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1. Introduction and Summary 

In this paper, a two-sample, two-stage non-parametric estima­

tion problem will be studied. The parameter a = 0(F, G) under 

consideration is estimable ( i. c., there exists an unbiased estima­

tor$= ~(x1, ... ,x; Y1, ... ,Y) of e). $ is a function or independ-r s 

ent observations from two populations with cumulative distribution 

functiona 1'1(X) a.nd G(Y). (Hence, it is called a two-sample prob­

lem.) The functions F(X) and G( Y) will be restricted to be members 

of a specified class D of' :pairs oi' cumulative distribution func­

tions, described in the context. The total number of observations 

from the two populations X and Y will be a fixed number N. The 

estimation procedure is carried out in two stages. First, take M 

observations from each of the populations; then, allocate the 

remaining N - 2M observations to the same populations. The method 

of allocation utilizes the information from the first stage obser­

vations. 

A two-staee estimator, represented by U1
, will be introduced. 

It is a U-statistic with random sample sizes. (See [4] on general 

U-statistics. U1 is defined in Section 3,) One of the main re­

sults (:presented in Section 4) is that, under certain conditions, 

the variance of ur approaches asymptotically a particular variance 

vO• This particular vO (defined in Section 2) is the minimized 

asymptotic variance of a one-stage estimator u. In other words, 

it is compute4. (see Section 2) when the best one-stage allocation 

of N observations to the two populations is made with the help of 

~ partial or even complete information about the distributions 

F(X) and G(Y), S\lch an information about F and G is represented 



by the "nuisance parameters'' b
10 

= b
10

(F, G), b
01

:;: b
01

(F, G}, 

etc., defined in Section 2. Thus, in partieular, v0 can be 

computed only when b
10 

and b01 are known. Moreove:r, using these 

parameters, it·will be shown in Section 2 that v0 is the smallest 

among the variances of all one-stage estimators of e. However, no 

prior knowledge of b
10 

and b
01 

is required to compute Var(u' ), and 

it will be proved in Section 4 that Va.r(U1 )/v
0 

converges to unity 

as N approaches to infinity. 

A brief review of some basic properties of one-stage u­

statisties as well as some conventions on notations will be also 

presented in Section 2. 

" • " .&.t In Section 5, the optimal choice of the ~irst stage sample 

size M relative tG the fixed total sample size K is discussed. 

Three cases with different conditiens 0n the unbiased estimator$ 

will be considered. " fl In each case, it is found that the optimal 

choice depends on the specific conditions. (For details, see 

Section 5 . )' '-' 

Section 6 contains some examples. Here, to each 8(F, G), the 

corresponding estimators for b
10 

and b
01 

together with their be­

havior under different conditicms on :B' and G, will be given. The 

examples include the cases that the abeve described two-stage 

estinlation prE>eedure can be appliei as well as cases where it can­

not be applied. 

Section 7 eontains a proof of the e,sympt~tic normality of u'. 
In Section@, it is indicate4 that this two-stage two-sample 

estimation procedure can ~e extenaed t0 k-sample two-stage estima• 

tion with similar results fork> 2, 
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In the last section, Section 9, another two-stage two-sample 

estimator rt' Will be introduced. It is based on the combined ob­

servations of both stages of total N observations, as compared to 

U1
, which is based on the second stage of N - 2M observations only. 

u" is biased while U1 is unbiased. Since u" is of a different na­

ture as compared to U1 , the corresponding proofs are much involved. 

The results on rt• will be summarize~, without proof, in this 

section, 

The technique of two-stage estimation has been discussed in 

several papers • Stein (ll] has used a two-stage procedure to de­

termine confidence intervals of a pre-assigned length for the mean 

of a normal population vi th unknown variance. Putter [ 71 used 

such a technique to estimate the mean of a stratified normal popu­

lation. Robbins [9] discussed a two-stage procedure from the 

point of view of the design of experiments. Later, Ghurye and 

Bobbins [3] used a two-stage technique to estimate the difference 

between the means of two normal populations (or some other speci­

fied populations). Richter [8] discussed the estimation of the 

common mean of two normal populations • The results of the present 

paper, then, are to generalize these two-stage procedures in two 

w~s.. First, the underlying cumulative distributions F, G a-re 

members of a. larger class of distributions. Secondly, the under­

lyins parameters 0(F, G) are not restricted to population means 

or functions of meansG 

2. Some Basic Properties of One-stage U-sta.tistics and Notations 

Before formulating the problem, a. short review of some basic 

properties of u-statistics is given in this section, based on 



references [4, 10]. Fo~ convenience of presentation, some 

specific notations are ad.opted here as well as throughout this 

paper: 

4 

(1) k will be used as a generic constant, which~ represent 

different values according to the context. 

(2) e' will be used as any smali positive real number, its 

value will be specified in various situa.tionso 

(3) Vectorial notatione will be used such as: 

Xr = (X1,.,,,X+), where r = l, 2, o•o 

Xr., j = (Xj+l.:i o u o:; Xr) 

i 1 - (x1 , OOOj x1 ) 
c1 l J 

i 1 = (X1 1 poo, x1 ) 
k.,J J+l k 

Here., the subscripts of the coordinates are a permutation of some 

set of integers, which Will be specified in the contexto 

In order to give a definition of a two-sample one-stage U­

statistic., let us consider two populations X and Y with cumulative 

distribution functions F and G respectivelyo Also, let us con­

sider a real valued estimable parameter e = 0 (F., G) o 

By the statement that e is estimable., we mean that there 

exists a function t(Xr; Y
8

) such that, 'With the integration taken 

over a.ll values of X8s and Y9s, 

0(F.:, G) =J . ;) o J cS>(X ; Y )d.F(X..) •• o dF(X )dG(Y1 ) o o .dG(Y )o r .. s --.,_ r s 

Here, ~.? Y
8 

are r and s independent observations from population 

X and Y respectivelyo Moreover3 all Fas and G1s are restricted to 

w 
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be members of a specified class D of l)O.iro of' cunulati ve distribu­

tion functiono of the populations X and Y. 

Without loss of scnera.lity, the function «i>, called the kernel, 

can be as.oumed to be nyr.m1etric in its X arguments and its Y OJ.'GU­

ments separately. (See [4, 10].) Furthermore, since any function 

of r X1 s ands Y'o can be writtem as o. function of ma.x(r, s) of 

X1 s and Y1 s, we shall assume r = a. 

