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1. Introduction 

Let us consider a one-dimensional lattice with n sites, which are 

indexed by 1, 2, ... , n. The contiguous set [i, i + 1, ... , i + s - 1], is 

called a cluster of sizes. Let Bi= Bi(s) denote the cluster [i, i + 1, ... , 

i + s - 1], of size s. For a given one-dimensional lattice with n sites, 

we have a total of M = n - s + 1 clusters. 

We keep n and s fixed in the following discussion. We may select a 

collection (c > 0) of clusters, of common size, either with or without 

replacement. Let X (Y) denote the number of points of the lattice which belong 
C C 

to the set-theoretic union (intersection) of c clusters. In each of these 

cases, we obtain expressions for the expected coverages E(X) (E(Y )) using 
C C 

a ~ethod given in Robbins [2], and we also obtain expressions for the probability 

of a complete coverage with a collection of c clusters. 

These problems were motivated in understanding the phenomenon of 

degradation of the DNA strand which is exposed to radiation. It is known 

that the DNA strand consists of nucleotide bases which are assumed by some 

to be arranged in a linear strand and by others to be in a circular strand. 

After irradiation a phenomenon described as degradation of the strand takes 

place and it is of interest to be able to predict the e~pected amount of 

degradation and the probability of total degradation. We can study these 

problems in the context of a linear model if the lattice points are arranged 

on a line or in the case of a circular model if the points are arranged on 

a circle. For further results on the distribution of X (Y ), the reader may 
C C 

refer to the report by Roth and Sobel [3]. 
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2. Expected Coverage 

In this section, in order to apply the known results from the theory 

of continuous variables, we will redefine the cluster as a half-open 

interval. We note that in doing this, we are still considering the n lattice 

sites, and the size of the cluster is the same as was defined before. 

Specifically, we consider the interval [1, n + 1] which contains the n sites 

i=l,2, ... ,n. A cluster B. = B.(s) of size s will be represented by an 
]. ]. 

interval [i, i + s] of length s. We will randomly choose c sites (cluster 

left endpoints) out of n - s + 1 (with or without replacement) and obtain their 

corresponding cluster intervals. Let p(x), x e (1, n + 1), be the probability 

that the point x belongs to at least one of the c cluster intervals. By 

Robbins [2] we then have the expected number of sites in the set theoretic union 

X of 
C 

(;~ .1) 

where 

C 

pi 

clusters given by 

E(X) = Jn + 1 p(x)dx = 
C 1 

is the probability that site 

n 
.6 p. 
i=l l. 

i belongs to at least one of the 

C cluster intervals. For the intersection coverage Y, we have as a 
C 

corollary that 

(2.2) 

where is the probability that the site i belongs to every one of the 

c cluster intervals. 

2.1. Sampling with Replacement 

We shall consider two geometric configurations of the n sites i = 1,2, ... n. 

The first configuration is the linear model which has been previously described 

and the second is the circular model. In this latter situation the sites lie 

on the circumference of a circle and a cluster of length s is againa set of 
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s contiguous sites along the circle. We begin by giving the values of p. 
l. 

with is (n + 1)/2 for the linear model and when i ~ (n + 1)/2 we use the 

relation p. = p ·+l" 
1 n-1 

( c:1) Linear Mode 1: 

The values of the p. 's are easily seen to be as follows: 
l. 

Case 1: n ~ 2s-l 

\ 1 (n-s+l-i f for 1 s i s s - n-s+l 
pi = 

~ 
C 

1 ( n-2s+l) for s s . s n+l - n-s+l l. - 2 

Case 2: n~ 2s - 1 

l 
1 n-s+l-i for ls is n-s+l 

n-s+l 
pi = . s n+l 1 for n-s+l s= l. --2 

It then follows from (2.1) that 

(2.3) 

(2.4) 

Case 1: n c? 2s-1 

f s-1 (n-s-i+l)c + (n-2s+2)(n-2s+l)cl E(X) = n - (n-s+l)-c 2 iJ 
C i=l 

Case 2: n s; 2s-1 
n-s 

E(X) = n - 2(n-s+l)-c 2J (n-s-i+l)c 
C i=l 

To obtain E(Y) it is easy to see that for is; (n+l)/2 
C 

Case 1: n ~ 2s - 1 

l { i/(n-s+l)} c for is s 

qi = 
( s/(n-s+l)) c for i :i: s 

then by (2.2) and the relation qi = q . 
1
(i ~ (n+l)/2) 

n-1.+ 
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(2.5) E(Y) = {n-s+l)-c 
C 

Similarly, for 

Case 2: n ~ 2s - 1 we have 

~ 

1

( i/(n-s+l) f 
qi = t 

and thus 

(n - 2s + 2)sc l . 
i :s: n-s+l 

i :2: n-s+l 

n-s+l 
(2.6) 

(b) 

E(Y) = 2(n-s+l)-c 
C 

z:; 
i=l 

ic + 2(s-1)-n. 

