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In this paper we use the simplest model for group-testing, i.e., 

at the outset we have a binomial model with N independent units, each 

of which is good with probability q and defective with probability 

p = 1 - q; both N and q are known. Group-testing is characterized 

by the fact that we can jointly test any integer number of units 1 ~ x ~ N 

with only two possible disjoint outcomes for each test: (i) all the x 

are good or (ii) at least one of the x is defective and, if x > 1, 

we don't know which one(s) or how many. Strategies for carrying out such 

a procedure so as to minimize the expected number of tests needed to classify 

without uncertainty everyone of the N units have been considered in a 

series of papers [ 3], [ 4], [ 5]. Some of these deal with the case of 

q unknown, with or without a given prior for q, some deal with N = ~ 

or N large and unknown, some deal with a known number of defectives and 

some deal with optimality questions. 

In this paper we consider the larger class of group-testing procedures 

defined by the fact that we can assert at the outset that the probability of 

correctly classifying all the N units P(CC) * is at least P (if we use 

* that procedure); here P is preassigned and can be regarded as a joint 

* confidence level. Any procedure R in this class is called P -admissible. 

. * 
Subject to this condition, P{CCJR) ~ P, we wish to find the procedure 

R that requires the smallest expected number of tests E(T). It would be 

desirable to have a lower bound for E(T) that holds for any group testing 

procedure since we can then guage how close we are to an optimal result; 
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such a bound is derived in Section 
, .. 
/ . 

The basic procedure that we develop here, denoted by R..__ , is to 
-11,D 

look for at most D defective units and then assert that all the units 

still unclassified, if there are any, are good; the value of D is computed 

at the outset as a function of N, * q and P. We then give recursions for 

the unconditional expected number of tests. [In [6] a related problem is 

considered where D is given as an upper bound on the number of defectives 

present among the N units and the~e we use the conditional expectation of 

E~T) given that the number of defective units is at most D.] 

It is proved in Section 3 that the strategy defined by procedure R__ -u,D 
is exactly the same as the strategy defined by procedure R

1 
studied in 

[ 3 ] and [ 5 ] • In fact, for D ~ N at the outset ( or if the current values 

d, n satisfy d ~ n at any point) the procedure R..__ becomes identical -11,D 

with R1 in strategy,and in the value of E(T), from that point on. Since 

the strategy of ¾,D is the same as that of R
1 

there is no necessity 

of drawing up extensive new tables since tables for procedure R
1 

[3] 

are already in the literature. 

Some comparisons with the results of Thomas et al. [7] are made 

in Section h. They use a halving procedure (see also R4 and R
5 

in [3]) 

and employ D = 1 in our formulation but do not calculate or control the 

resulting overall probability of a correct classification; their objective 

was to emphasize the reduction in radiation exposure attainable by using 

the halving procedure and assuming that the leaker found, if any, is the 

only one present. Unlike the comparisons made in their paper, in this paper 

only procedures with exactly the same P(CC) will be compared by their 

E(T)-values; the same P(CC) can usually be obtained with the help of random-

ization. 
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This paper with its unconditional approach and a related paper [6), 

which takes a conditional approach assuming we have a known upper bound on 

the number of defectives present, were both partly motivated by a recent 

paper by Thomas, Pasternack, Vacirca and 'Ibompson [7]. They develop a 

halving procedure~ for locating a single defective, if it exists, in the 

unconditional problem (with no upper bound on the number of defectives 

present). Although they compared the expected number of tests for different 

procedures, comparing one procedure which classifies all the units with 

another that finds at most one defective, their real interest was in 

reducing the expected exposure to personnel checking N "sealed" radio

active sources for leakage; here the likelihood of more than one leaker 

in a group of standard size (say 50) is assumed to be small on empirical 

grounds. They claim to have recognized that the halving procedure Rx 
was subject to uncertainty in the correct classification of all units, but 

' they did not examine the numerical value or the full implications of this 

uncertainty. In a subsequent paper [8] they further investigate the use 

of group-testing methods for the goal of reducing the total expected 

radiation exposure; it should be noted that this goal does not necessarily 

lead to the same results as our present goal of minimizing the expected 

number of tests, subject to satisfying a lower bound on the P(CC). Thus 

they have added some new vistas to the applications of group-testing methods. 
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2. Definition of Procedure R D. u, 

(2.1) 

* Let D = D(P ,N,q) denote the smallest integer such that 

* P{~ ~ DIN, q} ~ p 

where ~ denotes the binomially-distributed random number of defectives among N 

independe:Jt units with common known probability q * of being good and P < 1 

is preassigned. Then our procedure ¾,D' defined below by recursive 

formulas, looks for at most D defectives, i.e., it either classifies all 

N units or finds D defectives,whichever comes sooner. Thus we get a 

correct classification if and only if ~ ~ D and hence by (2.1) 

(2.2) * P{CC) = P{~ ~ D)• 1 + P{~ > D)• 0 ~ P. 