Definition ([2, 4, 10]) 

A U-statistic azsocia.ted with the pa: .. runetcr O nnu. the kernel 

•, defined as above, in a-' sample of m o-;_,ncrvutiono on l)Opulation X 

and n observations on population Y form, n ~ r, io defined as: 

where the summation is taken over a.11 sets of integers such that 

l <. 11 < . , . < 1 < m; 
- r-

l < Jl < .. . < j < n . - r .. 

Now, in order to write the variance of U , we define, for m,.n 

c, d = o, 1, 2, 0 •• , '1:', 

(2 ,3) 

~'d(i; Yd) C C 

i.e., 4> ~d ie the conditional ··e~:pected vo.lue of $', given i
0 

and yd. 

Note that 4>~0 • O. Also define 

(2.4) b ~: E [ <I> ' ( X • y ) ]2 
cd ctl c' d 

It can be deduced [2, p. 224, p, 257] that 
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where (11, ... ,ir) and (Iti,···,kr) are any two sets of r distinct 

integers from ( 1, 2, ... , m) and c is the number of integers com­

mon to the two sets; (j1, .•• ,jr) a.nd (t
1

, ••. ,tr) are any two sets 

of r distinct integers from (1, 2, ... , n) and dis the nmnber of 

integers common to the two sets. 

be expressed [2, p. 257] as: 

Then, the variance of u can m,n 

Next, according to Fraser [2], the class D of pairs of cumula-

tive distributions, F(X) and G(Y), for U may be consisted of all m,n 

distributions uniform within intervals. (For definition, see [2] . 

Particular examples are: a) a class of pairs of absolutely con­

tinuous distribution functions orb) a class of pairs of discrete 

distribution functions . ) Then, an important theory regarding the 

variance of U is also given by Fraser [2, Theorem 7 .1, p. 28 m,n 

and Theorem 2.1, 2.2, p. 142], 

Fraser1s Theorem 

If the class of pairs of distribution functions includes all 

distributions uniform. w1 thin intervals, mentioned above, then for 

m, n > r, U is the unique minimum variance unbiased estimator. - m.,n 
Rosenblatt (10] has obtained the following Lemmas: 

Rosenblatt I s Lemma 2 • 4 For 1 !S c < g ~ r; l S d < h ~ r, one has 

(2.6) g b < C b , h b d < d b h; and co - go o - o 

.. 
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.. 

(2.7) cd 
O<Ld<-hI.,.,., where 

- C -g g,. 

Led~ bed. bco - bod= E[t~d(xc; Yd) - t~o(Xc) - $~d{Yd)l
2

· 

Rosenblatt's Lemma 2.2 Var(U ) has the following upper and m,n 
lower bounds: 

(2,8) 

7 

In the above discussion, concerning U only, it is assumed m,n 

that m and n are fixed numbers. Now, if m and n a.re not fixed but 

the total number of observations on populations X and Y are re­

stricted to be a fixed number R, i.e., m + n = N, ve shall denote 

such a two-sample statistic by U instead of U . Using the m,n 

quantities b
10

, b01 as defined in (2.4), the following statement 

can be made on the lower bound of the variance of u. 
Rosenblatt, s Lemma. 2. 6 If the ratio m;'n satisfies 

0 < 8i ~ m/n ~ ~ < co, as m, n -> co 

then 

i.e., v• is the lower bound of Var(D) and v' io actually the 

asymptotic variance of u. 
How, V 1 a.s defined above can be minimized by selecting the 

best values of' m and n subject tom+ n = Ii, and m, n >. r. One 

finds that the best choices a.re 



½ ½ l (2.10) lllo = N(P10> /[(b10> + (bo1>a1 = NQ, se;y, and 

n0 = N - m0 = N( l - Q) • 

These values for the sample sizes, represent the best allocation 

of N observations to the populations X and Y. They depend, how­

ever, on the unknowns b10 and b01, which represent a partial in­

formation about the distributions F(X) and G(Y) and have been 

assumed to be positive quantities. In other words, these sample 

sizes can be computed and the corresponding U statistic can be 

constructed only when b10 and b01 are positive and lmown. 

The minimum value of v', den~ted by v0 is found to be 

8 

It is clear that v0 is at least as small as the variance of any 

estimator of 8 based on U-statistics subject to the restriction 

that m + n = N. Hence, v0 is the minimized asymptotic variance of 

u, when the best allocation of N observations to populations X and 

Y is made. It will be used as a basis for comparison in the re­

maining sections, In particular, it will be shown that there 

exist two-stage two-sample statistics, se;r u', such that 

Var(u')/v0 converges to unity as N approaches infinity, even though 

no prior knowledge of b10 and b01 is required to compute Var( U1 
) • 

3 . Formulation of the Problem: the Two-stage Procedure and the 

Estimator 

In this section, a two-stage statistic U1 will be defined. 

The maJor result of the investigation on u', which will be present­

ed in Section 4, is to show that with large samples and under 

\ila 

_, 

·- -
' 
~ 

I ' 

~ 



... 

-
-

-
-

certain conditions the variance of U1 approaches v0 of equation 

( 2. u). No prior knowledge of b10 and b01 is required to obtain 

u'. 

Definition of u' 

9 

Let the total number of observations from populations X and Y 

be fixed at N where N > 6r. At the first stage, M observations are 

made on each of the two populations, where M > 2r and 2M < N - 2r. 

From these 2M observed values, .we shall estimate the parameters 

b10, b01 • It is observed from (2,l) and (2.4) that b10 and b01 

are estimable functions [ 4] • There exist two associated u­

statistics, called T10 and T01, which are unbiased estimators of 

b10 and b01 respectively, The symmetric kernels of these two 

statistics are functions of 2r X1 s and 2r Y1 s • Thus one can ex­

press T10, T01 as tollows: 

(3.1) 

(3.2) 

where the summations are taken over all sets of integers, 

l < 11 < .•• < 12 < M; l < jl < ... < J
2 

< M. - r- - r-

In analogy with ( 2, 10), we define 

Z = 0 otherwiseo 

After T10, T01 and Z are computed, the second stage is con­

structed by taking m' more observations on population X and n' 



more observations on population Y with m1 + n 1 = N - 2}i1 = Nr, 

where the sample sizes m1 and n 1 are determined as follows: 

m' = [N'Z] when r/N 1 :S Z ~ (N1 r)/N 1 

(3.4) m' = r when Z < r/N' 

m• = N' - r when Z > (N' - r)/N' 

and n' = N - m1 
, 

where [a] is the largest integer contained in a. 

