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1. Introduction and Summary

In this paper, a two-sample, two-stage non-parametric estima-
tion problem will be studied. The parameter 6 = 6(F, G) under
consideration is estimable (i.c., therc exists an unbiased estima-

tor ¢ = ¢(X),...,X; Yy,...,Y ) of 8). ¢ is a function of independ-

17
ent observations from two populations with cumulative distribution
functions 1"(X) and G(Y). (Hence, it is called a two-sample prob-
lem.) “The iunctions F(X) and G(Y) will be restricted to be members
of a specified class D of pairs oi cumulative distribution func-~
tions, described in the context. The total number of observations
from the two populations X and Y will be a fixed number N. The
estimation procedure is carried out in two stages. First, take M
observations from each of the populations; then, allocate the
remaining N - 2M observations to the same populations. The method
of allocation utilizes the informetion from the first stage obser-
vations.

A two-stage estimator, represented by U', will be introduced.
It is a U-statistic with random sample sizes. (See [4] on general
U-statistics. U' is defined in Section 3.) One of the main re-
sults (presented in Section 4) is that, under certain conditions,
the variance of U' approaches asymptotically & particular variance
Vo This particular V, (defined in Section 2) is the minimized
asymptotic variance of a one-stage estimator U. In other words,
it is computed (see Section 2) when the best one-stage allocation
of N observations to the two populations is made with the help of

g partial or even complete information about the distributions

F(X) and G(Y)}. Such an information about F and G is represented



] " = -
by the "nuisance parameters‘ LIPS blo(F, G), boy = bOl(F, e),
etc., defined in Section 2. Thus, in partieular, Vo can be

computed only when b and.bo are known. Moreover, using these

10 1
parameters, it will be shown in Section 2 that V. is the smallest

0
among the variances of all one-stage estimators of 6. However, no
prior knowledge of blO and b01 is required to compute Var(U'), end
it will be proved in Section U4 that Var(U')/V0 converges to unity
as N approaches to infinity.

A brief review of some basic properties of one-stage U-
statisties as well as some conventions on notations will be also
presented in Section 2.

In Section 5, the "optimal" choice of the first stage sample
size M relative to the fixed total sample size N is discussed.
Three cases with different conditions on the unbiased estimator ¢
will be considered. In each case, it is found that the “optimal”
choice depends on the specific conditions. (For details, see
Section 5.)

Section 6 contains some examples. Here, to each 8(F, G), the
and b

corresponding estimators for b together with their be-

10 Ol
havior under different conditions on F and G, will be given. The
examples include the cases that the above described two-stage
estimation precedure can be applied as well &s cgses where it can-
not be applied.
Section T contains a proof of the asymptetic normality of ¥'.
‘In Section 8, it is indicate& that this two-stage two-sample

estimation procedure can be extended to k-sample two-staege estima-

tion with similar results for k > 2.



In the last section, Section 9, another two-stage two-sample
estimator U" will be introduced. It is based on the combined ob-
servatlions 61’ both stages of total N observations, as compared to
U', vhich is based on the second stage of N - 2M observations only.
U" is biased while U' is unbiased. Since U" is of a different na-
ture as compared to U', the corresponding proofs are much involved.
The results on U" will be sumarized, without proof, in this
section.,

The technique of two-stage estimation has been discussed in
several papers. Stein [11] has used a two-stage procedure to de-
termine confidence intervals of a pre-assigned length for the mean
of a normal population with unknown variance. Putter [7] used
such a technigue to estimate the mean of a stratified normal popu-
lation. Robbins [9] discussed a two-stage procedure from the
point of view of the design of experiments. Later, Ghurye and
Robbins {3] used a two-stage technique to estimate the difference
between the means of two normal populations (or some other speci-
fied populations). Richter [8] discussed the estimation of the
common mean of 1;1#0 normal populations. The results of the present
paper, then, are to generglize these two-stage procedures in two
ways. First, the underlying cumulative distributions F, G are
members of a larger class of distributions. Secondly, the under-
lying paremeters 6(F, G) are not restricted to population means

or functions of means.

2. Some Basic Properties of One-stage U-statistics and Notations

Before formuleting the problem, a short review of some basic

properties of U-statistics is given in this section, based on



references [4, 10]. For convenience of presentation, some
specific notations are adopted here as well as throughout this
paper:

(1) k will be used as a generic constant, which may represent
different values according to the context.

(2) €' will be used as any small positive real number, ite
value will be specified in various situations.

(3) Vectorial notations will be used such as:

>4t

r = (xl,QOO’xr), Where r = l, 29 © o9

g = Kgaps oo %)

i S(Xi, LN xi)

14 1 J

i = (x s 099y X ) [
e o lm "

Here, the subscripts of the coordinates are a permutation of some
set of integers, which will be specified in the context.

In order to give a definition of a two-sample one-stage U-
statistic, let us consider two populations X and Y with cumulative
distribution functions F and G respectively. Also, let us con-
sider a real vglued estimsble parameter 8 = 6(F, G).

By the statement that 6 is estimable; we mean that there
exists a function ¢(X ; ¥ ) such that, with the integration teken

over all values of X's and Y's,

(2.1) o(F, G) =fmf¢(ir; ,is)d‘F(xl) dF(xr)dG(Yl)...dG(Ys).

Here, ir’ ?s are r and s independent observations from population

X and Y respectively. Moreover, all F's and G's are restricted to



be members of a specified class D of pairs of curmulative distribu-
tion functions of the populations X and Y.

Without loss of generality, the function ¢, called the kernel,
can be assumed to be symmetric in its X arguments and its Y argu-
ments separately. (See [L4, 10].) Iurthermore, since any function
of r X's and s Y's can be writtem as a function of max(r, s) of
X's and Y's, we shall assume r = 8.