* Hence this procedure is P -admissible and by randomizing between two 

successive values of D we can make the P{CC) * exactly equal to P. 

Note that, unlike the attitude in (6 ], where we treat D as an 

upper bound to the number of defectives present, we now regard D as the 

maximum number of defectives we will look for in order to satisfy (2.1). 

In accordance with this point of view, we compute our E(T)-expressions 

below with unconditional probabilities. 

Let d denote the current value of D, just as n denotes the current 

value of N, the number of unclassified units. Let Hu,d(nlq) = Hd(n) 

denote the expected number of additional tests needed for termination under 

procedure R_ when we are in a binomial (or H) situation with n un-
-1J,D 
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classified units and at most d more defectives to look for (0 ~ d ~ D). 

In a so-called G-situation we have two sets to work with: one is known to 

contain at least one defective unit and is called a defective set {of size m, 

say), the other is a binomial set as at the outset and is of size n-m. Let 

Gu,d(m,nlq) = Gd(m,n) denote the expected number of additional tests 

needed as above except that we start with the G-situation. It will be noted 

that for D ~ N (D = N or its equivalent D = oo is obtained by setting 

p* = 1), our procedure ¾,o is identical with procedure R1 studied in 

[3] and [5 ]; hence we can denote the latter by R.___ and its expectation -11,00 

formulas by H {n) and G (m,n) to avoid any confusion caused by the single 
00 00 

subscript. In all cases we revert to the double subscript when there is danger 

of confusion. 

The recursive formulas below define Procedure 1\J,n in terms of 

q, N, D through their current values q,n,d, respectively. For n ~ 1 

(2.3) Hin) = 1 + min {qx Hin-x) + (1-qx) Gix,n)) 
l~x~n 

For 2 !": m ~ n 

(2.4) Gim,n) 
x_ m 1_ x 

= 1 + min {(q ! ) Gd(m-x,n-x) + (--¾) Gd(x,n)) . 
l~x<m 1-q 1-q 

The boundary conditions are 

(2.5) Hd(n) = 0 if d = 0 or n = 0, 

(2.6) Gd(l,n) = Hd_1(n-l) (n = 1, 2, ••• ) 
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A third superfluous boundary condition tells us that for d = 1 

and n > m 

(2.7) G
1

(m,n) = G
1

(m,m) • 

This is superfluous under Procedure ¾,n since our procedure is nested 

and in the G1(m,n)-situation it first looks for one defective unit in 

the defective set of size m. Hence, using(2.~with d = 1 and(2.6) with 

d = O, we never need to test the n-m binomial units on the left side of (2.7). 

Note that we write d as a subscript on the right side of (2.3) and 

(2.4) even after obtaining x good units; technically, it should read 

min(d,n-x) in these cases. However, if it should happen that n-x~d 

(for the minimizing x), it means that we have to classify~ the remaining 

units individually and, from that point on, our procedure ¾,n becomes 

identical with ¾,oo and no subscript is necessary for H or G. Hence 

the subscript d can remain as it appears on the right side of (2.3) and 

(2.4), i.e., it is correct, but it may be superfluous. The argument above 

that procedures ¾,n and ¾,oo became identical is based on the fact that 

(2.3), (2.4) and (2.6) are the same for both procedures and (2.5) differs 

only in that there is no subscript d in the definition of RU,oo in [ 3 ] • 

Hence, if at any point we obtain a situation with d ~ n, then the subscript 

becomes superfluous and the procedure becomes the same as that of R__ -u,oo 
from that point on. In particular, if D ~ N then the total procedure,and 

hence also the resulting E(T)-functions,are the same fer both procedures. 
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3. The Strategy of Procedure ¾J,o· 

To analyze the procedure ¾J,o and show that we don't need any new 

tables, we first simplify our equations (2.3) through (2.6) by introducing 

a function F{m}. Recall that a nested procedure is one that always gives 

priority to testing a part of the defective set whenever the latter is 

non-trivial, i.e., when m ~ 2; it does this without mixing units from the 

two types of sets. 