10 

With m' and n• so defined, the statistic u' will be defined 

as the estimator of 0 (see equations (2.1) and (2.2)) based on m1 

and n' observations on populations X and Y respectivelyo 

1 -l t -l 
(3 .5) u' = c: ) (~ ) I: t(xi ; ij ) 

r r 

where the sunnnation is taken over all sets of integers, 

M + 1 < i 1 < o •• < i < M + m1
; M + 1 < jl < ... < j < M + n 2

• - r- - r-

In other words, U1 is explicitly a f,mction of the second stage 

observations only. However, the sample sizes m1 and n' are in turn 

explicit functions of the first stage observations.. Hence., im­

plicitly, U1 depends on both stages. 

Finally, notice that the allocation of N' observations in 

(3o4) is the same as that of (2.10) with Zin place of Q. It will 

be shown in Lemma 4. 2 that if M -> co , then Z -> Q in probability. 

Consequently, the probability of the first case of (3.4) occurring 

approaches unity and the contribution of the other two cases to 

the variance of u' will be negligible, as N' -> o:> o Thus one may 

dispose of the other two cases and replace (3. 4) by m 1 = N' Z and 

-
I : 

~ 

- -
', 
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n 1 = N'(l. z). (Note that the brackets of (3.4) for m1 and n1 

will be left out hereafter, since its contribution to the variance 

of U1 is also negligible, as N1 -> oo . ) 

.R]MARK: In the two-stage procedure, equal number of observations 

on populations X and Y are used at the first stage. Intui• 

tively, when :r = s occurs in the kernel 4> in a, natural way 

(i.e., no argument of~ is identically zero), and there is no 

information about the :relative sizes of b10 and b01, equal 

size samples seem appropriate to the symmetry of the situa­

tion. When r ; s, but one writes 4> as e. function ot max{:r, s), 

one might doubt the appropriateness of the equal sam;ple sizes 

at the first stage. 

4. Asymptotic Efficienc1 of the Estimator 

It is mentioned in Section 3 that it I -> a:, With M -> oo 

and N' --> ex,, then the second stage sample sizes (3. 4) can be 

replaced by; 

( 4.1) m1 = N1Z • , n' = N1 (1 - Z) 

where b
10 

and b01 are assumed to be positive. 

In this section, it will be shown that under certain condi­

tions, the ratio between the variance of U1 (defined in Section 3) 

and vO Will asymptotically approach unity. (Recall that vO i-s- the 

smallest of the variances· of any one-·stage u-otatistic estimator 

of 0 subJect t~ the restriction that m + n· = :N. VO can be comp~ted 

only when b10 and b01 are known and the best one-stage ~llocntion 

of I{ observations to populations X aµd Y are made. ) The proofs 

are presented in rheorem 4 .1. First, U1 is shown to be unbiased, 
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Then, in Theorem 4.1, N Var(U') is partitioned into two parts, 

namely, when IZ - QI is less than M-p for any p within the range 

O < p <¾;and when 1z - QI is greater than M·P. (Recall that .Q 

gives the best allocation of N observations end the basis for 

evaluating v0, see (2.10)). By the results of Lemmas 4.1 and 

4.2, it is concluded that the second pa.rt 1$ of the order of mag­

nitude of O(M""2+4p N). The first part of N Va.r( u' ) is shmm to be 

of the orde~ of magnitude of [r(b10 )½ + r(b
01

)½}2 + O(MN-1 ) + 0(1,{P). 

The first term of this e,cpression is equal to N v0• Now, under 

certain assumpti~ns (see fheorem 4.l below) concerning the relative 

order of magnitude ot M and N and O ~ p < ¼• It Will be shown 

that O(M·2+4p N), O(M/N) and O(M-p) converge to zero as N approaches 

infinity. Hence the ra.tio Var(ur)/v0 converses to unity, which is 

the result of Theorem 4.1. 

In Section 5, it Will be shown that the best choice of M 

( under the assumptions of Theorem 4.1) is equal to u617, where K 

is a non•zero unknown constanto The resultins va.l.ue of :pis l/f>v 

Thus the ratio of Var{ U1 ) to v O 1s equal to l + o( N-i/7). 

I.,emxna 4,l t.et 8(F, G) = 0 be an estimable parameter with 

symmetric kernel S ~ S(Xr; Yr). Let W = WMM be the associated u ... 

statistic with M observations en :populations X. and Y With cumula­

tive distribution functi<:>ns F(X) ancl. G(Y) respectively. Assume 

that the 21th moment of the kernel is finite. Define: 

a) w' = W ... e, b) s' = S - 8 and -c) st(xrt+r.,rti yrt+r,rt) = si, 
then for any- positive integer 1, 

--

I / 
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E(W1)2i ::a (21)! [E(S')2]i + o(M-1) 
1!2~1 

;; O{M-i) • 

Proof: For convenience, again let r = s. Also define: 

k-l 
U l I (g - ) 

W = k J: S Art+r rtj yrt+r rt t=O , , 

l k-1 
a:s - E S1 
kt t , 

=O 
where k = M/r , 

13 

,, 
W is an average of k independent and identically distributed 

random variables with mean zero. From the work of Tchouprott (12], 

one has 
k•l 

E(W" )21 :s .J:_ I( .t 81 )21 
k2i t:aQ t 

• ~i [(~ir k(k • l) .. , (k • i + l)E(S~)2 ... E(S~)2 

k .1.2 

+ oci1·1 )l 

= (21)! [Var(s')l1 + O(k-1-1) 
1~21k1 

a O(M-1) • 

We now prove that WI can be written in terms of W11 as follows : 

(4.2) w' = (M! r2 
~ w"C\/ i,1M> , 

where the sunnnation is -to.ken over all permutations of (~, •• ·,1\-t), 
(J1, •. ,, jM) of (l, 2, •.• , M). Starting with the right side of 

(4,2), 
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k-1 -2 
= ½ E (~) E1S'(¾ ; Y ) 

t=O rt+r,rt j:rt+t,rt 

where I:1 is ta.ken over all sets of integers, 

1 S hrt+l < · · · < hrt+r S M; 1 ~ jrt+l < · · · < jrt+r ~ M ' 

Then, 

for all t = o, l, ••• , k-l , 

k-l 
(M! r21: w'' = ,! I: W 1 = W1 

k t=O 

Next, since 

one has 

( -i) ( -i) =Ok =OM • 

The lemma 1s proved. 