Definition ([2, 4, 10])

A U-statistic associated with the parameter O and the kernel

¢, defined as above, in a’' sample of m ouservations on population X

and n observations on population Y for my, n > r, is defined as:

(22) vy =uX;¥)=() (D = o3, ; ¥y )

where the summation is taken over all sets of integers such that

1y <. Sm; 18 << S

1

Now, in order to write the variance of Uh.n’ we define, for
i

c, d =0, l’ 2’ veey r,

(2.3) o' ;%) ¢(S<ir; 3, )-0

Ir

©
Can
>4
<
[
N
1

L Y . 9 ¥
B0l (g X o5 Voo T g)

i.e., Qéd is the conditional ‘expected volue of ¢, given ic and 5&’

lote that "’60 = 0. Also define

L et
(2.4) Log L[¢cd

- 2
(X5 ¥01°

It can be deduced [2, p. 224, p. 257] that



6
b . =covle’(X, ; ¥ ), " (X _; ¥, ))
cd 10, e T,
where (il, ""ir) and (kl, ...,kr) are any two sets of r distinct
integers from (1, 2, ..., m) and ¢ is the number of integers com-

mon to the two sets; (jl,...,jr) and (tl, ...,tr) are any two sets

of r distinct integers from (1, 2, ..., n) and d is the number of

integers common to the two sets. Then, the variance of Um n can
e

be expressed [2, p. 257) ss:

-1l _ -l r
(2:5) vex(y, )= (B (%) 5_30 OO, -

Next, according to Fraser [2), the class D of pairs of cumula-

tive distributions, F(X) and G(Y), for U omey be consisted of all
34

distributions uniform within intervals. (For definition, see [2].
Particular examples are: a) a class of pairs of absolutely con-
tinuous distribution functions or b) a class of pairs of discrete
distribution functions.) Then, an important theory regarding the
variance of Um,n is also given by Fraser [2, Theorem 7.1, p. 28

and Theorem 2.1, 2.2, p. 142},

Fraser's Theorem

If the class of pairs of distribution functions includes all
distributions uniform within intervals, mentioned above, then for
m n2>r, Um a is the unique minimum variance unbiased estimator.

d

Rosenblatt [10] has obtained the following Lemmas:

Rosenblatt's Lemma 2.4 For 1< c<g<r; 1<4d<h<r, one has

(2.6) gb, <ch hbyy Sdby, end

od —

c go ’



cd
(2.7) 0 S Ly SR Lgy o Vhere
- V(% . T Y e (%) - o (T N2
L = Yeq = Voo = Dog = ELOLa(X s Tp) - ol (X)) - o) (%,)1°.

Rosenblatt's Lemma 2.5 Va.r(Um n) has the following upper and
4

lower bounds:

2 2 o
(2.8) ver(U ) 25 P10 * T % tm I

r, r
nv +&v o by

(2.9)  Ver(u, ) <go.,+&Yy

In the above discussion, concerning Un%n only, it 1s essumed
that m and n are fixed numbers. Now, if m and n are not fixed but
the total nuwber of observations on populations X and Y are re-
stricted to be a fixed number N, i.e., m + n = N, ¥e shall denote
such a two-sample statistic by U instead of Um,n. Using the
quantities by, by, as defined in (2.4), the following statement
can be made on the lower bound of the variance of U.

Rosenblatt's Lemma 2.6 If the ratio m/n satisfies

0<a <mn<a <o, asmn—>ow

then

- 2 2,
Var(U) > (r /m)blo + (r /n)bol = V', say,

i.e., V' is the lower bound of Var(U) and V' is actually the
asymptotic variance of U.

iiow, V' as defined above can be minimized by selecting the
best values of m and n subject tom +n =N, andm, n 2r. One

finds that the best choices are



(2010) mo = N(blo)%/[(blo)% + (bO].)%] = N:Q, ‘59,}', and

no=N-m0=N(l-Q).
These values for the sample sizes, represent the best allocation
of N observations to the populations X and Y. They depend, how-
ever, on the unknowns blo and bo:l.’ vhich represent a partial in-
formetion about the distributions F(X) and G(Y) and have been
assumed to be positive qQuantities. In other words, these sample
sizes can be computed and the corresponding U statistic can be

constructed only when b.'LO and b01 are positive and known.

The minimm value of V', denoted by V, is found to be

(2.11) Vy = ¥ x(by)? + x(b 212 = V(m, ny) -

It is clear that VO is at least as small as the veriance of any
estimator of € based on U-statistics subject to the restriction
that m + n = N. Hence, Vo is the minimized asymptotic variance of
U, when the best allocation of N observations to populations X and
Y is mede. It will be used as a basis for comparison in the re-
maining sections. In particular, it will be shown that there

exist two-stage two-sample statistics, say U', such that

Var(U' )/v0 converges to unity as N approaches infinity, even though

no prior knowledge of blO end bOl is required to compute Var(U' ).

3. Formulation of the Problem: the Two-stage Procedure and the

Estimator
In this section, a two-stage statistic U' will be defined.

The major result of the investigation on U', which will be present-

ed in Section 4, is to show that with large samples and under

L



certain conditions the variance of U' approaches Vo of equation
(2.11). No prior knowledge of b, and bgy 18 required to cbtain
v,

Definition of U’

Let the total number of observations from populations X and Y
be fixed at N where N > 6r. At the first stage, M observations are
made on each of the two populations, where M > 2r and 2M < N - 2r.
From these 2M observed values, we shall estimate the parameters

b It is observed from (2.1) and (2.4) that b, and by,

10° Por
are estimsble functions [4]. There exist two associated U-
statistics, called Tlo and TOl’ vhich are unblased estimators of

bl and b., respectively. The symmetric kernels of these two

0 (01§
statistics are functions of 2r X's and 2r Y's. Thus one can ex-
press Tlo’ TOl as follows:

-1, -1 -2
G:1) 1= () () Elolo(x)1% = () BX ;Y )

-1 -1 -2
G:2) T = () () slod (¥)1% = () =zak, )

%
2

2r Jer
where the summations are taken over all sets of integers,

lsi <...<ir-<-M; lsjl<t-o<aarsMo

1 2
In analogy with (2.10), we define

(3.3) 2= (Tlo)% [(TOl)% + (Tlo)%]"l, for Tyg» Tpy Positive

2=0 otherwise.
After Tlo’ TOl and Z are computed, the second stage is con-

structed by taking m' more observations on population X and n'



10

more observations on population Y withm' + n' =N - 24 = N',

where the sample sizes m' and n' are determined as follows:

m' = [N'Z] wvhen r/N'<Z< (N - )NV
(3.4) m'=r1r wvhen Z < r/N'
m' =N -1 when Z > (N' - r)/N!

and n' =N-mnm',
where [a] is the largest integer contained in a.
With m' and n' so defined, the statistic U' will be defined
as the estimator of 6 (see equations (2.1) and (2.2)) based on m’
end n' observations on populations X and Y respectively.
G5) e ®) () % 5 %)

where the summation is taken over all sets of integers,

M+1<4, <.0<i SM+m'; M+1<3 <. <y <M+,

1
In other words, U' is explicitly a function of the second stage
observations only. However, the sample sizes m' and n‘ are in turn
explicit functions of the first stage observations. Hence, im-
plicitly, U' depends on both stages.

Finally, notice that the allocation of N' observations in
(3.4) is the same as that of (é.lo) with Z in place of Q. It will
be shown in Lemme 4.2 that if M —> o, then Z —> Q in probsbility.
Consequently, the probability of the first case of (3.4) occurring
approaches unity and the contribution of the other two cases to
the variance of U' will be negligible, as N' —> co. Thus one may

dispose of the other two cases and replace (3.4) by m' = N'Z and

'

[

X!