Circular Model 

The circular model is simpler since the adjustments for the internal 

endpoints are not needed. For 
C 

Case 1: n ~ s, we have p. = 1 - (~) and thus 
l. n 

(2,7) E(X ) =nll-(1-!t~ . 
C 

For E(Y) we use q. = {s/n)c so that 
C l. 

c-1 
(2.8) E(Y ) = s(~) 

C n 

For 

Case 2: n s s, we have pi= 1 and qi= 0 so that 

(2.9) E(X) = n and E(Y) = O. 
C C 

2.2. Sampling without Replacement 

The solution to this problem is analogous to sampling with replacement 

except that the probabilities p. and q. change. Here cs n-s+l and we define 
l. l. 

( j) to be zero if O s j < c. 
C 

{a) Linear Model: 

We again give the p., q. values for is (n+l)/2 and use the relations 
l. l. 
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Pi= pn-i+l and qi= qn-i+l 

Case 1: n ~ 2s-1 

p. = 
1 

so that 

(2.10) 

\ 1 _ (n-s-i+l)/(n-s+l) 
) C C 

i 1 _ (n-2s+l)/(n-s+l) 
C C 

E(X J = n _ (n-s+l)-l 
C C 

1 s i s s 

sS iS.E±!_ 
2 

2 ~ (n-s-i+l) + (n- 2s+2 )(n-2s+l)} 
{ 

s-1 ) 

i=l C C J 

Case 2 : n :::; 2 s-1 

p. = 
1 

and thus 

(2.11) 

l 
1 -(n-s-i+l)/(n-s+l) 

C C 

I 

1 s: i s: n-s-c+l 

1 . n+l n-s-c+ s is -
2 

n-s 
E(Xc) = n _ 2.0 (!)/(n-s+l) . 

j=c C 

To obtain E(Y) we again consider the two cases. 
C 

Case 1: n ~ 2s-l 

q. = 
l 

and thus 

(2.12) 

( 

~ (!)/(n-:+1) lS:iS:s 

( <:>,cn-~+1, s s i s: ( n+ 1 ) / 2 

E(Y ) = (n- s+l) 2 ~ ( 1 ) + ( n-2s+2 )( s) . -1 I s-1 . l 
C C • C C 

l.=C 
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Case 2: n s 2s - 1 

1 s: i s; n-s+l 

= 
n-s+l s: i s: (n+l )/2 

and hence 

(2.13) 
n-s 
~ (i)+2s-n. 
i=c C 

(b) Circular Model: 

For this case we have by similar reasoning that for 

Case 1: n ~ s, it follows that pi= 1 - (n: 5
)/(:) and hence 

(2.14) E(Xc) = n }1 - (n: 8
)/(:) f. 

For E(Yc) we use qi=(;)/(;) and thus 

(2.15) E(Y) = c(s)/(n-l) 
C C c-1 

Case 2: n ::a s 

We have that pi= 1 and q
1 

c O which yieldi 

(2. 16) E(X) = n and E(Y) = O. 
C C 

3. Probability of Complete Coverage 

To develop a formula for the probability of a complete coverage 

in the linear case with replacement, we start with the case of odd s and 

point out later that the same result holds for even s. For odd s, we can 

identify each cluster with its center point. For n=s, we always get complete 

coverage. To obtain complete coverage for n > s, we need first of all to. 
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to select the two end clusters, whose center points are distinct; we denote 

them by c
1 

and c
2

. Our analysis focuses attention on the n-s spaces between 

c
1 

and c
2

. We obtain complete coverage if and only if the remaining c-2 

center points to be selected partition these n-s spaces into c-1 parts 

so that each part is of size at most s. We separate these partitions 

first according to the number of zeros in the partition and then according 

to the sizes of. the subsets of contiguous zeros in the partition. Thus 

A~ 
2 1

(n-s,c-1,s) denotes the number of ordered partitions with a total 
.) ' ' 

of 6 zeros of which 3 are contiguous in one set, 2 are contiguous in another 

and one zero is separated from both sets. This term has to be multiplied 

by c!/(4!3!2!) since we are selecting c clusters in all and each set of j 

contiguous zeros corresponds to j selections of the same cluster. Thus the 

probability P{CC} of complete coverage is given by 

(3 .1) P( cc} C ! 
= 

( 

A1 (n-s ,c-1,s) { A2(n-s ,c-1,s) 
A (n-s,c-1,s) + 

2
, + 

3
, 

Mc o • • 

+ 
A1 1(n-s,c-1,s) } { + A3(n-s,c-l,s) + A2 1(n-s,c-1,s) 

(2!)2 4! 3!2! 