Let Fd{m,n) denote the expected number of tests required to reach 

the next H-situation under procedure ¾,o if we start with a defective 

set of size m ~ 2 and a binomial set of size n-m; we wish to show that 

this function depends neither on n nor on d, but only on m, i.e., 

Fd{m,n} = F(m). For convenience of analysis we assume that the units are 

ordered and our procedure will have a "first come-first served" property 

with respect to this ordering. By the nature of the nested procedure if 

we start with a defective set with m ~ 2, we always find exactly one defective 

unit, namely the first defective unit in that ordering, on the way to the 

very next H-situation. Given rn, the conditional probability that the first 

defective is in the . th . . . 1. pos1.t1.on 1.s i-1/( m) pq 1-q • After we find this 

unit we are back in an H-situation with n-i unclassified units and at most 

d-1 defectives to look for. Hence the relation between Fd{m,n), Gd{m,n) 

and Hd_1{n) is 

(3.1) . Gim,n) 
m • 1 p '\' 1.- . 

= Fd{m,n} + --iii {;;'i q Hd_1(n-i) 
1-q 
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For convenience we define 

(3.2) * 1 m 
and Fd(m,n) = (_:;!__) Fd(m,n) • 

1-q 

From (2.6), (3.1) and (3.2) we have the boundary condition 

(3.3) (n = 1, 2, ... ; d = 0, 1, ••• ) • 

Lemma 1: Under Procedure 1\J,n the strategy in the G-situation does not 

depend on d or n. 

Proof: From (3.1) and (3.2) we have 

If we use (3.1) and (3.2) for all the G-expressions in both sides of (2.4) 

then we find that the three summations cancel each other and we obtain the 

simpler recursion, with the same minimizing x-value as (2.4), 

(3.5) * 1 m X * * Fd{m,n) = _:;!__ + min {q Fd(m-x, n-x) + Fd{x,n)) , 
l-q 1 x<m 

and the boundary condition for this is (3.3). Since (3.5) and (3.3) hold 

for all d and do not depend on d it follows that the minimizing x-value 

does not depend on d. Using an induction proof,we assume that * F (a,b) 

does not depend on b for b < n and also for b = n, a< m. Then it 

* follows from (3.5) that F (m,n) does not depend on n. Since (3.3) does 

not depend on n, the induction proof is complete and we can replace 

·X- * F im, n) and F d (m,n) by F (m) and F{m), respectively. 
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Theorem 1: Under Procedure the strategy in the H-situation does not 

depend on d. 

Proof: Using (3.1) and (3.2) we can write (2.3) in the form 

(3.6) 

Assuming that the minimizing x in (3.6) is less than n, we now iterate the 

recursion by using the same result for Hd(n-x) on the right side of (3.6). 

This gives 

( ) Hd
(2+)n) ( x *( ) x_*( ) x+y ( ) X.±_Y i-1 ( )) 3.7 { = 1 + min q + pF x + pq ¥ y + q Hd n-x-y + pi~lq Hd-l n-i 

where the mininrum is over integer partitions of n (x+y ~ n, x ~ 1, y ~ 1) 

into three disjoint parts with at most one zero; this zero has to be terminal. 

Then, allowing x to be n in (3.6), 

(3.8) 

where Hi1)(n) is the right side of (3.6) with x = n (a 1-part partition). 

th 
If we continue this iteration we come to a point {say, at the r step) 

where all the rest of the units are tested. 

for y, etc.,we have 

d, we can write 

+x r 

Then writing x
1 

for x, x
2 

and, since Hd(O) = b for all 

(3.9) 
x1 x +x2 n-xr * x1 * n-x * 

= 1 + Min{q +q 1 + ••• -f-<l + pF {x1)+pq F {x
2

)+ ••• +pq r F {xr)) 

~ i-1 ( . ) 
+ p i~l q H d-1 n- 1. ' 
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where the minimum is over r(r = 1, 2, •• , n) and over partitions of n 

into r positive parts. Since the part to be minimized in (3.9) no longer 

depends on d, the result is proved. 

Corollary 1: The strategy for Procedure ¾,D is exactly the same as for 

Procedure ¾,oo for any q-value. 

Proof: Since the strategy does not depend on d or D we can take D = N 

and the procedure then agrees exactly with that of R__ studied in [3] --u ,oo 

and [ 5 ] • 

It follows that we do not need any new tables to describe the strategy 

of Procedure ¾,n· Hence the tables of this paper are devoted only to 

numerical results and lower bounds for Procedure ¾,n· 
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4. Some Comparisons. 