)

C
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n' =N'(1 - 2). (Note that the brackets of (3.4) for m' and n'
will be left out hereafter, since its contribution to the variance
of U' is also negligible, as N' —> .)

REMARK: In the two-stage procedure, equal number of observations
on populations X and Y are used at the first stage. Intui-
tively, when r = s occurs in the kernel ¢ in g natural way
(L.e., no argument of ¢ is identically zero), and there is no
information about the relgtive sizes of blo and b01, equal
gize samples seem sppropriste to the symmetry of the situa-
tion. When r # &, but one writes ¢ as a function of max(r, 8),
one might doubt the appropriateness of the equal sample sizes

at the first stage.

L, Asymptotic Efficiency of the Estimator

It is mentioned in Section 3 that if N ==>» o® with M —> o0
and N' —=>» co, then the second stege sample sizes (3.l4) can be

replaced by:
(4.1) m* =n'2; n'=N(1-2)

vwhere b_ . and b.. are assumed to be positive.

10 0l
In this section, it will be shown that under certain condi-

tions, the ratio between the variance of U' (defined in Section 3)

0

smallest of the variances of any one-stage ‘Uds‘catistic estimator

and V, will asymptotically approach unity. (Recall that V. is the

of 6 subject to the restriction that m + n = N. Vo can be compﬁted
only when blO and bOl are known and the best one-stage nllocation
of N 6bservations to populations X and Y are made.) The proofs

are presented in Theorem 4.1. First, U' is shown to be unbiesed.



12

Then, in Theorem 4.1, N Var(U') is partitioned into two parts,
namely, when |% - Q| is less than M'P for any p within the range
0<p< 1]-;-; and when |2 - Q| is greater then MP. (Recall that Q
gives the best allocation of N observations and the basis for
evaluating V,, see (2.10)). By the results of Lemmas 4.1 and

4.2, it is concluded that the second part is of the order of mag-
nitude of o(M”E”*P N). The first part of N Var(U') is shown to be
of the order of megnitude of [r(blo)% + r(bo]_)’%]2 + O(MN-]‘) + o(MP).
The first term of this expression is equal to N VO. Now, under
certain assumptions (see Theorem 4.1 below) concerning the relative
order of magnitude of ¥ end N and 0 <p <§, It will be shown

~2+4p

that O(M N), O(M/N) and O(M"®) converge to zero as N epproaches

infinﬁy. Hence the retio Var(U' )/Vo converges to wnity, which is
the result of Theorem k.1.

In Section 5, it will be shown that the best choice of M
(under the assumptions of Theorem 4.1) is equal to RN6/ 7, vhere K
is & non-zero unknown constent. The resulting value of p is 1/6.
Thus the retio of Var(U') to V, is equal to 1 + o(n'l/ h.

Lemma 4,1 Let 6(F, G) = 6 be an estimable parameter with
symmetric kernel 8 = S(f{r; i’r). Let W = Wy, be the associated U-
statistic with M observations on populations X end Y with cumula-
tive distribution functions F(X) and G(Y) respectively. Assume

th

that the 21" moment of the kernel is finite. Define:

= g!

a) W =W-6, b) 8 =5-6 and ¢) Se(?‘rti-r,rt; P

Vo, )
then for any positive integer i,

rt v [

[
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W' )2 < J&;L (e(s' )21 + o(d)
i'.QiM
s o(M %)

Proof: TFor convenience, again let r = s. Also define:

w _ 1 t . T
kR E S Rt rt Yrtor,rt)
l k-l
=g L Sé , where k =M/r .,
£=0

W" 15 an average of k independent and identically distributed

random veriables with mean zero. From the work of Tchouproff [12] ’

one heas

K
W) =« L gz s

e (BN (i n 1) L (k-1 4 1)E(s} )2, .E(s} )

= i—?—i‘-ﬁ-{— [var(s*)]* + o(x"1"1)

= oMYy .
We now prove that W' can be written in terms of W' as follows:
-2 "o -
(h2) w=M)"zsWwE& ;%,),
| " Ty
vhere the summation is teken over all permutetions of (hl’ coo ,hM) )

(,jl,..., JM) of (1, 2, ..., M). Starting with the right side of
(%.2),



1

-2 k-1 - -
M)z g £ s'(X, 3 Yy
t=0 rtir,rt ritr,rt

R )

k-1 -2 - -
= (Mb) “zs'(Xy 3 Yy )
t=0 rti4r,rt rtir,rt

Wl

L kel (M)-a (s )
== X 'S HID'S
ko T xhrt-"r,rt Iptat, vt

)

where %' 1s taken over all sets of integers,

1<h

gt < cvr Sh SM; 1<

rt4l < vt < dppep S M

for all t =O, l, veoy k"l ’

Then,
k-1
(ME )“28 wu =1_l€ > w! = W! .
t=0
Next, since

(wl )21 = [(M! )"22 wlllei S (wll )21 s
one has

B(w' ¥ < m(")* = J_Li.eik.:l [var(s')* + (k™))

= o(k™) = oY) .

The lemma is proved.
Lemma 4.2 Let Z and Q be defined as in (3.3) and (2.10)
respectively. Assume for O < p < i—é—ii , i 1s an integer, 1‘2 2,

that ¢ has hith finite moments. Then

Prl|z - q > M°P] = o 1*RIP)

AU |

{
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Proof: Write

Prl|z - o > M P] =prl|z - Q] >¥F; T, T, >0]

+prl|z - Q] >MP; T, o> Toy Ot both positive]

< Pr <Q-M’1’]

z 2
[ ;Tlo) L>Q,+MPJ+Pr (T O)“g
(T )% + (1002 (T01)2 +(1y)

+ prlT,, < 0] + PrlTy, <0l .