+ 
A1 , 1 , 1 ( n- s, c-1, s) l ) 

+ ... 
(2! )3 

where M = (n-s+l)c is the total possible number of ordered partitions. The 

terms indicated by braces in (3.1) terminate as soon as the total number of 

zeros J is such that (c-1-J)s < n-s or J > C 
n - ;, i.e., we sum on J up 

[c 
n the of n Let j = (j 1, j2, jr) denote to - ;L integer part C - - ... , r s N 

subsets of zeros, the ith one containing j. contiguous zeros and let 
l. 

r 
J = 2; j .. 

i=l l. 

The problem of finding ordered partitions A.(t,p,m) with J zeros 
~ 
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is equivalent to finding partitions of t into p-J parts, with each part 

at most m and no zeros, except for the positions of the sets of zeros. 

Hence we obtain for p ~ J 

(3.2) A.{t,p,m) = {p-J+l)// r )i\A (t,p-J,m) 
,l r \\Q' 1 ,Q' 2 ' · · · ,Q' a ~ 0 

where Q'l is the frequency of the number 1 in the vector ,.i,· .. ,Q'a is the 

frequency of the number a, in ,L, so that Q'1-fa
2
+ ... -+aa = r, and double parentheses 

indicate the usual multinomial coefficient. Thus for J = 3 we have 

(3.3) A2 , 1{t,p,m) 

Substituting these in (3.l) gives the result 

[c-.!!] 

( 3 .4) P( cc} = 7 J~o s ~((011 ,a2'. ~~: a ,c-J-r)) 
A (n-s c-1-J s) 

0 ' ' 

r 
11' (j. + 1)! 

i:t:l l. 

where the inside sum in (3.4) is over all the unordered partitions of J into 

positive parts. In more detail this can be written as 
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(3.5) 
,;! ( ((c-1)} 

P{cc} - Mc A0 (n-s,c-1,s) + A0 (n~s,c-2,s) \ ~! 

{ 

(c-2) (c-2)} { (-3) 
+ A (n-s,c-3,s) ~' + 2 

2 + A (n-s,c-4,s) [, 
o • (2!) O • 

n 
this shows the terms for J s 4 and J continues up to [c - -]. 

s 

The quantity A (t,p,m) used throughout (3.5) is the number of ordered 
0 

partitions oft into p positive parts each at most m; it is well known 

(see for example [1], pp. 227-228) that for p ~ 1 

(3.6) 

min( [ !::.E.], p} 

( ) !I\ ( )i (p)(t-1-mi) A t ,p ,m = t.:,, -1 . l · 
0 i=O l p-

Fort~ p and m ~ 1 the formula (3.6) also gives the number of ordered partitions 

oft-pinto p nonnegative parts, each part being of size at most m-1. 

For even values of the integer s we select the spaces (associating the 

· dd 1 · h h 1 ) d · · th · f h (-s
2 

+ 1 ) 8 t m1 e space wit eac c uster an partition e n-s points rom t e 

to the (n - ~ - 1)
9t

. W · 1 2 d · · h · 
2 

e again se ect c- spaces an partition t e n-s points 

into c-1 parts, and for complete coverage each part must be at mosts. Hence, 

the derivation is exactly the same for both s odd and s even. 

To illustrate the computation, suppose we want the P(CC} for n = 11, s = 3 

and c = 5. The [c - .!!] = 1 and needs only 2 terms. 
s 

Considering the 3 partitions 

(3,3,1,1),(3,2,2,l) and (2,2,2,2) with their multiplicities {or by using (3.6)), 

we obtain A (8,4,3) = 19 and from the partition (3,3,2) with its multiplicity 
0 

we obtain A {8,3,3) = 3. Hence, for this case 
0 

( 3. 7) 3000 = o8 
59049 · 05 ... 
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3.1 Circular With Replacement 

In the case of the circular chain with replacement (with n points, c 

clusters, each of sizes), we again considers odd and later show that the same 

result holds for seven. The analysis is reduced to that of a linear chain 

with replacement by breaking the circle at the center point of the first 

cluster selected and linearizing it. We arbitrarily assign this midpoint 

to the right end of the linear chain and, since we are partitioning then 

spaces by selecting points, the partition cannot start with a zero. A set of 

Z contiguous zeros in general indicates that a particular cluster was selected 

Z+l times, but a set of Z terminal zeros indicates that the initial cluster 

was selected a total of Z+l times or Z times after the first choice. 

