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Abstract 

It is shown that the limiting behavior of many random walks on 

the line is closely related to the number theoretic.density. 
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1. Introduction • 

Let Xi,X2, ••• be independent integer-valued random variables with 

the same distribution and let S = x_ + •.. + X for all n • Suppose n -~.1 n 

that the random walk (Sn} is aperiodic and let E be the collection 

of even integers. Then, by considering the random walk modulo 2, one can 

easily see that 

where 

lim P[S EE]= d(E) , n n-+co . 

d(E) = lim (2n)-l IE n (-n, ••• ,n}I . 

Here l • I denotes cardinality. (The set function d is essentially the 

11density 11 of number theory. For an interesting discussion about d, see 

[2], p.53.) The obvious question is for what other sets does (*) hold. 

A partial answer is given here. In particular~ it follows from Corollary 2 

that, if 2 EX1 = 0 and E(Xi) <co, then (*) holds for all sets for 

which either side is well-defined. Corollary 1 is the corresponding 

result for non-lattice random walks. The proofs are quite easy but use 

a Tauberian theorem and the local limit theorem for random walks. A 

related ratio limit theorem (Theorem 4) is proved without moment 

conditions under the assumption that JS_ has a synunetric density which 

decreases on [ 0 ,+co) • 
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2. Results. 

For x > 0 and t real, let 

• 

Theorem 1. Let f be a bounded, real-valued, Lebesgue measurable 

function of a real variable. If either 

X 

lim (2x)-l J f(t)dt 
x ..... co -x 

or 

+co 
lim J f(t)~x(t)dt 
X-tCO -CO 

is well-defined, then both limits exist and are equal. 

Proof: Assume f ~ 0. (If not, just consider f + c where 

c ~ - inf r.) Set 

and 

g(x) = f(x) + f(-x) , 

X 

V(x) = f g(t)dt, 
0 

X -1 
U(x) = J (fft) g(../2t)dt 

0 

for x ~ 0 • Notice that v(../2x) = U(x) • 

-1 Let A= x and let w be the Laplace transform of U • The:a, 

for x > 0 , 
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00 00 

J f(t)~ (t)dt =I~ (t)V(dt) 
_00 X Q X 

00 

= ~ J e-')J U(dy) 
0 

= (.v\/2n)w(A) • 

By a Tauberiun theorem (Theorem 2, section XIII.5 of [l]) , for any 

constant c , 

w(A) l"J 
,v'2rr - 1/2 2n A c as A ... 0 

if and only if 

U(x) r,J 2Jh C as x ... oo 

if tUld only if 

V(x) 2x C as x ... 00 • 

X 

Since V(x) = J f(t)dt, the proof is complete. D 
-x 

In the sequel, x1 ,x2, .•. is a sequence of independent, identically 

distributed random variables and S = x1 + ••• + X for all n • Also, 
n n 

assume P[X1 =OJ< 1. 

Theorem 2. Suppose 2 EX1 = 0, E(X1) = 1, and, £or some n, the 

characteristic function of S is integrable. Let f be a bounded, n 

real-valued, Lebesgue measurable function on the reals. Then 

00 

lim !Ef(~) - J f(x)~k(x)dx\ = 0. 
k-t00 -00 
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Proof: ny the local limit theorem (Theorem 2, section XV.5 in [1]) , 

'\ has a density fk for k sufficiently large and 

.Jk 11 f k - cpkll - 0 as k - CD • 

(Here, II ·II denotes the sup norm.) Hence, for k large and a> 0 , 

CD 

IEf(~) - f f(x)cpk(x)dxl 
-a:> 

a> 

~ llfll f lfk(x) - cpk(x) !dx 
-co 

~ llfll ( J Jfk(x) _cpk(x) ldx+ J fk(x)dx+ J ~k(x)clx} 

lxl<Nka lxl~a lx!~o . 

~ llfll {a .vk llfk- cpkll + 2a-l} 

Since a is arbitrary, the result follows. D 

It is easy to check that the second limit in Theorem 1 could as well have 

been taken over the positive integers. Thus the following corollary 

is immediate from Theorems 1 and 2 o 

Corollary 1: Under the hypotheses of Theorem 2, 

if and only if 

X 
lim (2x)-l s f(t)dt = C 

x-CX) -x 

lim E f(S) = C • n n-CX) 
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The next theorem corresponds to Theorem 2 in the case when ~ has 

integer values. The proof is similar except that a version of the 

local limit theorem (Theorem 3, section XV.5 of [1]) for lattice random 

walks must be quoted. 