Write,

1
PJ lr(fl.‘lo)2 > - M-p]
Lz ) + (1,0)2

= Pr[(Tlo)% > @+ M‘P)(Tlo)% +(q+ M'P)(TOI)’%J

- 2 ~-p 2

Q+M?P Q+M
Pr [T - (______.) T ] - [ - (_—_.___) b ]
{ 10 AP T 10 _q.-wP oL

Q+MP
oy - (T “’01]}

> -
-q-MP

One notices that

2
Q-I-M b

_Q+M? _Q+MP
1-Q-MP )

)T
1-Q-MP

[T)g - ( o1d = [Pyp - ( o1

is a U-statistic with mean zero and its kernel is

- 2
Q+MP Q+M?P
(m) gl - [by, - (m) boy) s

where g, h are defined in (3.1), (3.2) respectively. Since b0

and b01 are assumed positive, one has 0 < Q < 1. Also, for M

large, one cen choose M ¥ < min(Q, 1 - Q). Thus
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) (1 + 2 + oM P) )

Ql - Q Ol]

1+ 2 o(M™P)]

=-Db,.,+b e

10 10

anM"? b
- Ty o)

Hence the last quantity is positive for small M P,

Using Tchebycheff's inequality of the form,

Pri|x] > a] < a2t E(X)ai, one has

-p 2 +MP 2
prife,, - (=M yp ] (b, - (—2FM )y ]
{ 10 l-Q-M-p 0ol 10 l-Q-M"P o1

~p 2 ~-p 2
Edlr,, - (28T e 1o b, - (—2EMT 5y )
{ 10 l-Q-M—p. o1 10 l-Q-M'p 0l

IN

2i

{ o 2 21
b, - (—2XM }
!

i
-p 2
(1)t 4 -1 {Var[h } ("Q‘:‘M’“-'i) g}

i
)
51.2 lL-Q-M

. 2i
{2M’P by (1 - )7 + o(M’l)}

by Lemma 4.1, and is equal to O(M'i*eip) for M large.



Analogously, one gets,

3
Prr ;(TlO) T~ <Q - M-p}
(zy )% + (zy 2

'Jg-l-r M {[Var (—ﬂ-———-)g-h]}

12 -Q+M

[P v [Q(1 - Q)17+ P

= O(M-:HE:LP) .

Similarly, using Lemma k4.1,

Pr(T 10 S 0) = Pr(T - by < -blo) < Pr(ITlO

21
E('I‘lo - b..)
b 21

10

<

= o(M'i), and

Pr(T.,, <0) = o(M ).

01

Therefore, Pr(|z - @] > MP) = o(M 1+21P) + o(M” i)

Lemma 4.2 is proved.

bpol 2P

10)

( i+2ip)

.

Theorem 4.1 U' is an unbiased estimator of 8, i.e.,

E(U') = 6. Also, if
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(1) Limit N exists and is finite for some 8, such
N —> oo MB

that 1 <B < 2.

(11) the eighth moment of ¢ is finite, and

(111) b g by are both positive,
then
4
Limit Var(U') _ Limit E [Var(Um.)] .,
N—o Vo N—> A .

REMARK: In most non-parametric problems, the kernel ¢ is bounded,
hence all moments exist. Therefore, the restriction (ii) is
not severe. Var(UI'n.) denotes the conditional variance of U'
given m' and n', and Var(U') denotes the expected value of
Ver(UI;. ), where the expectation is over m' and n', or Var(U')
is the unconditional variance of U'.
Proof: Notice that m',n' are defined to be greater than r,

and that they are functions of xl, ceny XM; Yl’ coey YM only. On

; ¥. ) in the definition
107 9y

Of IJt (See (3-5)) are fUnCtions Of m"‘l’ s v 0y x}d‘.m'; YM"’l, s ey

the other hand, all the arguments of ¢(X

YM 4! Thus the arguments of U' are independent of Xl, ooy xM;

Yl’ ceoey YM Therefore,

E(U') Eq E( UI;I' )

L}

mt Lt < -
Emt(r ) (I‘ ) Z m(xir; er)

~ m! -1 ! -1
"Em'(r) (r) £

= 9 L]

Hence, U' is unbiased.



19

#

Now, let C = condition that |Z - Q| <M P

C'

!

complenent of ¢,
0<p <% (see Lemma k.2 for i = 2)
ty o )
N Var(U') = R E ((Var(u':)]
=N Pr(|z - @f <®P) B Var(Uly)

+ 1 Pr(|z - Q] >HuP) B ot Var(Use) -

Using the fact that B . v Ver(Uls) < Var(Ul.) =b_. = Var(e),

which is bounded, by assumption (ii), and

pr(|z - g >MP) = o ™), o<y <%;
by Lemma 4.2, one obtains
X 1Y 4 o 2D
N Var(U') <N E .y Var(U y) + H-0( ) .

It is easy to show that there exists a number A which is independ-

ent of m', n', such that
Ver(U () < (rablo)/m' + (rabm)/n' + Afmin(n'®,nt?),

The procedure is to expand the terms of Var(Ulzlg) and its combing-
torials and then to substitute a fraction by unity. Consequently,
one finds that the first two terms are less than or equal to

(r2b

10)/m' and (rabOl)/n' respectively. JYFor the rest of the rxr

terms, we substitute again a certain fractiom By unity and fiod
that each term has denominator less than or equal to min(m’z,n’a).
Hence:we find that A may be taken as the sum of all the rxr values

in their numerators, viich are composed of »'s and b, d’s , cyd =

1, 2, ..., r. One has
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2
r T A
E:_ Var(U't) <E,_ [=rb,,+=rb, + ) .
€C m m 10 n 01 min(m,E, ny2)

m m e€c

Also, when |Z - Q| < M P and I —> o0, m', n' can he written as
n' >N(Q-MP), n'>N(1-Qq-MP). Thus,

y Nrab

NrabOl
N Var(u ) < :

10 . i
N(q-MP) w'(1-q-MP)

. I ey + OO 24P
{min [1'(Q - M P(1 - Q- MF)] ¥ |

= (N/N*)[r(blo)% + r(bOl)"i"]E[,l +2M P + o(7P)]
+ o(m'™2) + o(2HE*R)
= 11+ 2t + o) [x(by ) + x(by 12
c 1 +2MP 4+ o(MP)) + O(NN"a) + O(M'2+hp$)

i i
= [x(by)% + r(bOl)é]Q[l + o(w(TB)/By 4 o P/B)
after putting M = X (I‘!l/ 6) s where K is an unknown non-zero constant.

Since, by assumption (i), 1 < B <2, there exists p, so that

0<p <%; , and (-2+4p+3) < 0. Finally,

©
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?
Limit  Var(u') _ Limit  Fn' Ve (Gyr)
N —> oo \ N—~—> o0 v

0 0
H
 Limit N Eml;Va.r(Umz)
TN —> o0 N,

_ Limit [x(o0)F + x(0 517
N —> oo [r(b10)§ + r(bOl)§]2

Ry

=1.

Hence, the theorem is proved.

In addition to U', other two-stage estimators of € can be
defined, For example, if 6 is estimated separately at both stages,
then one can combine these two estimates by weights. This paper
will not include any explicit discussion of such estimators. On
the other hand, the following one-stage statistic will be dis-
cussed.

Assume that N observations are to be made, and that the bcd’s
are unknown, (except that blo’ bol are positive), then proceed as
if b10 = bOl'
with respect to m, subject tom + n = N, when

The variance of a one-stage U-statistic is minimlized

m = N/2, n=N2.