As before, A(n,c,s) denotes the number of ordered partitions of n into 

c nonnegative parts with each part of size at mosts. We need the number of 

ordered partitions of then spaces (there is no space after the last point) 

by c-1 points into c nonnegative parts, each part at mosts, and with no 

zero at the outset. This is given by 

(3.8) B(n,c,s) = A(n,c,s) - A(n,c-1,s) , 

the total number of ordered partitions of n into c parts, each at mosts, and 

with the first part positive. To separate these according to the structure 

of the non-terminal zeros, we first note that the number of ordered partitions 

with no zeros in B(n,c,s) is 
[.!!.:£] 

s 
(3.9) B (n,c,s) = A (n,c,s} = 2J (-l)i(~}(n-!:~

1) 
o o i=o 

By substracting 1 from each part of any partition we note that A (n,c,s) = 
0 

A(n-c,c,s-1). In order to include with the non-zero cases in (3.9) those cases 

- 10 -
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with only 1 terminal zero, we define 

(3.10) a* (n,c,s} = B (n,c,s) + B (n,c~l,s) = A (n,c,s) + A (n,c-1,s). 
0 0 0 0 0 

* To obtain B1(n,c,s), the number of ordered partitions with exactly 1 

non-extreme zero and at most 1 terminal zero_£!: with 2 terminal zeros, we 

note that we can insert a new zero in exactly c-1 places in the partitions 

associated with the two B functions in (3.10). This is because each extreme 
0 

is either ruled out·or lea4s to no new partition. Hence, the number of unordered 

partitions corresponding to B~(n,c,s) is (c-l)!B;(n,c,s)/2!. Similarly, 

* let B
2
(n,c,s) denote the number of partitions either with two zeros which 

are contiguous and both non-extreme .2!: with 3 terminal zeros. This is 

multiplied by (c-l)!/3! to get the unordered partitions. Hence, the 

probability P(CC} of a complete coverage is given by 

(3.11) P(cc} 
* * (c-l)! ( * B1(n,c,s) { B2(n,c,s) 

= _1 B (n,c,s) + 2 , + 
3

, 
C O • • 

n 

* + B1 , 1 ( n , c , s ) } 

{2! )2 

* * * 

{

B3(n,c,s) B2 1(n,c,s) B1 1 1{n,c,s)} 
+------+ 2 + 22 + 

4! 3!2! (2! )3 . ·) 
* For each B (n,c,s) in (3.11) we count the number of ways we can put in the 

zeros and note that 

* c-2) *( ) Bl {n ,c, s) = ( 1 B
0 

n,c-1,s 

* c-3) *c ) B
2
(n,c,s) = ( 1 B

0 
n,c-2,s 

(3.12) * (c;3 )B:(n,c-2,s) B1 , 1(n,c,s) = 

* {ci:4 )B: (n ,c-3, s) B3'n,c ,a) = 
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* B
2

, 1 ( n, c , s ) 

* B1 , 1 ,1(n,c,s) 

= 2(c;4 )B:(n,c-3,s) 

= (c;4 )B:(n,c-3,s), etc. 

In general, we can write 

(3.13) * B.(n,c,s) 
;L 

(( 
c-J-1 a )~ *( ) = B n,c-J, s a

1 
,a

2
, ... ,ex ,c-J-1- LJ ex. o 

r i=l 1 

r 
where,J, = (j 1 ,j 2 , ... ,jr)' J =LJj. and ex. is the frequency of i 

i=l l l. 

contiguous zeros (non-extreme) or i+l terminal zeros (i = 1,2, ... ,a) as 
a 

in ( 3. 9) and LJ ex i = r. Hence. the probability of complete coverage is 
i=l 

[ c-.!!J * 
(3.14) P(ccJ = (c-1)! Lis LJl(i c-J-1 )) Bo(n,c-J,s) 

n c-1 J =o ~ ex 1 ,ex 2 , ... ,ex a , c-J -1- r r . 
1 

TT (J.+1). 
i=l ]. 

where the inside sum is over all the unordered partitions of the J zeros 

into positive parts. In more detail this can be written as 

(3.15) 

(c-1)! ( * f (ci
2
)} * 

P{CC} = nc-l B
0
(n,c,s) + { 2 ! B

0
(n,c-l,s) 

+ l + _g__ B*( 2 ) 
{ 

(-3) (c-3)} 

3
, 

2 
n,c- ,s 

. (2!) 0 

(c-4) } 
3 * 

3 
B (n,c-3,s) 

(2!) 0 
+ ... ) . 