In [7] a similar problem is considered. The unconditional expected 

number of tests is derived as in this paper. However they take D = 1 and 

do not control the P(CC). By taking D = 1 we will have the same P(CC) 

and hence the comparison will be a fair one. This point may seem trivial 

but it has to be emphasized since procedures with different P(CC) values are 

compared in [7 ]. Although for Dal and N=:50 the attained P(cc) (=.9lo6) is 

moderate for q = .99, it should be carefully noted that it is very low 

(.2794) for q = .95 and extremely low (.0338) for q = .9(). Hence for 

the latter two q-values it is highly desirable to use a larger D-value. 

However, for the purpose of comparison, we will stick with D = 1. 

We denote the halving procedure with D=l by R.r; in other contexts it is 

called binary search. To be specific we test all the N units at the 

outset and then we take x equal to the largest integer in N/2, i.e., 

x = [N/2]. We terminate when 1 defective unit is found. It has the property 

that one need not know the value of q to carry out the procedure and the 

value of E(T), or HT(n), can be written as a single expression that holds 

for all values of q; these expressions were not given in [7] and we 

include them here for N = 15, 30, 50, 60 and 100. For D = 1 and any q 

(4.1) 

(4.2) 

(4.3) 

HT(l5) = 4(1-ql5) + q 

HT(30) = 5(1-q30) + q - pql5 

HT(50) = 6(1-q50) + q _ {1-ql8+q22-~43) 
1 + q + q 
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·, 

60 15 15 30 
( !1 .• 4) HT ( 60) = 6 ( 1-q ) + q - pq ( 1 + q + q ) 

3 
(4.5) H.r(lOO) = 7(1-qlOO)+q - q o {l-ql8+q22(1-q21)(l+q25+q50)} • 

l+q+q 

The derivation of the above is straightforward and is omitted. 

In contrast, the expressions for ¾,n with D = 1 vary with q 

and we include some of these for intervals containing q = .90, .95 and .99. 

Given the strategy in [ 3] it is straightforward to derive the polynomial 

for ¾, 1(N) at the desired q-value;-we use Table VA, B, C of [ 3 ] 

which goes up to N = 100 at q = .90, .95, and .99 and obtain 

(4.6) 

(4.7) 

3(1-ql5) + q + q7 q::::: .90 (x = 7) 

¾,/15) = , 4(1-q
15

) + q q ::: .95 (x = 15) 

¾,/50) = 

4(1-ql5) + q q ::::: .99 (x = 15) 

50 8 15 22 29 36 42 3(1-q )+q+q +q +q +q +q +q q == .90 (x = 7) 

4(1-q5o)+q3+q16+q29+q44 

6(1-q50) + q14 
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(4.8) 1\J,1<100) = 

3(l-qlOO)+q 79+q85+q91+q98+ q(l-(') q ,., _90 (x = 7) 
1-q 

4+q85+q98_ 54100+ q2(1-q84) 
1 

14 
-q 

7 + q29 + q98 _ 8ql00 

q ::::: • 95 (x = 14) 

q :::: • 99 {x = 100) 

In each case the initial value of x is shown and the expression.holds 

in an interval containing the indicated value of q. 

Table 1 shows the numerical comparisons that are obtained from these 

formulae. It also includes a colunm for the ratio of the two numbers that 

can be interpreted as the efficiency of the result for procedure RT relative 

to that obtained for procedure ¾,i· 
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Table 1: Comparison of Procedures ¾,l and \ for D = 1 

q = .90 q = .95 q = .99 
N 

¾,1 1'r tatio 
Eff.) ¾,1 HT tatio 

Eff.) 8u,1 1'T 

15 3.76o6 4.0764 92.~ 3.0968 3.0968 100.af, 1.5498 1.5498 

50 4.7010 6.6169 71.<Y/, 5.3203 6.2430 85.2', 3.2387 3.2561 

100 4.7250 7.6458 61.8% 5.7276 7.6405 75.af, 5.1924 5.2550 

It is interesting to note that the monotonicity of l\r,l as a function 

of q (for fixed D = 1) no longer holds. 

For any fixed q and D the asymptotic (N"'? oo) value of H.r(N) is 

approximately 1 + log
2

N and tends to oo. On the other hand the value of 

ffu, 1(N) is approximately --,¼ + F(x) for large N where x depends only on 
1-q 

q; hence ¾,l(N) ~ a finite result as N "'?oo. It follows that the asymptotic 

(N "'? oo) efficiency of ~ relative to ¾,l is zero for any fixed values of q 

and D. The same argument does not hold for fixed q * and P but since the 

* value of P , or the P(CC), is not computed in [7], we need not make this 

comparision. 

- 14 -

Ratio 
-(Eff.) 