Let the statistic be denoted by U*, then its variance is given by

1

*\ - 2 -2
Var(U' ) = N~ 2r (blo+b01)+0(1\l ) .

Hence,
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(h3) Lmit  Ver(W) _Iimit N Var(v')
) N> ~ ¥ N—>o0 TV
0 0
2r2(b . + b )
_ Limit 10 * Poy -1
T N—> o0 5 52 +o(n ™)
(0 + Dy ) a1 4 o?)

U E + 0 TP (1 +0F
where
p = (b01/b10)% :

When p approaches O or oo, (4.3) approaches its meximum 2. Thus,
comparing the results of Theorem 4.1 with (4.3), an appreciable
decrease in variance can be obtained by using a two-stage proce-
dure.

REMARK: For s # r, if we write ¢ as a function of mex(r, s) X's
and Y's, the choice of m, n shall be Nr/(s + r) and Ns/(s + r)
respectively in order to minimize the variance of U* assuming
blO = bOlo A simple computation shows that the variance
ratio approaches 1 + s /r 8z p approaches zero and spproaches

1+ r/s as p approaches infinity. Thus the variance ratio may

have a maximm, for r # s, greater than 2.

5. "Optimal" Choice of the Value M Relative to N

"optimal” choice of the value M (sample size of the first
stage) relative to N (total sample size) will be studied in this

section for the following three cases:

L

L I
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a) The first eight moments of the kernel ¢ exist

For this case, we proceed as follows. From the last step of

the proof of Theorem 4.1, one has
Var(U') /vy = 1 + o PL)) + o(uP) + o(uZHE)

A heuristic method for finding the best B and p is to find the
solution of the pair of equations listed below, which are obtained
by examining the exponentials in the remainder terms of the above

equation.
(591) p-1=p
(5.2) p=2-Lbp-B
- - - (/T
and get B = 7/6, p = 1/6, thus M = K(N"/').

Actually, this pair of values is the "optimal" solution, be-
cause it is easy to see that any other choice will meke one of the
three terms have a larger order of megnitude than O(Mfl/s) (or
equivalently, O(N'l/7)). Therefore, Var(U')/Vo =1+ O(N—1/7).

b) All moments of the kernel ¢ exist

By Lemma 4.2 and Theorem 4.1, for general i, i > 2,

0<p< (i~ 1)/2i, one has
Var(U')/v, = 1 + o (P-1)y & o(u'®) + o(ui*21PBy |

Similar to the above case (for i = 2), one solves the two equa-

tions:

(5.3) p-1=p

(5.4) p=4i-2ip-B.
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It is found that B = (31 +1)/2(1 +1i) and
p=(i-1)/2(1 +1) is the set of solutions. When i approaches
infinity, B approaches 3/2 and p approaches 1/2. Therefore,
M= K(Nz(lﬂ)/(ﬁﬂ)), where 2(i + 1)/(31 + 1) has 2/3 as a lower
bound. This bound, however, is not obtained. Thus when ¢ has all

finite moments,
Var(U! )/VO =1+ O(N'l.'e(lﬁ)/(ﬁﬂ)) for any i.

¢) The kernel ¢ is bounded

First, it will be shown by the following Lemma 5.1 that
Pr(|z - @] >¢') < O(e-e‘2M), vhere e is the base of natural
logé.ritlm'and e' is some small mumber. Consequently, an "op'bimalf'
choice of M can be obtained in an implicit form.

Lemma 5.1 (Hoeffding's inequality, see [5]1). Let Uy, be @
U-statistic with n observations on any two populations X and Y for
estimating some parsmeter 6. The kernel of 6 is S(ir; Ts )s

a <8 <b. Then for any positive mumber e',

iy
Pr(y - 0>e') < exp( (bm";ar’s )
i . -8

for n large, = exp (-0(e'°n))
12 :
=0(e”® B)

Now, from the proof of Lemma 4.2, gnd neglecting the smaller

order term
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Pr(|Z2-Q| >e')=Pr(2-Q>e') +Pr(2-Qq<e’)

= Pr {[Tlo - (2o 9 ; f'e ) To,) - (.._&*_e_,.) D, ]
> -[b), - (I?—;%") b01]}
+ Pr {[(——-Q—...—gr) T, [(—m) by - blO]

2
> [(__g_m) o1 - blO]} .

Applying Lemma 5.1 and assuming that r = s and

Q + ¢!

2
K1<h-(-l—————-r)s<1(2 K3<(——§'T?) g-h<K ,

2

Q+e! M
(b ¥
Pr({z - Q| >e')5exp . (KE 1&)2 .
2y
. ‘2[<‘f—¢:—ef) o - P10l ¥
exp
(1% - Kll-)
- o(e®" W)

Hence, one has

Var(u*

Y

=1+ o(MN'l) + 0(e') + o(e'e'QM) .

Using a similar approach as before, i.e., requiring the three terms
to have the same order of magnitude, one hss,

(5.5) mvl=e

(5.6) 1log e’ = oy .
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Substitute (5.5) into (5.6),

log e' = -e'sN, hence

~log e'/(e' Y

(5.7) N

(5.8) M =-loge'/(e')? .

From (5.7), (5.8), Wy 2 = -log e = log(e')'l.

Therefore,
(5.9) M= 1\12/3 log(e')“l/3 .
Teking logarithm on (5.7),
log N = log [log(e')™1] - 1og(e'
= log [log(e’)™] + 3 Log(e')™! .
It is seen that for e' small,

(3 +A) log(e')™t > 1og N> 3 log(e')™L .

Substituting the inequalities into (5.7) and (5.9) respectively,

one has

M < ¥/ 115 108 M3 = B5L10g w311/

M> 1\12/5 [1/(3+A) log I\I]l/3 = N2/3[log 1\1:"/(3'.23)]1/3

By (5.5), m = Ne' , one has

(5.10)

1/3 1/3
N'l/jllog Nl/(}'ﬁ)] < e <N'l/3[10g Nl/5] .
Therefore, in the case with ¢ bounded,

Var(U')/V, = 1 + o(w /3 1)

1/3
where I is some value between (log Nl/ (3+ 4) ) and

(1og Nl/3 )l/3 .

{ £

£
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6. Some Examples

6.1 Consider the Wilcoxon Statistic. The class D contains all
pairs of cumulative distribution functions F, G which are con-

tinuous.
6 = Pr(X > Y) with the kernel
f(xi, YJ) =1 if x>y,

0 otherwise .