Theorem 3. Suppose x1 is integer-valued, 2 EX1 = 0, and E(Xi) = 1 • 

Assume (Sn} is aperiodic and let f be a bounded, real-valued 

function defined on the integers. Then 

co 

lim 1Ef(Sn) - ~ f(k)~n(k) I= 0. 
n-+CX> k= -co 

If f is defined on the integers, let g(x) = f(k) for 

k S x < k+l. Then, to get the next result, just apply Theorem 1 to g 

and use Theorem J. 

Corollary 2: Under the hypotheses of Theorem J. 

lim (2n)-l i f(k) = C 

n-+00 k= - n 

if and only if 

lim Ef(S) = c • 
n-+ co n 

Theorem 4. Let Sn be a symmetric random walk w.i.th densities 

f which are non-increasing on [ O,cx,) . Let A and B be Borel subsets n 

of ]R and suppose that for each L > 0 , 

(*) lim 
P( ISnl SL} 

= 0 • P{S E B} n-+oo n 
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lim m(A Q t-x,x~) _ 
X-tO:, m(B n -x,x) - C 

is Lebesgue measure, we have 

P(S lim . n E A} 
n .... o:, Pf S f B 1 = c • 

Proof. Fix e > 0. Choose L so that x ~ L => 

mf An ~-x,xB - C 
m B n -x,x ~ € 

L 
Using Pf) , choose M so large that m ~ M => f fm(g)dg ~ e I fm(g)ds • 

-L B 

Set E = JR\ [ -L,L] • Clearly 

0:, 

l fm• lA(s)dg = lim 8 ~ m{~:fm • lA • lE(g) ~ n&} 
E o~O n=l 

and 
(X) 

r f O lB(g)d~ = lim 6 ~ m{g:f • lB • lE(g) ~ n&} • 
~ m 8~0 n=l m 

Set 

n(&) = sup{n:m{~:fm • lA • lE(g) ~ n6} > 0 

or m{g:fm O lB • lE(g) ~ n&} > OJ • 

The upper limit in both of the previous sums can be taken as n( 0) 

(which may be oo) • We can choose 6 small enough that both 
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S f (!;)ds -2e J f (s)d!; $. I f • lA(i::)d!; - e I f (!;)ds 
Am Bm Em Bm 

n( 6) n( 8) 
$. 6 .I: m(t;:fm • lA • lE(!;) ~no} 5_ o ~ m(s:fm• lA(t;) ~ no} 

n=l n=l 

$. f fm(!;)d!; 
A 

(l-2e) ff (!;)di;$. ff • lB(!;)d!; - e f fm(s)ds 
B m E m B 

n(o) n(o) 
$. o .I: m(l;:fm • lB • lE(s) ~ n6} $. 6 .I: m(~:fm • lB(!;) ~ n6} 

n=l n=l 

5- f fm(!;)d!; 
B 

are satisfied. 

These inequalities imply 

(1-2e) 

n(5) n(o) 
6 L m{s:fm• lA(!;) ~no} J fm(!;)d!; o .I: m(l;:fm• lA(!;)~no} 

n=l A n=l 2e 
n(o) $.If (t;)d!; $. n(o) + l-2e • 

6 L m{~:fm• lB(!;) ~no} B m 6 L m{t;:fm• lB(s) ~no} 
n=l n=l 

Since 1 $. n $. n(o) => m{l;:fm· lE(g) ~ n6} > ~, it is easily checked 

that (1;:fm(s) ~ n6J is a symmetric interval about the origin of length 

at least 21. We therefore have 1 5_ n 5_ n(6) => 

m(s:fm Q lA(s) ~ no} 

m[s:fm • lB(s) ~ no} - C $. € • 
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Multiplying through by the denominator and sunnning over all n with 

1 ~ n ~ n(5) , we obtain 

n(o) 
6 n!l m[~:fm • lA(~) ~ n6} 

n(eJ 
6 L m{~:fm • lB(~) L n6} 

n=l 

completes the proof of Theorem 4. 0 

- C 5. s , which 

Toe proof of this theorem also works for random walks on the integers; 

in this case m is counting measure, and fn is the density of Sn with 

respect to m. 

In many cases the condition labeled(*) is satisfied. In particular, 

if B = :R , one can obtain (*) by considering the random walk modulo 

some large constant and applying Theorem 3 of section VIII.7 of [1]. The 

remarks followsing that theorem allow one to obtain(*) for random walks 

on the integers 7l with B = 7l • 

Finally, in the case of the integers, (*) is implied by the usual 

ratio limit theorem (seep. 4,section 5 of [3]) if B is an infinite 

set and S is recurrent. n 
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