100.af, 

99.5'1, 

98.af, 



Table 2: Exact Values of the Expected Number of Tests and Lower Bounds for Procedure RU,D. 

q = .90 q = .95 q = .99 

N 
D = 1 D = 2 D = 3 D = 1 D = 2 D = 3 D = 1 D = 2 D = 3 

EXACT 1.1900 1.2900 1.2900 1.0975 1.1475 1.1475 1.0199 1.0299 1.0299 
2 HLB 1.1900 1.2900 --- 1.0975 1.1475 --- 1.0199 1.0299 ---

ILB 0.8911 0.9380 --- 0.5585 0.5836 --- 0.1608 0.1615 -- -
EXACT 1.4420 1.6510 1.6610 1.2353 1.3376 1.3401 1.0494 1.0695 1.0696 

3 HLB 1.4420 1.5880 1.5980 1.2353 1.2973 1.2998 1.0494 1.0599 1.0600 
ILB 1.2710 1.4023 1.4070 0.8169 0.8585 0.8587 0.2400 0.2424 '. 0.2424 

EXACT 1.6878 2.0201 2.0500 1.3710 1.5300 1.5375 1.0788 1.1092 1.1095 
4 HLB 1.6878 1.9509 1.9692 1.3710 1.4651 1.4686 1.0788 1.0907 1.0908 

ILB 1.6129 1.8582 1.8755 1.0625 1.1428 1.1435 0.3184 0.3231 0.3232 

EXACT 1.9575 2.4254 2.4855 1.5360 1.7556 1.7707 1.1173 1.1582 1.1588 
5 HLB 1.9575 2.3550 2.3985 1.5360 1.6736 1.6808 1.1173 1.1311 1.1313 

ILB 1.9206 2.3026 2.3428 1.2958 1.4628 1.4267 0.3960 o.4039 o.4o4o 

EXACT 3.1126 4.4152 4.7865 2.3401 2.9334 3.0283 1.3240 1.4214 1.4251 
10 HLB 3.1126 4.3690 4.7001 2.3401 2.8461 2.9134 1.3240 1.3606 1.3615 

ILB 3.0547 4.2924 4.6215 2.2984 2.7918 2.8065 0.7725 0.8070 0.8079 

EXACT 3.7606 5.9278 6.8406 3.0968 4.1588 4.4096 1.5498 1.7119 1.7214 
15 HLB 3.7606 5.8897 6.7558 3.0968 4.0948 4.3015 1.5498 1.6250 1.6283 

ILB 3.7243 5.8393 6.7025 3.0742 4.0534 4.2720 1.1306 1.2084 1.2118 

EXACT 4.3874 7.8466 lO.o646 4.1659 6.2812 7.0649 2.0430 2.3593 2.3899 
25 HLB 4.3874 7.7923 9.9585 4.1659 6.1997 6.9410 2.0430 2.2478 2.2631 

ILB 4.3533 7.7713 9.9423 4.1391 6.1875 6.9156 1.7951 2.0032 2.0189 

EXACT 4.7010 . 9.2679 13.4709 5.3203 9.4905 12.1739 3.2387 4.0730 4.2215 
50 HLB 4.7010 9.2254 13.3896 5.3203 9.4371 12.0666 3.2387 3.9502 4.0628 

ILB 4.6658 9.1973 13.3633 5.2872 9.4146 12.0464 3.1913 3.9139 4.0255 

EXACT 4.7250 9.4486 14.1646 5.7276 11.2773 16.3644 5.1924 7.4067 8.1066 
100 HLB 4.7250 9.4066 14.0880 5.7276 11.2385 16.2873 5.1924 7.3180 7.9666 

ILB 4.6898 9.3783 14.0591 5.6900 11.2096 16.2601 5.1221 7.2570 7.8983 



5. Lower Bounds and Optimality Discussion. 

As in other problems of group-testing {see e.g., Section 12 of [5 ]) 

we develop two lower bounds: one is the information lower bound (ILB), based on the 

Shannon-Weiner information concept and the other is based on the concept of 

the {Huffman) lower bound on the expected length (or Huffman cost) of a 

binary code with preassigned probabilities for each code word. As in the 

other problems the Huffman lower bound (HLB) is a sharper bound but usually 

does not lend itself to any simple expresssion. Moreover it is either not 

available for N = oo or else it approaches the ILB in some sense as N ~oo. 

On the other hand we obtain an explicit expression for the ILB. One method 

of showing optimality (which we claim for procedure ¾ D with D = 1) is 
. , 

to show that the attained 1\J, 1(N) value is equal to the lll,B for every N 

and all q. 