For example, for n=lO, c=4, and s=3, we note that 
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A (10,4,3) 
0 

= fJ (-1/ (~) (9- 3i) = 84-80+6 = 
i=o i 3 

10, 

(3.16) * B ( 10 ,4, 3) = o for x < 4; 
0 

* B (10,4,3) = 10, 
0 

P{cc} = ll. (10) = .06 . 
103 

The ten partitions in this example are (3,3,3,1) with multiplicity 4 and 

L~,.~,.L~~) with multiplicity 6. 

For evens we select spaces and partition the points. Except for this, 

the duality is complete and the resulting formula is the same for all s. 

* As another example we take n=5, c=4, s=3 and obtain B (5,4,3) = 10, 
0 

* B (5,2,3) = 2 and hence 
0 

(3.17) 
6 2 110 22 

P(cc} = 53 (10 + 8 + 6) = 125 = 25 = .88. 

This can also be (and has been) checked by independent calculations. 

In addition to the formula for A (n,c,s) in (3.9) we also note that 
0 

( ) n-c 
A n,c,s is the coefficient of x 

0 
in 

C 

(3.18) n::s) = (1 s-1 )c +x+ ... +x 
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A similar formula is also obtained by David and Barton (1, p. 227, 228] 

for the probability that the maximum white ball run~ m when r 1 white 

balls and r
2 

= r - r 1 red balls are randomly aligned. They obtained 

(3.19) 

where a= min(f
2
+1, (r-r2 )/(m+l)) and hence we find that 

(3.20) 

given by (3.6). 

where A is 
0 

From the left side of (3.18) we easily obtain (3.9) and from the right side 

we note that 

(3.2r) A (n,c,s) = 
0 

for n < c and for n > cs 

for n = c and any s ~ 1 

for c < n < cs 

and by (3.9) the same result holds for B
0
(n,c,s). It follows from (3.10) 

that for s :t 1 

- 14 -



0 for n < c- 1 and for n > cs 

* ( •I •"'l•"'I) . 'I ••• B (n,c,s) = 
0 

1 for n = c- l, for n = c and for n = cs 

>1 for c < n < cs 

Hence, we have the two speciai results 

l 0 for n > cs. 
(3.23) P(cc) = 

( c-1 c-1)!/n for n = cs 

3.2. Linear Case Without Replacement 

Assuming s is odd again, in order to have complete coverage we must 

first of all select the two clusters with centers (s+l)/2 and n-(s-1)/2. 

Between these two centers there are n-s spaces which we have to partition 

(with c-2 additianal selections) into c-1 parts in such a way that each 
-1 

part is at most s. Each partition (or selection) has probability (n-s+~) 
C 

since there are n-s+l clusters in all and we are selecting c of them. 

Hence, using (3.9) 

P(cc) = A {n-s,c-1,s)/(n-s+l) 
0 C 

(3. 24) 
[n-s-c+l] 

-1 s 
= (n-s+l) 6 · (-l)\c-1) 

C i=O i 

where it is understood that (:)=o for o ~a< b. 

(n-s(i+l)-1) 
c-2 

For even s we again select spaces and partition points, and by this 

duality it is easily seen that the same result holds for odd and even 

values of s. 

In particular, we note from (3.21) and (3.24) that 

P(CC) = 
{ 

01 
for n > cs 

for c = n-s+l 
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3.3 Circular Case Without Replacement 

In this case we use the first cluster to unfold or linearlize the circle. 

Hence, (assuming s odd), we wish to partition the n spaces using the 

c-1 additional selections into c parts in such a manner that each part is 

(n-1 at most s. The total number of possible selections is c-l) and the number 

of partitions is A (n,c,s). Hence, 
0 

P( cc) 

(3 .26) 

( (n-1 = A n,c,s)/ 
1

) 
0 c-

-i 
= cn-1) 

c-1 

~] . 
6 (-l/ (c)(n-si-1) 

i c-1 i=o 

Again, the same result holds for s even. In particular, we note as above 

that 

{: 
for n > cs 

( 3 .2 7) P(cc) = 
for c ~ n-s+l 

" 
where C can only go up to n if we sample clusters without replacement. 
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