Lemma 4.2 Let Z and Q be defined as in (3.3) and (2.10) 

1 - l respectively. Assume for O < p < 21 , 1 is an integer, i ~ 2, 

that <I> has 41th finite moments. Then 

I , 

I I 

I , 
_, 

: I 



-

-

Proof': Write 

+ Pr[IZ - QI> M-p; T10, T01 not both positive] 

+ Pr[T10 _5 O] + Pr[T01 SO] . 

{ 

Q + M-p 2 Q + M-p 2 
= Pr [TlO - (-------) To11 - [blO - ( -p> bo11 

1 - Q - M-p 1 - Q - M 

> [b ( Q + M ) b ] • 
-p 2 } 

- 10 - l _ Q _ M-p 01 

One notices that 

-p 2 -p 2 
[ ( Q + M ) T ] [b ( Q + M ) b ] 
TlO - l _ Q _ M-p 01 - 10 - l _ Q _ M-p 01 

is a U-statistic with mean zero and its kernel is 

where g, hare defined in (3.1), (3.2) respectively. Since b10 
and b01 are assumed positive, one has O < Q < l. Also, for M 

large, one can choose M-p < min( Q, 1 - Q) . Thus 

15 
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-p 2 
[b ( Q + M ) b ] 

- 10 - l _ Q _ M-p 01 

- 2M-p -p 
- - blO + blO [l + Q{ 1 - Q) + o(M ) ] 

\ ' .... 
214•P b 

: 10 ( -p) Q(l _ QJ + o M 

Hence the last quantity is positive for small M-P. 

Using Tchebycheff I s inequality of the form, 

> -[b - ( Q + M ) b ] 
-p 2 } 

10 l _ Q _ M-p 01 

< 

by Lemma 4.1, and is equal to O(M-i-t-2ip) for M large. 



Analogously, one gets, 

< 21 
[2M-p bOl [Q(l - Q))-1 + o(M-P)] 

= O(M-1-+2ip) • 

Similarly, using Lemma. 4.1, 

< 
)21 

E(TlO - blO 

b 21 
:J-0 

Lemma 4.2 is proved. 

Theorem 4.1 U1 is an unbiased estimator of e, i.e., 

E(U') = e. Also, if 

17 
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(i) Limit N exists and is finite for some~, such 
N->007 

then 

that 1 < '3 < 2 . 

(11) the eighth moment of ¢i is finite, and 

(111) b
10

, b
01 

are both positive, 

Limit 
N-> oo 

var(u') = Limit 
V0 N -> oo 

E , [Var(ur, )] 
m m 

VO 
= l . 

REMARK: In most non-parametric problems, the kernel ¢i is bounded, 

hence all moments exist. Therefore, the restriction (ii) is 

not severe. Var(U1
,) denotes the conditional variance of U1 

m 

given m' and n1
, and Var(u') denotes the expected value of 

Var(U1 ,), where the expectation is over m1 and n1
, or Var(u') 

m 

is the unconditional variance of u'. 
Proof: Notice that m1 ,n1 are defined to be greater than r, 

and that they are functions of JS_, ••• , ~; Y1, ... , ~ only. On 

the other hand, all the arguments of cl>(ii; Yj ) in the definition 
r r 

of U1 (see (3.5)) are functions of ~+l' ••• , ~-tm,; YM+l' .•. , 

~+n 1 • Thus the arguments of u' are independent of x1, ... , ~; 

Y1, ... , ~· Therefore, 

I -1 1 •l 
= E I (m ) en ) I: Ecl>(Xi ; y. ) 

m r r r Jr 

= e • 

Hence, U1 is unbiased. 

"""' 

I I 
I 

I I 

'., I 
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- Now, let c ~ condition that jz - QI < M-p 

c' = complement of C, 

O < p <¼(see Lemma 4.2. for 1 .., g) 

tl Var(Ut) = If :Smr(V~(u;dJ 

= N Pr( IZ - QI ~ r,(P) ~? €C Vai-(U~d 

+ 1I Pr( I Z • Qj > M-p) Ent~ e:cl Vv(U~t) . 

Using the fact that J.!:m1€c1 Var(U~·f) ~ V~(u;r) = br:r = Var(<!>), 

which is bounded, by assumption (ii), and 

by Lemma 4.2, one obtaina 

N Var{U1 ) < N E ;i Var(u" t) + N·O(r.f2+4p) ~ 
- m €C m 

It is ea.sy to show that the:re exis.ts a number A which :I.a independ-. 

ent of m' , n 1 
, sucb th~t 

The :procedure is to expand the terms of Var( U~t ) and its cornbina­

torials and then to aubatitute a fraction ey unity. Consequently» 

one finds that the first two terms ~e less than or equal to 

( r2b
10

) /m I and ( r¾
01 

)/n' 1·cs1>ecti vely. For the' rest of the rxr 

terms, we substitute again a certain fractiQn ty unity ana fina 

that each · term has · denominator · less than or equal to min{ m 12, a 12 ) . 

Renee,we f'ind that A may b.~ taken as the sum of all the rxr values 

in their numerators, uhicll o.:::·c ·com.poseJ. of :i··' s an<i b I s c ·d ::.: 
ci ' ' 

l, 2, . , . , r . One has 
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r2 r2 A 
E i Var(U'1) <E, [~blO +~bOl + 2 2) • 
m ec m - m €Cm n min(m' ,n' ) 

I I -p l t .... i t Also, when Z - Q _:s M and N -> oo, m, n can Ille n.t en as 

m1 ~ N'(Q - M·P), n1 ~ N1(l - Q - M-P). '!'hue, 

2 , Nr b 
N Vo.1~( U ) ,:S ·. lO -p 

. N'(Q - M ) 

+ NA _ . + O(?-f 2+4p-+t3) 
{min (H'(.Q - 1[P)p'(l - Q.,. ~fP)J }2 . 

= (N/11' )[r(b
10

)~ + r(b01 )½J2 (:i. + 2M-P + o(M-p)) 

= (r(b10>¼ + r(bo1>½12c1 + O(N(l-~)/~) + O(N-p/~) 

+ O(N(-2+4~+t3)/~)], 

after put ti~ M = K ( l'f /~), where K is an unknown non-zero constant. 

Since, by assumption (i), l < ~ < 2, there exists p, so that 

0 < p < ¼ , and ( '!"2+4p-lf3) < Q. Finally, 

-
I 

:, ( 

-
\ 



-

-

Limit Var(u'l = Limit 
N -> oo v0 N -> oo 

Limit 
= N-> oo 

Limit = N-> oo 

= l . 