The ILB is based on the identity 

(5.1) D~l(N) j N-j ~ (j-1) D j-D _ l 
LJ • p q + LJ D-1 p q -

j=O J j=D 

this holds since the first sum runs through the probabilities for the various 

possible number of defectives less than D and the second sum exhausts the 

possible positions of the nth 
defective; the union of all these events is 

a disjoint exhaustive set. 

It follows from (5.1) that 

(5.2) PD 6 e- ) qJ-D = PD 6 a+D qa = I (D, N-D+l) 
N . l . N-D ~) 

j=D D-1 a=O r D a. p 
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where I {x,y) is the usual incomplete beta function, which p 

we define to be O for y = 0 < x and to be one for x = 0 < y. Note 

that in the first case of (5.1) we observe a particular one of the (~) 
J 

events with probability pjqN-j and in the second case we observe a particular 

one of the <ii:~) events with probability pDqj-D. Hence the expected 

total information E(I) learned under procedure Rl,D is 

(5.3) 
D-l N . N . . N . N . 1 D . D D . D 

E(I) = -.LI (.) pJq -Jlog2'pJq -J) - _LI <t:1 )p qJ- logip qJ- ) 
J=O J J=D 

= - p(log2p)[N I (NI (N-D+l, D-1) + g I {D, N-D + l)] q q p p 

- q(log2q)[N I (N-D,D) +,!?_I (D+l, N-D)] • 
. q p p 

Since we can gai~ at most 1 unit of information per test, the maximum 

expected information we can gain from all the T tests is E(T) and this 

must be greater than E(I) in (5.3). Thus E(I) is the ILB we are seeking. 

For D = 1 and D = N it gives 

(5.4) 

(5.5) 

1 N 
E(TID = 1) ~ (- p log2p-qlog2q)( :q) 

E(TjD = N) ~ N(- plog2p - qlog2q) = N U(q) , 

u( q) , 

and the latter agrees with the result for Procedure R1 (see Section XII of 

[ 3]). If we think of D/N as approaching a limit l as N ~ ~ then it 

_ 17 _ 



is easy to show from (5.3) that 

{ 
ANU( q) for A<p 

p 
(5.6) E(I) ~ E (I) = 

00 
NU(q) for A~ p 

hence E (I) is a simple approximation to the ILB {for N large and A 
00 

not extreme) if we set AN equal to D; for extreme A or moderate N 

it may turn out that E (I) is not a lower bound. 
00 

The Huffman lower bound (HLB) is obtained by utilizing the same 

identity (5.1) and again treating both combinatorial coefficients as 

"repetition factors", not as part of the probability of a basic event. 

Then we have a total number of probabilities S equal to 

D-1 N 
S '°' (N.) ~ (j-1) N ( l ) (N) N = LJ + l = 2 IA N-D+, D + D ~ 2 , 

• _ _f\ J . D D- 1a· 
(5.7) 

J:::::v J= 

which reduces to N + 1 for D = 1 and to 2N for D = N. The Huffman 

routine combines the 2 smallest numbers and replaces them by a new number. 

Then we reorder {by magnitude) the set of S-1 numbers and repeat the process. 

As a check, we note that the last new number is equal to 1. The sum of all 

these new numbers is the desired lll,B. Exact values of the expected number 

of tests under procedure RUD together with the corresponding ILB and HLB 
' 

bounds are given in table 2 for D = 1, 2, 3, q = .90, .95, .99 and selected 

values of N. * Although this table does not cover a large range of P -values 

the illustrative examples in Section 6 show how the exact calculation can be 

* carried out for any P using the fact that the strategy is known. 
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For the special case D = 1 the identity (5.1) reduces to 

(5.8) N N-1 q + p + qp + ••• + q p = 1 

and the same identity (and indeed the same problem) has arisen in other 

contests. ( * In [5] we regarded the basic binomial problem with P = 1 and 

D = N) as composed of subproblems in each of which we looked for at most 

1 defective unit. It was noted that procedure R1 attained the HLB for 

each subproblem and hence was optimal in each subproblem, although not necessarily 

in the overall problem. In [2] we considered N = oo and looked for a single 

defective and the same optimality property was utilized. A proof of this 

optimality property was given by Hwang [1] who relates the optimal solution 

for finding at most 1 defective unit with finite N to the problem of finding 

the best alphabetic code for N states of nature with probabilities given 

on the left side of (5.8). 
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6. Comparison with Another Procedure R
8

• 

One other procedure RS (and an equivalent variation R~ of R
8

) 

* for the P -problem will be defined, briefly discussed, and then compared with 

procedure Ru,o· Comparisons will be made only between procedures with 

exactly the same P{CC); this is accomplished by some form of randomization. 

