘;::. Here, E% is the unique positive definite square root

of 2 and E-% = (2%)-1.



Thus,

(6) sup (x° 2 y)2 _  sup 1 (x' X - (x%x)2 )
“HyeM Txy' Ty X0 5 x < 5k
sup  ; _ (x'x)2 - 1- inf 1
X#) x» Z) % X' E-'lx ]IX”=1 X’ E X x ’ z-lx

Now, write 22=T DI’ where I' is an n X n orthogonal matrix

and D is a diagonal matrix with diagonal elements )\1,...,)\n - the

eigenvalues of 2. Then, with w = Ix,
(7) inf 1 _ inf 1 _
||x||=l x " 2x x’ Z-IX ”WH:l w' Dww’ D-lw

"ilt|1f 1
wll=1 13 o T > -1
@ w22y @2

n
Since |w|| =1, Z\,wia = 1, Denoting by X the random variable which
takes on the value 7\1 with probability wiz, we see that for all w,
[l =1,
1 1 b A A

1 = —— 2 —
(8) @ A w2 @w2 Y ex ex! (A + )2

1 p + 1 n

by Lemma 2 with m=kn and M=)\1.



Thus, combining (6), (7) and (8),

. 2
(9) sup (x. Zy) = 1 - inf - 1 =] <
x,yeM x"Uxy’ XDy Ixll=1 =" 2Zxx"Z %
Y
P e S G Sl
2 2
("1 +hn) (A, + An)

Taking square roots, we now have the inequality

, )\ "7\
(10) sup x' 2y < LB
X,y eM Jx Lxy 2y )\1+7tn

However, setting x = Xy + xn and y = Xy - xn, we see that in (10),

we actually achieve equality. This completes the proof of Theorem 1.

Corollary 1: Let 2, and A be two n X n positive definite matrices and

let M, = (x,y|x € R, y eR", x#0, y#0, x Ay = 0}. Then

, By T W
(11) sup x}_Z)y = 2
X,}’GMA,\/&C ny Z;y |J41+un

where ., is the largest eigenvalue of A_l 2, and W, 1is the smallest

eigenvalue of A-1 > .

Proof: This follows immediately from Theorem 1.

-l -
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Consider L ={ « where is p xp and is q X gq
Zp1 2p, 1 %

with p + q = n. As is well known, (Anderson (1958), p 289 ~ or Eaton (1972)

Chapter 10) the largest canonical correlation coefficient, say 91, is

given by
a2 _ b
(12) o = swp e
Ofa ¢ R Ja 24, ab L22b
o#b ¢ RY

Theorem 2: For any partitioning of 2,

hl-)\n

}\l +7\n

(13) 6, =

where A; 2 ... 2L >0 are the eigenvalues of 74

* *
Proof: For a ¢ RE and b e RY, set a = (2) ¢ R® and b = (g) ¢ R".

Then we have

sk
(14) 6, = sup 0 a ™
0# a* ¢ R° ,a¥ 2ia® bX b
0# b ¢ R"
, )\. - )\
< sup x" 2y R S
X,yeM AT lUxy Ly A oEA

*, %
by Theorem 1. The inequality holds because a " b =0 so the second



-

sup is over a larger set of vectors than is the first sup. The proof
is complete.

The inequality in (13) was also established by Haberman (197L4)
using a different method.

To show that the inequality (13) is sharp, consider p < q and

Ip (1)e 0)
() ™

where DG: P X P 1is diagonal with diagonal entries 1 = 61 2 92 2 iee 2

eP 2 0. For 2, partitioned as in (15), 91 is the 1érgest canonical

(15) z =

correlation and it is not hard to show that hl =1+ 91 and Kn =1 - 91.

Hence @, = (ll - Kn)/(kl + Xn) so (13) is sharp. One can also show that

when p 2 2 and for 2 given in (15), we have 6, = (Az - hn_l)/(x2 +h, )

This might lead one to conjecture that for general 2, and p 2 2, q 22,
the inequality §, < (kz - )\n_l)/()\2 + ln-l) holds. However, it is

possible to construct a 4 x 425 where the inequality does not hold.
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