Hence, the theorem is proved. 

Em' Var(u~.) 
VO 

NE t Var(U1 r) m m 
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In addition to U1 
, other two- stage estimators of e can be 

defined. For example, if e is estimated separately at both stages, 

then one can combine these two estimates by weights . This paper 

will not include any explicit discussion of such estimators. On 

the other hand, the following one-stage statistic will be dis­

cussed. 

Assume that N observations are to be made, and that the bed's 

are unknown, (except that b10, b01 are positive), then proceed as 

if b10 = b01 . The variance of a one-stage u-statistic is minimized 

with respect tom, subject tom+ n = N, when 

m = N/2, n = N/2 • 

* Let the statistic be denoted by U , then its variance is given by 

Hence, 
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(4.3) * Limit Var(U) = Limit 
N->c:o v

0 
N-:>oo 

* N Var(U) 
NV 0 

= 

where 

When p approaches O or oo, ( 4o 3) approaches its maximum 2. Thus, 

comparing the results of Theorem 4ul with (4o3), an appreciable 

decrease in variance can be obtained by using a two-stage proce-

dure. _, 

REMARK: Fors r r, if we write~ as a function of max(r, s) Xt?s 

and Y's, the choice of m, n shall be Nr/(s + r) and Ns/(s + r) 

respectively in order to minimize the variance of u* assuming 

b10 = b 01 o A simple computation shows that the variance 

ratio approaches 1 + s/r ae p approaches zero and approaches 

1 + r/s asp approaches infinity. Thus the variance ratio may 

have a maximum, for r =, s, greater than 2. 

5. "Optimal" Choice of the Value M Relative to N 

"Optimal" choice of the value M (sample size of the first 

stage) relative to N ( total sample size) Will be studied in this 

section for the following three cases: 

-
\ 

\ I 



-
23 

a) The first eight moments of the kernel cl> exist 

For this case, we proceed as follows. From the last step of 

the proof of Theorem 4.1, one has 

A heuristic method for finding the best~ and pis to find the 

solution of the pair of equations listed below, which are obtained 

by examining the exponentials in the remainder terms of the above 

equation. 

(5,l) ~ - 1 = p 

(5.2) p = 2 - 4p - ~ 

and get~= 7/6, p = 1/6, thus M = K(N6/7). 
• ,, If 

Actually, this pair of values is the optimal solution., be-

cause it is easy to see that any other choice will make one of the 

three terms have a larger order of magnitude than O(M-l/6) (or 

equivalently, O(N-l/7)). Therefore., Var(u')/v0 = 1 + O(N-l/7). 

b) All moments of the kernel cl> exist 

By Lemma 4.2 and Theorem 4.1, for general i, i ~ 2., 

O < p < (i - 1)/21, one has 

Var(u')/vo = 1 + O(M-(~-l)) + O(M-p) + O(M-i+2ip-f13) . 

Similar to the above case (for i = 2), one solves the two equa­

tions: 

(5.3) ~ - 1 = p 

(5.4) p = i - 2ip - ~. 



It is found that f3 = (3i + 1)/2(1 + i) and 

p = (i - 1)/2(1 + i) is the set of solutions. When i approaches 

infinity, 13 approaches 3/2 and p approaches 1/2. Therefore, 
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M = K(~(l+i)/(3i+l) ), where 2(1 + 1)/(31 + 1) has 2/3 ~ a lower 

bound. This bound, however, is not obtained. Thus when t has all 

finite moments, 

Var(u')/v0 = l + O(N-l+2(l+i)/(3i+l)) for any i. 

c) The kernel 41 is bounded 

First, 1 t will be shown by the following Lemma 5 .1 that 
,2 

Pr(IZ - QI> e') ~ O{e-e M), where e is the base of natural 

logarithm and e' is some small number. Consequently, an "optimal~' 

choice of M can be obtained in an implicit form. 

Lemma 5.1 (Hoeffding's inequality, see [5] ). Let U be a n,n 

U-statistic with n observations on any two populations X and Y for 

estimating some parameter 9 o The kernel ot 8 is S(ir; Y
8

), 

a< S < b. Then for any positive number e', 

-2e'2[ n ] 
Pr(U - B > e 1 ) < exp ( ma.x(r,s) ) 

n,n - (b-a)2 

for n large, = exp (-O(e' 2n)) 

,2 
= O(e-e n) 

Now, from the proof of Lemma 4.2, ~d neglecting.the smaller 

order term 



-
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Pr(IZ - QI > e 1
) = Pr(Z - Q > e 1

) + Pr(Z - Q < e 1
) 

Applying Lemma 5.1 and assuming that r =sand 

Q + e' 2 Q - e' 2 
IS. :::: h - <1 - Q - e1 ) g :::: ~ ' I<', :::: <1 - Q + e 1 ) g - h:::: K4 ' 

+ exp 

-e'~ = 0( e ) • 

Hence, one has 

Var(u') = 1 + O(MN-1) + O(e') + O(e-e'2M) 
VO 
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Using a similar approach as before, i.e., requiring the three terms 

to have the same order of magnitude, one has, 

(5 .5) 

(5.6) 

-1 I MN = e 



Substitute (5.5) into (5.6), 

log e 1 = -e13N, hence 

(5.7) N = -log e'/(e1
)
3 

(5.8) M = -log e1 /(e1
)
2 

• 

From (5.7), (5.8), M3N-2 
= -log e1 = log(e')~1 . Therefore, 

(5 .9) M ;;; "ft'/3 log( e' f l/3 . 

Taking logarithm on (5.7), 

log N = log [log(e')-1] - log(e1 )3 

= log [log{e')-1] + 3 log(e1 )-l. 