In this case, r = s = L. The nuisance parameter blo’ bOl and
bll are

2
b, = Pr(X, > Y, ¥,) - [Pr(x, >¥,)]

10

by = Pr(Xy, X > ¥)) - [Bx(x) > 1))

b,, = Pr(X; > Yl) - [Pr(x, > 1{1)]2 .
It can be shown that
b,y =2 'Pr(Xl >Y >, >x2)
by =2 Pr(¥; > X >X, > 1)
by =¥ >N > X > ) +Pr(Y > X > Y, > X))
+2Pr(xl»>Yl>Y2>X2) +2Pr(Y1>X1>x§>Y2) .

The estimators of blo’ bOl are respectively,

my "t o7t s .5
S5 121, <, <M 18y, <, su 2
-1 -1
T = () (&) = £ 2e(%, ; ¥, )
11, <i,SM 153, <jy<u 2 %

1
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where h(l-li ; TJ ) = 1/4 if the two Y's are ranked between the
2 2
two X's.

O otherwise.

g(X125 Y'ja)

1/4% if the two X's are ranked between the
two Y's .

= 0 otherwise.
Here ¢, g, h are all bounded. When 6 is neither zero nor unity,

only one of the b b., cen be zero. Moreover, it can be shown

10° 01
— - = = - 2 = =
that when blO =0 (bOl‘" 0), bOl bll =0 -0 (blo = bll
o - 62). If it is assumed that F, G are both strictly monotone,

then both blO and bOl

strictly monoctone, the two-stage procedure is applicable. Since

are positive. Therefore when F, G are both

in this case ¢ is bounded, one shall choose M between
23 10g W/ CBNL5  ona 12 B110g WH312/3,

6.2 Assume 6 = E(X) - E(Y), where independent observations on
populations X and Y are made with cumulative distribution func-
tions F and G respectively. The class D contains all cumulative
distribution functions with finite expectations. Then 0 is

estimagble. The kernel is ¢ = Xi - Yi and ageinr = s =1. In

this case, blO and b01 are the populstion variance if they exist.

2 1y Loy V2
The kernel of b,., b, are %(xi - xj) s 2(Y1 YJ) , 1<,

respectively. The corresponding U-statistic for estimating blO’

b.., are the sample variances, which can be expressed in the follow-

01
ing form:

{

‘
i

[

C

|
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-1
r.o=Ch" z ix, -x,)% =8
0= %) 22 S
1 =Mz My -y Ped
oL ‘2 1<y i 7 Y

In this case, the kernels are not bounded, unless the distri-
butions of X and Y are bounded. b, (b01) is positive if popula-
tion X (Y) is not a constent with probability one. To apply the
theorems of this paper, the distributions of X and Y must have
finite eighth moments. One msy choose, say, M = N6/ 7.

If D contains normsl distribution functions only, Ghurye and
Robbins have given exact results for small samples [3].

6.3 An example where the theorems of this paper do not apply.

Let the parameter be 6 = [E(X)]2 - [E(Y)]a, and let F, G belong to
any class D such that populations X and Y have zero mean and all
finite moments. Now the corresponding symmetric kernel for esti-

mating 6 will be @ = xix - YiY .  Then the kernels for b

J J
are of the following forms respectively:

10’ bOl

and bll

(X% = 4, Y)(X X5 - Yg¥y)

(X% - 1 %)(%5X, = YY)

(% - NY)EX - 1Y) -

Since it can be shown that each of these has zero expected
value, one cannot use any of the results of this paper. However,

the theory of U-statistic is applicable and one needs the kernels

for bao and boa, vhich are given respectively by:
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(X% - 1) (X X, - T1,)
(X% - 4Y)(%X), - TY,)

Then the expected velues of these kernels are:
B %) = [var(x)1% > 0

E(Yi Yg) = [Ve.r(tx')]2 > 0, respectively.

Special attention should also be paid to the fact that in
this case, the associated U-statistic may not be asymptotically

normelly distributed, see [10].

T. The Asymptotic Distribution of U’

In this section, it will be shown that U' is asymptotically
normally distributed. Let us consider first, two random variables

Y' and Y* defined as the following:

¥ = (U - 0)/(B, [var(u!, )])2

i
Y= Uyrq,wt (1-q)~0/1Ver(Uyrq yt (2.))1°

It has been proved by Rosenblatt [10, Theorem 2.2] that Y* 18
asymptotically normal with mean zero and variance one. In vwhat
follows, Theorem 7.l shows that Y' is asymptotically equivalent

to Y*, thus also asymptotically normally distributed with mean zero
and variance one.

Theorem 7.1 Y' and Y* ere asymptotically equivalent, i.e.,

P-lim (Y' - ¥Y¥) =0 .
N — o
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Proof: In order to show that Y' and Y* are asymptotically

equivalent, it suffices to show that
E(Y' - Y )P —>0 as N —> oo.

Now, E(Y' - ¥¥)° = B(Y')° + B(Y*)? - 2R(Y'YY) .

From Theorem 4.1, U' is an unbiased estimator of © and Y' is its
2
)

normalized form. Hence E(Y')® = 1, By assumption, E(Y*)2 = 1,

Also, by Theorem 4.1,

B Var(Uly) = (11 )lx(b )% + (5 )212 + o(w'™Y)
and |

Var(yqt (1-q)) = (Fo30)/1'0) + (o) /0 (1:0)) + o(a'™
by Rosenblatt [10, Lemma 2.6]. Therefore,

(7.1)  B(Y'Y") = BI(U' - 0)(Uyiq yr(1-q)®) -
L
A e (gNver B 1y g} 2

= W r(o, )% + x(o) PIPRL(U" - 0)(Upig i (1oq)0)]-

Now let U' be the statistic U' with the kernel d>'(}'<i ; YJ. ), and
r Yr

be the statistic U with the kernel

Uytq, Nt (1-Q) N'Q, N (1-Q)

Y. ). Also let:
Ip

o' (X, ;
ir

C

]

condition that N'(a-MT) <m' < W'(ewP), £>p> 0.

Ct

n

complement of C.,

Then, one may write



5 k-2
) = 1! 2
E(Y'Y¥) = W' [r(0,)° + r(bg; )<]

{ it ect (Ut Mg, e (14 Q))Im €C]J‘Pr(m'ec)

1 1 -2
+ N'[r(blo)2 + r(b01)2]

B {8 oo LB Mg (1)) e} Pelatect)

Now notice that E(Y'Y*) is the correlation coefficient of Y'Y* and
since both Y' and Y* are functions of random variables XM 410 0o

Xypam?5 Y12+ > Vgt » One has 12> E(Y'Y") >0, and for any m',

n' >,
' fn

B {E eC'( Uyrq, (:L-Q)lm eC’)} Pr(n"eC’) 2 0
Consequently,

E(Y'Y*) 2 £ E{ (0T 'm'eC)}

[x(b, )2 + 2(by, 217 N'Q,N'(1-Q)
+ Pr(m*eC)
Nf

) [r(blo)% + r(bOl)%] { N'(Qte),N' (1-q-3) U Q,N'(l—Q)}

+ o 2HPBy |

by Lemma 4.2, where e denotes some value in the interval
(-MF, M'P), Notice,

E{T N'(Q+e),N'(1-Q-¢) N Q,N* (1-Q)]

tea) o N (1-0-8) Nt R (1-9) L
= (V@) T (W(1-0-2)) TN Q) T (1-0)

. zleZBzhE[¢’(iir; ?Jr)¢t(ikr; ?tr)],
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where 81, I, 23, Z), are sums over all sets of integers,

M+1511<...<ir5N'(Q+E)

M+1531<...<3r_<_n’(1-q-é)
M+1<k <...<k <NQ

M+1<t <...<t, SN(1-RQ), respectively.

