THE LIMIT OF A RANDOM WALK AND

 THE NUMBER THEORETIC DENSITYby
David C. Heath ${ }^{1}$ and William D. Sudderth ${ }^{2}$
Technical Report No. 215

University of Minnesota Minneapolis, Minnesota

August, 1973

[^0]
Abstract

It is shown that the limiting behavior of many random walks on the line is closely related to the number theoretic density.

1. Introduction.

Let X_{1}, X_{2}, \ldots be independent integer-valued random variables with the same distribution and let $S_{n}=X_{1}+\ldots+X_{n}$ for all n. Suppose that the random walk $\left\{S_{n}\right\}$ is aperiodic and let E be the collection of even integers. Then, by considering the random walk modulo 2 , one can easily see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left[S_{n} \in E\right]=d(E) \tag{*}
\end{equation*}
$$

where

$$
d(E)=\lim (2 n)^{-1}|E \cap\{-n, \ldots, n\}| .
$$

Here | . | denotes cardinality. (The set function d is essentially the "density" of number theory. For an interesting discussion about d, see [2], p.53.) The obvious question is for what other sets does (*) hold. A partial answer is given here. In particular, it follows from Corollary 2 that, if $E X_{1}=0$ and $E\left(X_{1}^{2}\right)<\infty$, then (*) holds for all sets for which either side is well-defined. Corollary l is the corresponding result for non-lattice random walks. The proofs are quite easy but use a Tauberian theorem and the local limit theorem for random walks. A related ratio limit theorem (Theorem 4) is proved without moment conditions under the assumption that X_{1} has a symmetric density which decreases on $[0,+\infty)$.

2. Results.

$$
\begin{aligned}
& \text { For } x>0 \text { and } t \text { real, let } \\
& \qquad \varphi_{x}(t)=(\sqrt{2 \pi x})^{-1} e^{-t^{2} / 2 x}
\end{aligned}
$$

Theorem l. Let f be a bounded, real-valued, Lebesgue measurable function of a real variable. If either

$$
\lim _{x \rightarrow \infty}(2 x)^{-1} \int_{-x}^{x} f(t) d t
$$

or

$$
\lim _{x \rightarrow \infty} \int_{-\infty}^{+\infty} f(t) \varphi_{x}(t) d t
$$

is well-defined, then both limits exist and are equal.

Proof: Λ ssume $f \geq 0$. (If not, just consider $f+c$ where $c \geq-\inf f$.$) Set$

$$
\begin{aligned}
& g(x)=f(x)+f(-x), \\
& V(x)=\int_{0}^{x} g(t) d t,
\end{aligned}
$$

and

$$
U(x)=\int_{0}^{x}(\sqrt{2 t})^{-1} g(\sqrt{2 t}) d t
$$

for $x \geq 0$. Notice that $V(\sqrt{2 x})=U(x)$.
Let $\lambda=x^{-1}$ and let ω be the Laplace transform of U. Then, for $x>0$,

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(t) \varphi_{x}(t) d t & =\int_{0}^{\infty} \varphi_{x}(t) V(d t) \\
& =\sqrt{\lambda 2 \pi} \int_{0}^{\infty} e^{-\lambda y} U(d y) \\
& =(\sqrt{\lambda / 2 \pi}) \omega(\lambda) .
\end{aligned}
$$

By a Tauberion theorem (Theorem 2, section XIII. 5 of [1]), for any constant c ,

$$
\omega(\lambda) \sim \sqrt{2 \pi} \lambda^{-1 / 2} c \quad \text { as } \lambda \rightarrow 0
$$

if and only if

$$
\mathrm{U}(\mathrm{x}) \sim 2 \sqrt{2 \mathrm{x}} \mathrm{c} \quad \text { as } \mathrm{x} \rightarrow \infty
$$

if and only if

$$
V(x) \sim 2 x c \quad \text { as } x \rightarrow \infty
$$

Since $V(x)=\int_{-x}^{x} f(t) d t$, the proof is complete. \square
In the sequel, X_{1}, X_{2}, \ldots is a sequence of independent, identically distributed random variables and $S_{n}=X_{1}+\ldots+X_{n}$ for all n. Also, assume $P\left[X_{1}=0\right]<1$.