It is seen that for e 1 small, 

(3 + 6) log(e1 )·l > log N > 3 log(e')-l 

Substituting the inequalities into (5.7) and (5.9) respectively, 

one has 

M < '11-/3 [1/3 log N]l/3 = "If/3[log r?--/311/3 

(5.10) 

By (5.5), m = Ne' , one has 

Therefore, in the case with~ bounded, 

var(u')/v
0 

= 1 + o(N-l/3 I) 

where I is some value between ( log rf /(3+ b.)) l/; 

( log 'fiJ-/3 )1/3 • 

and 
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-
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i..i 
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6. Some Examples 

6.1 Consider the Wilcoxon Statistic. The class D contains all 

pairs of cumulative distribution functions F, G which are con­

tinuous. 

e = Pr(X > Y) with the kernel 

otherwise. 
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In this case, r = s = 1. The nuisance parameter b10, b01 and 

b11 are 

2 b10 = Pr(X1 > Y1, Y2 ) - [Pr(X1 > Y1)] 

2 b01 = Pr(X1, ~ > Y1) - [Pr(X1 > Y1)] 

2 
bll = Pr(Xl > Yl) - [Pr(Xl > Yl)] I 

It can be shown that 

blO = 2 Pr(Xl > yl > y2 > ~) 

bOl = 2 Pr( yl > Xi > ~ > y2) 

bll = Pr(JS_ > yl > ¾ > Y2) + Pr(Yl > Xl > y2 > ~) 

+ 2 Pr(:Ki > Yl > Y2 > ¾) + 2 Pr(Y1 > x1 > ~ > Y2 ) • 

The estimators of b10, b01 are respectively, 

-1 -1 
rr = (M) (M) E t 2h(X ; Y ) 
10 2 2 . l ~ 11 < 12 < M l ,5 j l < j2 :5 M 12 j2 



where h(ii; Yj ) = 1/4 if the two Y's are ranked between the 
2 2 

two X's. 

= O otherwise. 

g(X
1 

; Yj ) = 1/4 if the two x' s are ranked between the 
2 2 

two Y's • 

= 0 otherwise. 
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Here cl>., g, h are all bounded. When B is neither zero nor unity, 

only one of the b
10

, b
01 

can be zero. Moreover, it can be shown 

that when b10 = o (b01 = o), b01 = b11 = e - e2 (b10 = b11 = 

B - e2 ) • If it is assumed that F, G are both strictly monotone, 

then both b10 and b01 are positive. Therefore when F, G are both 

strictly monotone, the two-stage procedure is applicable. Since 

in this case~ is bounded, one shall choose M between 

~/3[log 1r/(3+A)]l/3 and ~/3[log r/3]1/3 . 

6.2 Assume B = E(X) - E(Y), where independent observations on 

populations X and Y are made with cumulative distribution func­

tions F and G respectively. The class D contains all cumulative 

distribution functions with f'ini te expectations. Then B is 

estimable. The kernel is cl> = Xi - Yi and again r = s = 1, In 

this case, b10 and b01 are the population variance if' they exist. 

1 ( )2 1 ( )2 . The kernel of' b10, b01 are 2 Xi - Xj , 2 Yi - Yj , i < J, 

respectively. The corresponding U-statistic for estimating b10, 

b01 are the sam.ple variances, which can be expressed in the follow­

ing form: 

- -
I 

- . 
\ 
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In this case, the kernels are not bounded, unless the distri­

butions of X and Y are boundedo b10 (b01) is positive if popula­

tion X ( Y) is not a constant with probability one. To apply the 

theorems of this paper, the distributions of X and Y must have 

finite eighth moments o One~ choose, sa:y, M = .j,/7. 

If D contains normal distribution functions only, Ghurye and 

Robbins have given exact results for small samples [3]. 

6.3 An example where the theorems of this paper do not apply. 

Let the parameter bee= [E(X)]2 - [E(Y)]2, and let F, G belong to 

any class D such that populations X and Y have zero mean and all 

finite moments. Now the corresponding synnnetric kernel for esti­

mating e will bee= xixj - YiYj. Then the kernels for b10, b01 
and b11 are of the following forms respectively: 

(Xi~ - Y1Y2)(X1X, - Y3Y4) 

(Xl~ - Y1Y2)(X,X4 - Y2Y3) 

(Xi~ - yly2)(JS.X, - yl Y3) • 

Since it can be shown that each of these has zero expected 

value, one cannot use any of the results of this paper. However, 

the theory of U-statistic is applicable and one needs the kernels 

for b20 and b02, which are given respectively by: 



(Xi~ - yl y2 )(Xi~ - Y3Y4) 

(Xl~ - Y1Y2)(X,X4 - YlY2) • 

Then the expected values of these kernels are: 

E(Xi ~) = [var(x)J2 > o 

E(?i ~) = [Var{Y)] 2 > 0, respectively. 

S];,ecial attention should also be paid to the fact that in 

this case, the associated u-statistic 1'.D83" not be asymptotically 

normally distributed, see [10]. 

7. The Asymptotic Distribution of u' 
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In this section, it will be shown that u' is asymptotically 

normally distributed. Let us consider first, two random variables 

Y1 and y* defined as the following: 

1 

Y' = (u1 
- e)/(E i[Var(u',)])2 

m m 

~t has been proved by Rosenblatt [10, Theorem 2.2) that y* is 

asymptotically normal with mean zero and variance one. In what 

follows, Theorem 7.1 shows that Y1 is asymptotically equivalent 

* to Y , thus also asymptotically normally distributed with mean zero 

and variance one. 

Theorem 7.1 Y1 and y* are asymptotically equivalent, ioe., 

P-lim (yt - y*) = 0 . 
N' -> oo 



Proof: In order to show that Y1 and Y* a.re asymptotically 

equivalent, it suffices to show that 

E(Y' - y*)2 -> 0 as Nr -> oo. 

Now, E(Y1 
- y*)2 = E(Y')2 + E(I*)2 - 2E(Y1Y*) . 

From Theorem 4,1, u• is an unbiased estimator of e and Y' is its 

normalized fo:nn. Hence E(Y')2 = l, By assUJII.Ption, E(Y*)2 = l. 

Also, by Theorem 4.1, 

and 

by Rosenblatt [10, Lemma 2 .6]. Therefore, 

(7.1) E(Y'Y*) = E[(U1 
- e)(UNtQ,N'(l-Q)-e)] 0 
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Now let u' be the statistic U1 with the kernel ~'(x. ; Y. ), and 
1 r Jr 

UN'Q,N' (l-Q) be the statistic UN'Q,N' (l-Q) with the kernel 

$'(xi; yj ). Also let: 
r r 

C = condition that N'(Q-1-(P) ~ m' ~ N1 (Q+t-(P), ¾ > p > O • 

c' = complement of c. 