The expectation of ¢’(3‘(i 3 ijr)¢°(ikr; ?fr) is zero when the
sets (il,..., ir), (kl,..., kr) have no integer in common and the
sets (Jl,..., jr), (tl,..., tr) have no integer in common. On the
other hand, the expectation of it will become bcd if there are c
common integers in the former pair of sets and 4 common integers

in the latter pair of sets. Therefore, the number of sets having

(c, d) integers in common are: for all e non-negative,

NQ N(Q+e)- N'(1-Q-e),,N'(1-Q)-d
(12) () ) )GV ey (i-A0-e,
and for all e non-positive,

(7.3) (2)(N‘(§+é))(Nl?‘;C)(d)(N (l-Q))(N (1-Q..e) d) .

Note that for e identically zero, Y' = Y*

Consider (7.2), which, for Nf large, is

(7.4) —,—--1-——-2- (W Q)N (@43)-e)™"® —E s
H(r-c)!] atl(r-a)l]

]r-d + lower order terms

[W*(1-q-2))"[N'(1-Q)-d

= 1 hr-c-a r r-c ) r-d
o ) TP (n') Q (a+e) " %(1-a-2)"(1-q)

.

+ o (' )hr—c'd]
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On the other hand, the coefficient before the summetion sign is

¢ =y =1 ¢ -y =1 ¢~ =1 g -1
(1.5) (V' (@re)y "0 (1-G-e)) "(rQ) (W (1-0))

= (W) ¥ (1-0-8)"F(@#8) T(1-0) QT (2t ) + ol (W)Y
Combining (7.4), (7.5) and the asbove discussion, one has

B(0h1 (043), 17 (1-0-5) Ur'a, " (1-Q)]

- ; ; [ 1 s (x® )hr-c-er(l_Q)r-d
e=0 a=0 .cfal[(r-c)i(r-d)}]
(c,a) # (0,0)

(@+8)F%(1-q-8)F + o(n*H-cdy]

-1
C L) (1-0-3)F(@+e)F (2-Q)TQT ()7 + o(n?)H)

- : oz (b, @) (1-0) % [(r-0)1(x-2) ] T
c=0 d=0

(c,d) # (0,0)

It is seen that for smaller c + 4, the term is large, and as ¢ + 4
becomes large the term becomes small in order of magnitude. Re-
taining the largest order of magnitude terms (c, d) = (1, 0) and

(e, &) = (0, 1), one has,

E(ﬁﬁﬁ(q+é),n'(1-q-é) ﬁﬁ’Q,N'(l-Q))

1]

rzbloN“l(Q,-o-E)'l + r2bOlN'-l( 1-Q)-l

reblo(N')"lQ'lll +8/Q)7t + rab()l[N'(l-Q)]'1 +o(n'"1)

rzblo(NF )'1Q'1[l + 0(e)] + rabOl[N'(l-Q)]'l + O(N'-l)

() Mx(bgy )2 + 20,212 + 0w~ P),

i}

where & —> 0 slowest for e near M P .
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With essentially similar steps, one will find the same result

if e is non-positive. Thus

L Lo
1> (1) > £ { (rlbyo)” + oy 1

[x(b, )% + x(by) B1RC N
+ o(N"lM'P)} + o(u2tHPB)

or 1 3>E(YY*)>1+oP) + o2ty

Therefore,
Limt  BY' - Y*)? = Limit  [2 - 2 + o(v?/B)
N'—> o N'=—> 00 v

_ 2+ipip
+oN P M=o,

Theorem T.l is proved.

Corollary 7.1 Y' is also asymptoticelly normally distributed

with mean zero and variance one, or, U' is asymptotically normally
distributed.

Next, in the expression for Y' defined gbove, if one substi-
tutes the estimeted varience in terms of the values of Tlo and TOl’
in the variance of U' (in terms of the values of b, and bol),
are efficient estimators of b, ., and b

since T 0 and TO s the

L 1 10 oL
resulting standardized random variable Y; is also asymptotically
normally distributed with mesn zero and variance one.

Theorem 7.2 Y. = (U' - 9)/6\!'-%[1‘('1'10)% + I‘(TOl)—la-J} is
asymptotically equivalent to Y'.

Proof: It suffices to show that N’-% (r(Tlo)% + r(TOl)%) is
asymptotically equivalent to N"% (r(blo)% + r(boj_)’%) (see [6],

Theorem 5 and applications), i.e.,
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- L L - X
P-limit  [WF (x(T, )F + 2(T. )F) - 'F (x(b, )E +r(b. )] =0
1 10 ol 10 o1
N'—> oo
In other words, it is equivalent to show that for any e' > O,

1 1 1 1 1
3 3 z % ' ra‘}=
11\1'%21; - Pr {|r(Tlo) + r(TOl) r(blo) r(bOl) | >e'N 0.

1 1 1 1 ';}
Pr {lr(Tlo)a + r(TOl)2 - r(blo)2 - r(b01)2| > e'N'2
< Yoo P e 3 by ~}
S Py |x(T)2 - 2(0y0)3] + |(Ty; )% - r(by, )2 > e'N
(7.6) . ) .
< prl2|x(? )2 _ v(b o)?] > e'N'2]
L 1 L
+ Pr[2|r(‘l‘01)2 - r(b01)2| > e'N'2) .