Theorem 2. Suppose $E X_{1}=0, E\left(X_{1}^{2}\right)=1$, and, for some n, the characteristic function of S_{n} is integrable. Let f be a bounded, real-valued, Lebesgue measurable function on the reals. Then

$$
\lim _{k \rightarrow \infty}\left|E f\left(S_{k}\right)-\int_{-\infty}^{\infty} f(x) \varphi_{k}(x) d x\right|=0
$$

Proof: By the local limit theorem (Theorem 2, section XV. 5 in [1]), S_{k} has a density f_{k} for k sufficiently large and

$$
\sqrt{k}\left\|f_{k}-\varphi_{k}\right\| \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

(Here, $\|\cdot\|$ denotes the sup norm.) Hence, for k large and $a>0$,

$$
\begin{aligned}
\mid E f\left(S_{k}\right) & -\int_{-\infty}^{\infty} f(x) \varphi_{k}(x) d x \mid \\
& \leq\|f\| \int_{-\infty}^{\infty}\left|f_{k}(x)-\varphi_{k}(x)\right| d x \\
& \leq\|f\|\left\{\int_{|x|<\sqrt{k} \alpha}\left|f_{k}(x)-\varphi_{k}(x)\right| d x+\int_{|x| \geq \sqrt{k} \alpha} f_{k}(x) d x+\int_{|x| \geq \sqrt{k} \alpha .} \varphi_{k}(x) d x\right\}
\end{aligned}
$$

$$
\leq\|f\|\left\{\alpha \sqrt{k}\left\|f_{k}-\varphi_{k}\right\|+2 \alpha^{-1}\right\}
$$

Since α is arbitrary, the result follows. \square

It is easy to check that the second limit in Theorem 1 could as well have been taken over the positive integers. Thus the following corollary is immediate from Theorems 1 and 2.

Corollary 1: Under the hypotheses of Theorem 2,

$$
\lim _{x \rightarrow \infty}(2 x)^{-1} \int_{-x}^{x} f(t) d t=c
$$

if and only if

$$
\lim _{n \rightarrow \infty} E f\left(S_{n}\right)=c
$$

The next theorem corresponds to Theorem 2 in the case when X_{1} has integer values. The proof is similar except that a version of the local limit theorem (Theorem 3 , section XV. 5 of [1]) for lattice random walks must be quoted.

Theorem 3. Suppose X_{1} is integer-valued, $E X_{1}=0$, and $E\left(X_{1}^{2}\right)=1$. Assume $\left\{S_{n}\right\}$ is aperiodic and let f be a bounded, real-valued function defined on the integers. Then

$$
\lim _{n \rightarrow \infty}\left|E f\left(S_{n}\right)-\sum_{k=-\infty}^{\infty} f(k) \varphi_{n}(k)\right|=0 .
$$

If f is defined on the integers, let $g(x)=f(k)$ for $k \leq x<k+1$. Then, to get the next result, just apply Theorem 1 to g and use Theorem 3.

Corollary 2: Under the hypotheses of Theorem 3.

$$
\lim _{n \rightarrow \infty}(2 n)^{-1} \sum_{k=-n}^{n} f(k)=c
$$

if and only if

$$
\lim _{n \rightarrow \infty} \operatorname{Ef}\left(S_{n}\right)=c .
$$

Theorem 4. Let S_{n} be a symmetric random walk with densities f_{n} which are non-increasing on $[0, \infty)$. Let A and B be Borel subsets of \mathbb{R} and suppose that for each $L>0$,
(*)

$$
\lim _{n \rightarrow \infty} \frac{P\left\{\left|S_{n}\right| \leq L\right\}}{P\left\{S_{n} \in B\right\}}=0 .
$$

Then if

$$
\lim _{x \rightarrow \infty} \frac{m(A \cap[-x, x])}{m(B \cap[-x, x])}=c
$$

where m is Lebesgue measure, we have

$$
\lim _{n \rightarrow \infty} \frac{P\left\{S_{n} \in A\right\}}{P\left\{S_{n} \in B\right\}}=c
$$

Proof. Fix $\varepsilon>0$. Choose L so that $x \geq L \Rightarrow$

$$
\left|\frac{m(A \cap[-x, x])}{m(B \cap[-x, x])}-c\right| \leq \varepsilon
$$

Using $(*)$, choose M so large that $m \geq M \Rightarrow \int_{-L}^{L} f_{m}(\xi) d \xi \leq \varepsilon \int_{B} f_{m}(\xi) d \xi$.
Set $E=\mathbb{R} \backslash[-L, L]$. Clearly

$$
\int_{E} f_{m} \cdot I_{A}(\xi) d \xi=\lim _{\delta \downarrow 0} \delta \sum_{n=1}^{\infty} m\left\{\xi: f_{m} \cdot I_{A} \cdot I_{E}(\xi) \geq n \delta\right\}
$$

and

$$
\int_{E} f_{m} \cdot I_{B}(\xi) d \xi=\lim _{\delta \downarrow 0} \delta \sum_{n=1}^{\infty} m\left\{\xi: f_{m} \cdot I_{B} \cdot I_{E}(\xi) \geq n \delta\right\}
$$

Set

$$
\begin{aligned}
& n(\delta)=\sup \left\{n: m\left\{\xi: f_{m} \cdot I_{A} \cdot I_{E}(\xi) \geq n \delta\right\}>0\right. \\
& \\
& \left.\quad \text { or } \quad m\left\{\xi: f_{m} \cdot I_{B} \cdot I_{E}(\xi) \geq n \delta\right\}>0\right\} .
\end{aligned}
$$