Procedure R
8 

is defined by using the same recursive equations as in 

(2.3), (2.4) and (2.6) except that the subscripts are all deleted and the 

boundary condition (2.5) is replaced by 

(6.1) H(n) = 0 * if n = O or P{Ccln} ~ P 

Here P(ccln) denotes the probability of correctly classifying (by a guess) 

the n remaining unclassified units (in the H-situation) without any further 

* tests. For q ~ P this amounts to stopping (in the H-situation) when n 

is small enough so that n * q ~ p • For this procedure we assume that 

* q ~ P ~ 1/2 and then the question of stopping in a G-situation with a guess 

does not arise since for any defective set of size m ~ 2 the probability 

of a correct quess is less than 1/2. * Hence we cannot satisfy the P -condition 

by stopping in a G-situation and there is no advantage to adding this to our 

boundary conditions. 

A variation of RS, denoted by R~, is easier to carry out and, 

because it is equivalent to RS, shows that the strategy of RS is exactly 

the same as that of procedure R
1 

of (3) based on a smaller number of units. 

Let the integer M be defined by the inequalities 

(6.2) qM+l < p* ~ qM. 
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Then procedure R~ sets aside at the outset M units {that are not 

classified) and uses the same recursive equations as R
8

, with (6.1) 

replaced by 

(6.3) H(n) = 0 if n = 0, 

but applies them to only N - M units. These equations are the same as 

those of procedure in [3] and hence R' s is the same as based 

* on N - M units. Moreover, to satisfy the P - condition, we need only 

guess that all the M units set aside are good. 

To see that and R' s are equivalent we note that every stopping 

point of Rs must be an H(n.) with N. ~ M. 
l. l. 

Hence Rs classifies at 

least as many units as R' s and, since both are operating in an optimal nested 

manner, ~ must have an expected number of tests that is at least as large 

as that of R~. On the other hand, in the class of procedures that do not 

keep track of (or make use of) the current (separate) numbers of units already 

classified as good and defective, the procedure R
8 

is an optimal nested 

procedure and hence must be at least as good (i.e., with an H-function that 

is at least as small) as R~. Hence R
8 

and R' s must be equivalent procedures, 

i.e., they have an identical expected number of tests needed for termination. 

Hence RS is equivalent to the application of procedure R1 of [3) to N - M 

units. 

Procedure ¾,o does keep track of the number of units shown to be 

defective {actually, it records D minus that number) and we claim it is. 

(for all * uniformly q, all N and all P) better than procedure RS, but 

this result has not been proved. We now show that for N large the procedure 
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R 
U,D 

is better than R
5 

for any fixed values of q * and P • In the 

course of the proof we note that the amount by which RU,D is better is 

of the order ,F, while the expected number of tests for both procedures 

has the same leading term of the form CN. Hence.we can also assert that 

¾,o is asymptotically (N ~ oo) equivalent to procedure R
8 

for any fixed 

* values of q and P • 

Since the strategy for both procedures is the same as for procedure R
1 

of [3], it is sufficient to show for large N (i) that the total number of 

units classified under ¾,n is less than under RS and (ii) that the number 

of defectives classified under RU,D is less than under RS. 

To show {i), we have to show that for large N the expected number of 

units not classified under ¾,D is at least M or 

(6.4) ~ ( ) ( j -1) D j -D ( ) D .( ) M ~ u N-j D-l p q = NI D,N-D - - I D+l , N-D 
j=D p p p 

N-1 
= N 6 (N:l)pj qN-1-j 

j=D J 

N-1 
~ 6 (N-1) j N-1-j . p q 

j=D J 

~ ~ (N) j N-j -·· . p q 
p j=D+l J 

D *) - (1-P , 
p 

where we used (2.1) in the last step and (5.1) earlier. Since M ~ 1 depends 

* only on P , it suffices to show that in an asymptotic expansion of the 

right side of (6.4) the coefficient of N vanishes and the coefficient of 

,Fis positive. Using an Edgeworth series for (5.1) (with continuity 

correction) up to terms of order 1/,F, we let w = w(N) denote the 

standardized variable {D - 1/2 - N )/Jifpq and obtain 
p 
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(G.;) ~(w) - (q-p)(w
2
-l)p(w) _ * c,,fiipq -·P 

where ~(w) and cp(w) 

respectively. Let w
0 

denote the standard normal c.d.f. and density, 

* denote the root of t(w
0

) = P. We write w = w
0 

+ e 

in (6.5) and use a 2-term Taylor expansion for ~(w); in the second term 

the correction is of smaller order of magnitude and is ignored. Then, 

* cancelling P on both sides of (6.5) we can solve for e, then for w 

and finally for D, obtaining 

(6.6) D ===Np+ w~ - ½ +-(~)(w0
2

- 1). 