Then, one may write 



_./ 
,/ 
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I i 
E(Y,Y*) - N1[r(bl0)2 + r(b0l)2]-2 

• E { Em, £Cc (U~, )(~'Q,N' (l-Q)) Im' eel} Pt-(m' € C) 

1 1 -2 
+ N'[r(bl0)2 + r(b01)2] 

• E {Em, ec• [ (i:r~, )(l'rf, Q,N' ( l-Q)) Im' £C
1
]} Pr(m1 

eC
1 

) 

Now notice that E(Y1Y*) is the correlation coefficient of y'y* and 

since both Y' and y* a.re functions of random variables ~+l' ••• , 

~v1fmr; YM+l' • • ,, YM+n' , one bas 1 ~ E(Y'Y*) ~ o, and for any m1
, 

P.' > :r, -

Consequently, 

N' {-, - ~ =--------Eu, - I -U, I [r(b )2 + r(b )2]2 N (Q+e),N (1-Q-e) N Q,N (1-Q) 
· 10 01 

+ O(M-2+4p-+i3) , 

by Lemma 4. 2, where e denotes some value in the interval 

( .. :p -p) ... M , M • Notice, 

E{u;'(Q+e),N'(l-Q-e) UN1Q,N'(l-Q)1 

s ( •) -1 t ( •) -l 1 -1 1 ( ) -1 
~ (N Q+e) (N 1-Q-e) (N Q) (N 1-Q) 

r r r r 



where 1,_, ~, I._,, I:4 are sums over all sets of integers, 

M + 1 ~ 11 < . . . < ir ~ N1 
( Q + e) 

M +l<jl < ... <j <N1(l- Q- e) 
- r-

M + l < k.. < ... < k < NrQ 
... -i, r-

M + l < t
1 

< ... < t < N' (l - Q), respectively. 
- r-
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The expectation of ~'(i1 ; Yj )t'(~; Yt ) is zero when the 
r r r r 

sets (11, ... , ir), (k1, ••• , kr) have no integer in connnon and the 

sets (J1, ... , jr), (t1, ... , tr) have no integer in common. On the 

other hand, the .expectation of it will become bed if there are c 

connnon integers in the former pair of sets a.nd d common integers 

in the latter pair of sets. Therefore, the number of sets having 

(c, d) integers in connnon are: for all e non-negative, 

(7 .2) 

and for all e non-positive, 

(7 .3) (r )(Nr ( Q+e) ){N' Q-c )(r )(N1 (1-Q) )(N' (1-Q-e )-d) 
c r r-c d r r-d 

Note that fore identically zero, yr= y* 

Consider (7.2), which, for Nr large, is 

(7.4) 

= 

+ o[(N')4r-c-d] • 



On the other hand, the coefficient before the SUllDllation sign is 

(7.5) 
t ( - ) -1 I ( - ) -1 I -1 I { ) -1 (N Q+e ) (N 1-Q-e ) (N Q) (N 1-Q ) 

r r r r 

Combining (7.4), (7o5) and the above discussion, one has 

(Q+e)r-c(l-Q-e}r + o(Nv4r-c-d)] 

. [(N')4r(l-Q-e)r(Q+e)r(l-Q)rQr(r!)-4 + o(N')4r]-l 

= ~ ~ (r!)4bcd/[(N1 )c+d(Q+e)c(l-Q)dc!d![(r-c)!(r-d)U 2
}. 

c=O d=O L 
(c,d) r (o,o) 

It is seen that for smaller c + d, the term is large, and as c + d 

becomes large the term becomes small in order of magnitude. Re­

taining the largest order of magnitude terms {c, d) = (1, O) and 

(c, d) = (o, 1), one has, 

E(U~g(Q+e),N1{1-Q-e) UN'Q,N'(l-Q)) 

= r¾loN'-l(Q+e)-1 + r¾OlN'-1(1-Q)-l 

= r¾lO(Nt)-lQ-1[1 + e/Q]-1 + r¾Ol[N'(l-Q)]-1 + o{N'-1) 

= r¾10(N~)-lQ-1[1 + O(e)] + r¾01[N1(1-Q)]-l + o(N'-1) 

= (N')-1[r(bo1>½ + r(b10>½12 + O(N'-\t-P), 

where e -> 0 slowest fore near M-p. 
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With essentially similar steps, one will find the same result 

if e is n~n-posi ti ve. Thus 

* N' {(r(b1o>"t + r(bo1>.½l2 
1 2: E( yy ) 2: ½ .!. 2 . . N . 

[r(blO) + r(b0l)2] 

+ O(N•-\{-P)} + O(M-2+4p+f3) 

or 12:: E("Y'f'k) 2:: 1 + O(M-p) + O(M-2+4p~) 

Therefore, 

Limit E(Y1 - y*)2 = Limit [2 - 2 + O(N·p/~) 
N'-> oo N'-> oo 

_ 2+4F!:f3 
+ O(N f3 )] = 0. 

Theorem 7.1 is proved. 

Corollary 7.1 Y1 is also as:;mptoticaJ.ly normally distributed 

with mean zero and variance one, or, U1 is asymptotically normally 

distributed. 

Next, in the expression for Y1 defined above, if one substi­

tutes the estimated variance in terms of the values of T10 and T01, 

in the variance of u' (in terms of the values of b10 and b01 ), 

since T10 and T01 are efficient estimators of b10 and b01, the 

resulting standardized random variable Y~ is also asymptotically 

normally distributed with mean zero and variance one. 
l 1 1} 

Theorem 7 ,2 Y~ = ( U1 
- 9 V~'-2( r( T10 )2 + r( TOl )~ is 

asymptotically equivalent to Y1 • 

l l 1 
Proof: It suffices to show that N1

- 2 {r(T10)2 + r(T01 )2 ) is 

asymptotically equivalent to N1-½ (r(b10)½ + r(b01 )½) (see [6], 

Theorem 5 and applications), i.e., 



In other words, it is equival.ent to show that for a;ny e 1 > O, 

Now, 

Pr {lr(T
10

)½ + r(T01 )½ - r(b
10

)½ - r(b
01

)½1 > e 1N1½} 

!: Pr{ lr(T10)½ - r(b10)½1 + lr(T
01

yi - r(b
01

)½1 > e•N1½) 
(7.6) 

Applying the identity (see [1] po 353), 

.!. .!. a - b (a - b )2 
a2 - b 2 = I - l I 1 

2(b)2 2(b)2 [a2 + b2]2 

one has 
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By Lemma 4.2, and by the fact that it is also easy to extend it to 

( )2k-l ( -k) the case for odd moments of a U-statistic, i . e., E u-e = O M , 

one has 

Consequently, 

(7.7) 

with suitable choice of e 1 , as N' -~ oo • 

With exactly the same kind of argument, one has 

E {2[r(T0i· -r(b0i]} 
2 

N1e
12 

-> 0 as N1 -> oo • 

Combining (7.7), (7.8) and putting them into (7.6), one has, 

< Limit O(N1Me 12 )-l = 0. 
- N1-> co 

1 1 1 
This proves the asymptotic equivalence of N1- 2 [r(T

10
)2 + r(T

01
)2] 

1 l 1 
and N12[r(b10 )2 + r(b01 )2 ] and hence the asymptotic equivalence of 

Y~ to Y1
• 
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Corollary 7.2 Y~ is asymptotically normally distributed. 