The upper limit in both of the previous sums can be taken as $n(\delta)$ (which may be ∞) . We can choose δ small enough that both

$$
\begin{aligned}
& \int_{A} f_{m}(\xi) d \xi-2 \varepsilon \int_{B} f_{m}(\xi) d \xi \leq \int_{E} f_{m} \cdot I_{A}(\xi) d \xi-\varepsilon \int_{B} f_{m}(\xi) d \xi \\
& \leq \delta \sum_{n=1}^{n(\delta)} m\left\{\xi: f_{m} \cdot I_{A} \cdot I_{E}(\xi) \geq n \delta\right\} \leq \delta \sum_{n=1}^{n(\delta)} m\left\{\xi: f_{m} \cdot I_{A}(\xi) \geq n \delta\right\} \\
& \leq \int_{A} f_{m}(\xi) d \xi
\end{aligned}
$$

and

$$
\begin{aligned}
& (1-2 \varepsilon) \int_{B} f_{m}(\xi) d \xi \leq \int_{E} f_{m} \cdot I_{B}(\xi) d \xi-\varepsilon \int_{B} f_{m}(\xi) d \xi \\
& \leq \delta \sum_{n=1}^{n(\delta)} m\left\{\xi: f_{m} \cdot I_{B} \cdot I_{E}(\xi) \geq n \delta\right\} \leq \delta \sum_{n=1}^{n(\delta)} m\left\{\xi: f_{m} \cdot I_{B}(\xi) \geq n \delta\right\} \\
& \leq \int_{B} f_{m}(\xi) d \xi
\end{aligned}
$$

are satisfied.

These inequalities imply

$$
(1-2 \epsilon) \frac{\delta \sum_{n=1}^{n(\delta)} m\left\{\xi: f_{m} \cdot l_{A}(\xi) \geq n \delta\right\}}{\delta \sum_{n=1}^{n(\delta)} m\left\{\xi: f_{m} \cdot I_{B}(\xi) \geq n \delta\right\}} \leq \frac{\int_{A} f_{m}(\xi) d \xi}{\int_{B} f_{m}(\xi) d \xi} \leq \frac{\delta \sum_{n=1}^{n(\delta)} m\left\{\xi: f_{m} \cdot I_{A}(\xi) \geq n \delta\right\}}{\delta \sum_{n=1}^{n(\delta)} m\left\{\xi: f_{m} \cdot I_{B}(\xi) \geq n \delta\right\}}+\frac{2 \epsilon}{1-2 \varepsilon} .
$$

Since $1 \leq n \leq n(\delta) \Rightarrow m\left\{\xi: f_{m} \cdot I_{E}(\xi) \geq n \delta\right\}>0$, it is easily checked that $\left\{\xi: f_{m}(\xi) \geq n \delta\right\}$ is a symmetric interval about the origin of length at least 2L . We therefore have $1 \leq n \leq n(\delta) \Rightarrow$

$$
\left|\frac{m\left\{\xi: f_{m} \cdot 1_{\Lambda}(\xi) \geq n \delta\right\}}{m\left\{\xi: f_{m} \cdot l_{B}(\xi) \geq n \delta\right\}}-c\right| \leq \varepsilon
$$

Multiplying through by the denominator and summing over all n with $I \leq n \leq n(\delta)$, we obtain

$$
\left|\frac{\delta \sum_{n=1}^{n(\delta)} m\left\{\xi: f_{m} \cdot I_{A}(\xi) \geq n \delta\right\}}{\delta \sum_{n=1}^{n(\delta)} m\left\{\xi: f_{m} \cdot I_{B}(\xi) \geq n \delta\right\}}-c\right| \leq \varepsilon, \text { which }
$$

completes the proof of Theorem 4. \square
The proof of this theorem also works for random walks on the integers; in this case m is counting measure, and f_{n} is the density of S_{n} with respect to m .

In many cases the condition labeled (*) is satisfied. In particular, if $B=\mathbb{R}$, one can obtain (*) by considering the random walk modulo some large constant and applying Theorem 3 of section VIII. 7 of [I]. The remarks followsing that theorem allow one to obtain (*) for random walks on the integers \mathbb{Z} with $B=\mathbb{Z}$.

Finally, in the case of the integers, (*) is implied by the usual ratio limit theorem (see p. 4, section 5 of [3]) if B is an infinite set and S_{n} is recurrent.

References

1. Feller, William (1966) A An Introduction to Probability Theory and Its Applications. v. 2 , John Wiley, New York.
2. Kac, Mark (1959) . Statistical Independence in Probability, Analysis and Number Theory. John Wiley, New York.
3. Spitzer, Frank (1964). Principles of Random Walk. Van Nostrand, Princeton, New Jersey.

[^0]: $1_{\text {Research }}$ supported by the National Science Foundation under NSF Grant GP-28683.
 ${ }^{2}$ Research supported by the National Science Foundation under NSF Grant GP-39316.