For the sum on the right side of (6.4) we need w1 = w(N-1) and by (6.6) 

we have 

(6.7) 
1 

D - - - (N-l)p 2 
w =-----=w + 

1 J(H "I) 0 

2 . 
( q-p )(w - 1)-q 

0 

J{"N-I'Jpq 

Hence, the sum on the right side of (6.4) is (up to terms of order 1/J{:r) 

(6.8) N{l - ,(wl) + (q-p)(wl2-l)~(wl) 
,./(n-1 )pq ) 

=::N(l - ~(w) _ cp(w )[(q-p)(w1
2
-l) - q] (q-p)(w0

2
-l)cp(w) 

o O ~-- + o 1 
J(N-l)pq J(N-l}pq 

* cp(wo) /q 
= N(l - P + ----~-- ,J =: } • 

J(N-1) p 

Using (6.8) and the two leading terms of (6.6) we obtain for the right side 

(RS) of ( 6.4). 
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( 6.9) 
~(wo) * ~(wo) 

Rs = w .&q'7'p [-- - (1 - P )] = w .I.:rq/p [-- - ~ (w
0

)] • 
()"'n~1r WO rJ"n WO 

By the well-known Feller-Laplace inequality the expression in brackets in 

* (6.9) is positive for all P and this proves the result (i). 

To prove (ii) we have to show that 

(6.10) 
D N . N . N 

(N-M)p ~ L j( .)pJq -J + D i: (~)pjqN-j 
j=0 J j=D+l J 

= Np f (~-
1
1)pj-lqN-j + D(l - p*) 

j=l J-

N-1 
{ ~ (N-1) r:x N-1-a D( *) = Np - p LJ p q + - 1 - P } , 

CX=D a p 

which reduces to the same inequality that was shown in (6.4). It follows that 

procedure ¾,o is better than procedure R
8 

for sufficiently large N. 

Since we have cancelled Np in {6.10) and N in order to write (6.4) and 

the strategies are the same for both procedures, it also follows that they 

are asymptotically (N ~ oo) equivalent. 

To illustrate this result numerically suppose N = 100, q = .95 

and * 2 P = .9025 = q, so that M = 2 for convenience. Then we can 

randomize.between D = 7 (P{~ ~ 7} = .8720395) and D = 8 (P{~ ~ 8} = .9369104) 

to obtain a P(CC) exactly equal to .9025; we select D = 7 with probability 

.5305 and D = 8 with probability .4695. The expected number of tests is 

27.900 for the randomized ¾ D and 28.382 for RS which was procedure R
1 ' -
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to classify 98 units. The ratio of these expectations is 98.'JI, and 

this can be interpreted as the efficiency of procedure RS relative to 

procedure 8u,o· 
In a second illustration we fix D, * determine P and randomize on 

M. Suppose N = 5, q = .90 and D = 1. Then it is easy to verify, using 

* * (2.1), that P ~ ,9185; for convenience, we take P equal to this value. 

Since we know that ¾,o uses the same strategy as R1 it is easy to see 

from [ 3] that the tree for ¾,n {with D = 1, q = .90 and N = 5) is 

(6.11) 

where horizontal (slanted) arrows indicate at least 1 bad (all good). 

From (6.11) we obtain the formula for the expected number of tests 

(6.12) H1(5) = q5 + 4q3(1-q
2

) + 3[q
2
p + 1-q

2
] = 3 + q3 - 345 = l.9575 

for q = .90. For procedure RS we randomize and use M = 0 with probability 

.1854 and M = 1 with probability .8146 in order to get a P(CC) exactly 

* equal to P = .9185. Hence 

(6.13) H(51Rs) = (.1854)(2.490) + (.8146)(2.051) = 2.1324 

where the entries are H(5IR1) and H(4IR1), respectively taken from [3]. 
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,_.. 

~ ~ 

The efficiency of RS relative to ¾,n 
calculation can be carried out for any q, 

in this case is 91.9%. Such a 

* any P and any moderate N 

since we know that the strategy (or x-value) in each situation is the same 

as for procedure Rl. 

We conjecture that procedure RU,D is uniformly better than RS 

for all fixed values of q, N ancl * p • We also conjecture that ¾,n is 

* an optimal nested procedure for the P -problem. Finally we conjecture that 

RS is an optimal nested procedure for the * P -problem among those procedures 

that keep track of the total number of units classified but not of its break

down into good and defective units. 
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