8. Extension of the Two-stage Technique to Functions of More Than 

Two Populations 

So far, the problem of two-stage estimation has been studied 

with estimable functions (or parameters) of two populations. 

There is apparently a possibility of extending it to functions 

of more than two populations. 

Let X(l), eo ., X(k) be k populations (k ~ 2) with cumulative 

distribution functions F1 (X), . , ., Fk(X) respectivelyo Also let 

8 = 0(F1, ••• , Fk) be the functional to be estimated, with symmetric 

kernel $(X(l), ••• , x(k)) where x(J) represent vectors of dimension 

r, i.e., x:< j ) are r independent observations on population x< j ) • 

The corresponding U-statistic With nj observations on x<J) Will be 

k ni -1 -(1) -(k) 
Un.. n. =Uk= [ ll (r )] I'.. $(Xj ,o••,Xj ), 

J.'
000

' .lt .i=l -.lt l k 

where lie is the k-fold s~tion over a set of integers such that 

for each vector of integers, J1, i = 1, 2, ••• , k, 1 ~ ji < ... < 
l 

J1 ~ ni. Analogously, define 
r 

where x<J) represent vectors of dimension aj, aj = o, 1, ... , r 

for all j = 1, 2, ... , k; x<J) represent vectors of dimension 

r - aj, (r - aj) = (aj+l''''' r) for all j = 1, 2, .•. , ko 
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for vectors x(j) of dimension aj• aj = o, l, •••• r for all 

j = l:, QQ o, k~ 

Then when the variance of' t 8 exists, one can write 

k: n -l r r °'J.·r ~-r 
Var(Uk) = [ ll ( 1)] E ooo E (r )( )ooo(r )( )b 

i=l r 8i =O 81t=O ~ r-81 ~ r-¾ 8i o. o¾. 

k 
Now, when a fixed total sample size N is given E n1 = N, and if 

i=l 
n1 -> oo in such a. va.y that n1/nj are bounded aw,q from zero and 

one, for all i # J, 1, j = 1, 2, ooo, ko Then the asymptotic ex­

pression for Var(Uk) is 

k ~ 

Va.r(U ) < l: L, b(i) = V8 , 

k - i=l ni k 

where b{i) = b , 'With one of' the subscript 1 at the 
0 0 "j 1, 0 ;;, ", 0, 0 0 " 

1th position and zero elseWhereo 

Analogous to the case of k = 2, it is easy to show that V8 is 

minimized when 

and the minimized value of V8 is v0, 

V = N-l[ ~ r(b(i))½]2 
O i=l 

"'·7_hen b( i) Q i - l 2 k 0 "'"e all ,__._ ""· ., - :J 1 o o • J j a.i, AJ,.1.VWJ.J.o 

The two ... stage estimating procedure will be as follows: 

(a) Take M observations on each of the x(i), i = 1, 2, ooo, k, 

where 2rk ~ kM < N-rk o 
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(b) Estimate the k unknowns b(i), i = 1, 2, ... , k, by, say, 

T(i). 

(c) Take m1 more observations on x(i), 1 = 1, 2, ••. , k, such 

that 

for estimator using only the second stage observations . 

(d) Use Uk' the analogous two-stage estimator of u', to 

estimate· 0 • 

It can be shown, using essentially the same argtanents and 

under the same kind of conditions as in Theorem 4.1, but replacing 

the cond:L tion (iii) by ( iii 1 
) : 

. . 

b(i) > 0 1 - 1 2 k ,· , - , , .. . , 
that the analogous result can be obtained. Also, the asymptotic 

distribution of Uk is again normal. 

9. Summary of Results on u" 

In this section, results on rf' Will be summarized without 

proof. tf' is introduced in order to utilize the data from the 

first-stage samples as well as the second-stage samples. (Recall 

that u' is constructed based on the second-stage samples only.) 

The first stage for rf' is defined exactly the same as for u' 

( see Section 3) • However, in the second stage, m" ( not m' ) more 

observations from l)Opulation X and n" ( not n' ) more observations 

II II t from population Y will be taken such that m + n = N = N - 2M, 

" ., The sample sizes m and n are determined as the following: 

I 
I 
I 

la. 



m
11 

= [NZ] - M 

(9.1) m" = O 

m11 = N1 

and n'' = N' - m" . 

when (M + 1)/N ~ Z ~ (N-M)/N 

when Z < (M + 1)/N 

when Z > (N - M)/N 

The statistic u" is defined as the estimator of 8 based on 
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fl " M + m and M + n observations on populations X .. and Y respectively. 

The definition is: 

(9.2) 

where the smmnation is taken over sets of all integers, 

" " 1 < i 1 < . . . < i < M + m ; l < J1 < ..• · < J < M + n • 
- r- - r-

The statistic rf' is biased. However, by the help of two 

Lemmas, the following theorem is proved. 

Theorem 9.1 If the conditions of Theorem 4.l are satisfied, 

then E(rf') = 8 + O(M·l+2p + M½-f3), and that 

Limit E(u'' - e >2/v0 = 1 • 
N-> 00 

Next, it is found that there is no "optimal" choice of M 

relative to N so that the ratio E( u" - e )2 /v O converges to tmi ty 

as quickly as possible. However, it is also found that in any 

case, this ratio converges to unity not slower than the ratio 

Var(u')/v0, if the same set of values of f3 and pare used . 

.Again, although u'' is biased, it can be shown that, using 

similar teclmiques as for the case of u', u'' is also asymptotically 

normally distributed, either in terms of its variance or in terms 
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of the estimated variance, i.e., with b
10 

{~01 ) replaced by T10 

(T
01

). Finally, using analogous steps as for U1
, the results on 

u'' are generalized. to c0ver the situation 0f sampling from several 

pol)ulations . 

~ u 
u 
LJ 
l i u 

u 
LJ 

lJ 

U· 

u 
u 
u 
u 
u 
u 
u 
u 
-· u 
u 
u 
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