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1. INTRODUCTION 

Conscientious experimental planning demands that some thought be given 

to the problem of how much data to collect. For experiments in which rela­

tionships among a number of population means are of interest, and in which 

there is initially some degree of flexibility in the amount of data that can 

be collected, power analysis on the hypothesis tests can be used to choose 

an appropriate sample size. 

Because questions about how much data to collect are not easily resolved 

(computational difficulties notwithstanding), there seems to be a tendency 

to bypass such questions by designing experiments that exhaust available 

resources. For example, an experiment may be designed so that all available 

space or experimental material is utilized, or so that the entire budget allo­

cation for the study is used. There are reasons for supporting such a point 

of view. One is that experimenters by-and-large do not have a feeling for 

the connection between sample size and power; very powerful experiments cannot, 

in general, be achieved without extremely large sample sizes. Many scientists 

cannot do more than accept the relatively low (that is, relative to their 

expectations) power levels dictated by the availability of resources. If 

strictly adhered to, however, this procedure may often result in experiments 

with power levels low enough so as to render them essentially useless. It 

may also happen, although perhaps less often, that the experiment is very 

inefficient (the sample size is larger than that required). This inefficiency 

seems to be particularly prevalent in pilot studies. It therefore seems 

obvious that some consideration must be given to power even if the experiment 

is designed to utilize all available resources. 



... 

-

-

-
-

- 2 -

~nother technique often used in place of power analysis is to simply 

choose a sample size based on that used in published studies on similar 

experimental naterial. The rationale here seems obvious. The procedure is, 

of course, subject to the same pitfalls as previously mentioned. 

Most of the techniques that are used in place of power analysis for 

choosing a sample size appear to have a common failing, i.e. the sample size 

is chosen without much reference to the specific objectives of the experiment. 

These techniques are at best expedient. 

Direct calculation of sample size or power is, of course, impossible 

without the aid of a high-speed computer. Charts for power computations have 

long been available (see [7]), but iterating a required sample size from 

these charts is an arduous task. For the t-test, tables of sample size are 

available [4] and for certain special cases Cochran and Cox [2] offer sample 

size suggestions. Recently, tables of power and sample size have been con­

structed (see [3], [5], [6], and [1]), but little practical use has been 

made of these efforts. In this report we provide a reasonably complete 

set of tables for determining sample size and power for experiments in which 

relationships among I population means are of interest. The "fixed effects" 

model and usual analysis of variance F-tests are assumed. Background material 

and the method of constructing the tables are presented in the next two 

sections. The·use of the tables is illustrated with several examples in 

the last section. 
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2. ONE-WAY ANALYSIS OF VARIANCE 

Consider a situation in which it is of interest to investigate the rela-

·tionships among I treatments. ~et µ.i represent the true mean for treatment 

i (i = 1,2, ••• ,I) and let n represent the number of observations per treatment. 

Thus, there is a total of nI observations in the experiment. We restrict 

attention to the case in which all treatments have the same number of obser­

vations. Assuming the "fixed effects" one-way analysis of variance model, 

we have 

where 

and 

I 
µ. = ~ µ. ./I , 

i=l ]. 

i = 1,2, ••• ,I, j = 1,2, ••• ,n 

ai = µ.i - µ. = effect of treatment i 

2 
e •• ,..., N( 0 ,cr ) • 

1.J 

(2.1) 

In this section we shall only consider the one-way ANOVA model as defined here. 

The tables and discussion are equally applicable to more complex ANOVA models, 

and sample size specifications in more complex models are.iilustrated in the 

examples. 

The power of the F-test for this model is a monotone function of the 

non<:entrality parameter 

A = n 

n I 2 
= 2 I: (a/cr) 

i=l 

We call a.la the standardized treatment effect for treatment i. 
]. 

(2. 2) 

2 
If I: a. > 0 

]. 
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and a are known, then n (the number of observations per treatment) can be 

chosen to yield any desired probability p that the null hypothesis (H: E a. 2 = O) 
l. 

is rejected. The first requirement for determining sample size is that an 

estimate of a be available. Estimates of a can often be obtained from studies 

on similar experimental material. When an estimate of a is not available, 

the experimenter can frequently give a reasonable range for a• Then as long 

as specifications about the alternative hypothesis are stated in tenns of 

standardized treatment effects, power analysis can be carried out. Thus, 

we assl.Ulle that a is known or that alternatives are specified in terms of 

standardized treatment effects. 

The quantity E a. 2 i~ simply the suin of squared deviations of the treatment 
l. 

means from the grand meanµ, and it measures the deviation from the null 

hypothesis, H: E a. 2 = O. The second requirement for determining sample size 
]. 

is that E ai
2 

(or E [a1/a] 2) be specified by the experimenter.· By choosing 

E ai2 the experimenter is specifying the magnitude, in terms of differences 

between treatment means, of the deviation from the null hypothesis that he 

would like to detect. In general, as E a. 2 increases the sample size n required 
1 

to yield a probability p that the null hypothesis is rejected decreases. 

Of course, the e-xperimenter can never be certain that an experiment will 

detect a deviation from the null hypothesis. The last requirement for deter­

mining sample size is that the experimenter specify his desired power, i.e. 