Using Tchebycheff's inequality,

L 42
E {elr(Tlo) - r(blo)a]} E {2[1'(%3.)2 - (b))}
S N'e'® N'e'S

Applying the identity (see [1] p. 353),

2
d% } b% _a-b_ (a - b)
I L S LD
2(p)2  2(b)2 [a2 + b2]

one has
2
E{a[r(Tlo)% - r(blo)%]}

2
(T5-P10)(T157P10)

o LT )% + (b 0)“2"12

(T
ur{ 10 0 - 2E

(T

+ B 10 - }
I
hblol('rlo) +(b )2]

2 L
<P {E (o0l | o | gt by ] l eg 19 010 }
b

) 5
10 g 10
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By Lemma 4.2, and by the fact that it is also easy to extend it to
the case for odd moments of a U-statistic, i.e., E(U-6 )21;-1 = O(M‘k),
one has

2
(Ty5 - yp)

b0

= o(M™1)

~
{

E(

O(M-e)

Consequently,

2
E{alr(Tlo)% - r(1’10)%}

2,7t
5 = O(N'Me') —> 0
Nlel

(7.7)

with suiteble choice of e!, as N' —> .
With exactly the same kind of argument, one has
2
1 1
2 . 2
2 {ela(zy, ) - (b)) 1}

am— ' —
(7.8) N'e'2 >0 as N > 00.

Combining (7.7), (7.8) and putting them into (7.6), one has,
5 5 2 3 s otytE
ﬁ:}?;ii o Pr[lr(TlO) + r(TOl) = r(blo) - r(bOl) ' >e'N ]

< Limit  o(N'Me'?)L =0 .
N'—> oo

L 1 1
This proves the asymptotic equivalence of N! 2[r(Tlo)5 + r(ToJ_)a]
1 1 1
and I\T'E[r(blo)E + r(by, )?] and hence the asymptotic equivalence of

1 1
YstoY.
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Corollary 7.2 Y; is asymptotically normally distributed.

8. Extension of the Two-stage Technique to Functions of More Than

Two Populations

So far, the problem of two-stage estimation has been studied
with estimable functions (or parameters) of two populations.
There is apparently & possibility of extending it to functions
of more than two populations.

Let x(1),

ooy X5) be k populetions (k > 2) with cumilstive
distribution functions Fl(x) s eees Fk(x) respectively. Also let

e = e(Fl, ceey Fk) be the functional to be estimated, with symmetric
kernel ¢(5'{(l), oy i(k) ) where )'((‘j) represent vectors of dimension

(1),

r, i.e., i(J) are r independent observations on population X

The corresponding U-statistic with n 5 observations on X(J) will be

k
U . =y, =[q (ni)] Zk ¢(x(l):“':x(k)):

where z:k is the k-fold sumation over a set of integers such that

for each vector of integers, 'ji’ i=1,2, ..., k, 1 Z ‘ji <... <
1

J, <n

g Anglogously;, define
r

ISP SOPTERYe (SO P S N

¢;1’ '°°)ak (;(l);,,‘:;;(k)) = Eq,'(;(l) i‘(l);.o.;;(k) ]:-E(k)),
where X(J) represent vectors of dimension 84y By = 0, 1, «ecp T

for ell J =1, 2, ..., k; X(J) represent vectors of dimension

r-aj, (r-aJ) (a+l,'co, I‘) fOI‘ a:llJ=l’ 2, so0oyg ko
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= wfe® g(1) f(k) 2
ba,l,”.,,ak E[¢al,”.,ak(i ern )]

for vectors f(J) of dimension 9’3’ aJ =0, 1, .., * for all
J = 1., 900, k°

Then when the variance of ¢' exists, one can write

k n -1 r r -r -r

k
Now, when a fixed total sample size N is given I n:L = N, and if
n; ==> oo in such a vay that ni/n'j are bounded, iv-r{;y from zero and
one, for all i #J, 1, J =1, 2, ..., k. Then the asymptotic ex-
pression for Va,r(Uk) is

k 2
1) '
k =1 Y k

where b1) = p L. o... . with one of the subscript 1 st the
-3 u, .9 Qo v 05 5 [ I Y
ith position and zero slsewhere.
Analogous to the case of k = 2, it 1s easy to show that V' is

minimized when
n, = (b(i))’é‘/ 1; (b(i)):li
i=1

and the minimized value of V! is Voo

k 2\ 1
Vg =N = r(p{1)y352
i=1
when b1 4 =1, 2, ..., k, ave all known.
The two-stage estimating procedure will be as follows:
(a) Take M observations on each of the X(i), 1=1,2, ..o, ky

where 2rk < kM < N-rk .



(b) Estimate the k wiknowns 1), 1 =1, 2, ..., k, by, say,
A1)

(c) Take m, more observations on X(i), i=1,2, ..., k, such
that

Lk L
m, = N'(T(i))z/ z (T(i))?- vhere N' = N - kM
i=1
for estimator using only the second stege observations.

(4) Use U!

> the enalogous two-stage estimator of U, to

estimate 6.
It can be shown, using essentially the same arguments and
under the same kind of conditions as in Theorem 4.1, but replacing

the condition (iii) by (1ii'):
1) 5o 121, 2, ..., k;

that the analogous result can be obtained. Also, the asymptotic

distribution of u;‘ is agein normal.

9. Summary of Results on "
In this section, results on U" will be summarized without

proof, U" is introduced in order to utilize the date from the
first-stage samples as well as the second-staege samples. (Recall
that U' is constructed based on the second-stage samples only.)
The first stage for U" is defined exactly the same as for v’
(see Section 3). However, in the second stege, m" (not m') more
observations from population X end n" (not n') more observations
from population Y will be taken such that m" +n" = R' = N - 2M.

The sample sizes n" and n" are determined as the following:



L1

"=[Nz) - M when (M + 1)/8 < 2z < (N-M)/N
(9.1) m' =0 when Z < (M + 1)/N

" =N when 2 > (N - M)/N
and n" =N - m"

The statistic U" is defined as the estimator of 6 based on
M+ m" and M + n" observations on populstions X and Y respectively.
The definition is:

1 -1

= o(X, ; ¥, )
ir J

M) .

(9.2) U =("")

where the summation is taken over sets of all integers,

7 _ "
1S4, <. <4 SM+a"; 1<), <. o<y <M+,

1
The statistic U" is biased. However, by the help of two
Lemmas, the following theorem is proved.
Theorem 9.1 If the conditions of Theorem 4.1 are satisfied,
then E(U") =0 + o Y*2® + 13 P). and that

Lmit  E(U" - 6P/, =1 .
N> Q0

Next, it is found that there is no "optimal" choice of M
relative to N so that the ratio E( v - 9)2/V0 converges to unity
as quickly as possible. However, if is also found that in any
case, this ratio converges to unity not slower than the ratio
Va.r(U')/Vo, if the same set of values of B and p are used.

Again, although U" is biased, it can be shown that, using
similar techniques as for the case of U', U" 1is also asymptotically

normally distributed, either in terms of its variance or in terms



k2

of the estimated variance, i.e., with b, (bOl) replaced by T,

(T Finally, using analogous steps as for U' , ‘the results on

Ol) )
U" are generalized te cover the situation of sampling from several

populations.

| S
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