2 
the probability p with which he would like to detect the deviation E a. > 0. 

l. 

In general, asp increases the sample size also increases. 

Suppose it is desired to detect with probability pa differenced, if it 

exists, between any two treatments. This specification is not sufficient to 

determine E ai2• There are many ways in which at least one differenced can 
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occur in an experiment and, generally, each will yield a different value of 

2 
La . . In most cases, one of the four patterns of variation in treatment 

1 

means given in Table 1 should be sufficient to determine sample size. Patterns 

A, B, and C represent three ways in which the difference between the maximum 

and minimum treatment means is d. Pattern Dis similar to pattern B except 

the difference between µ(I) and µ(l) is d(I-1). Note that pattern A is the 

2 most conservative pattern; namely, it gives the smallest value of La. 
1 

and thus requires the largest sample size. 
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Pattern 

A 

B 

C 

D 

Notes: µ, (1) 

µ,(2) 

µ,(I) 

Pattern of treatment means 

µ,(l) :- µ,(1) = d 

. = - =·µ,(l) + µ,(1) _ . 
µ, ( 1.) µ, 2 , i - 1 , 2, ••• , I -1 

d 
µ,(i+l) - µ,(i) = l-1 , i = 1,2, ••• ,I-l 

µ,(1) = µ,(2) = ••• = µ,(l-1) 

µ,(I) - µ,(1) = d 

µ,. ( i + 1) - µ, ( i) = d , i = 1 , 2 , • • . , l -1 

= smallest mean 

= second smallest mean 

= largest mean 

2 
t Q' i 

d2 
2 

d
2
I(l+l) 

12(1-1) 

Id2 
(I even) 4 

d
2

(1
2
-1) (I odd) 41 

d
2
(l+l)I(l-l) 

12 

Comparative 
Factor 

1 

l(l+l) 
6(1-1) 

/f 
Jiff I 

/{I+l)!{I-1} 

To determine necessary sample sizes for pattern A use Table 2 directly; for patterns B, C, 

or D, enter Table.2 using in place of Jdl/a the value of )di/a for pattern A multiplied by the 

comparative factor. 

J ] J I I ) J 1} ,, J J _) j J I J 
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3. TABLES AND COMPUTATIONAL PROCEDURE 

Tables 2a-2k give the sample sizes necessary for specified power in the 

one-way ANOVA with pattern A described above. The number of groups is I, d 

is the minimum difference between two groups, and a is the standard deviation 

per observation. Sample sizes greater than fifty were omitted from the tables. 

For patterns other than A, multiply !dj/cr by the comparative factor given in 

Table 1 and use this product as !dl/cr in finding the sample size from Table 2. 

Computations for the tables were carried out by using numerical quadrature 

on the Un~versity of Minnesota CDC 6400. An adaptive Simpson's rule was used 

-4 
with a tolerance for the final integral of± 10 • Terms of the non-central F 

density were computed with a tolerance of± 10-6• Agreement in cases easily 

checked between the sample sizes given here and those of other tables is 

usually either exact or within one observation. The method of construction 

used here assures that the power specification is fully met, so that where 

disagreement occurs our sample size is usually larger by one observation. 

) 
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4. EXAMPLES 

To gain an understanding of the sample size tables, three examples will 

be given to illustrate their use. 

Example 1 

Suppose an experimenter has five treatment groups in a one-way ANOVA 

situation. He is interested in detecting a minimtm1 difference of eight units 

between any two groups (this is pattern A). The standard deviation per 

observation is four units. The desired power (probability·of detection) is 

.80. How many observation should he take in each group? Looking under I= 5 

groups, \dj/cr = 2.0, we find that seven observation per group are required 

for°' = .05 and ten for°' = .01. 

If instead of pattern A the experimenter believes that the means are 

equally spaced two units apart (pattern B), we multiply \dl/cr by the com­

parative factor: 

\dl/cr (B) = \d\/cr (A) x Comparative Factor 

= 2.ox./¾ffi 
= 2.2. 

Thus, for°'= .05 and power= .80, six observations would be required, while 

for°'= .01 nine observations would meet the specifications. 

Example 2 

3 
Suppose that a 2 factorial experiment is to be carried out in a randomized 

blocks design with blocks of size 8, cr = 10. How many blocks are needed 

(a) to be 80% sure of detecting at°'= .05 an average difference of ten 

units between the main effects of one factor (having two levels)? 
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(b) to be 50% sure of discovering a difference of fifteen units between 

the means of any of the eight possible combinations of the three 

factors? 

To answer (a) we will start by answering the question ignoring the structure 

of the experiment. Assmne we have a one-way ANOVA with I= 2. Then to find 

with power= •. 80 a difference of ldl/cr = 1.0, we need 17 observations per group, 

or 34 observations in all. Since blocks are of size 8, an experiment with five 

blocks would be adequate. (It can be shown that the error degrees of freedom 

is relatively unimportant in deciding sample size. In this case, for the 

one-way ANOVA error d.f. is 32 compared to 28 for the factorial in blocks 

design.) 

Now for (b) we are interested in the possible differences between all 

cell means. There are eight such means in a 23 factorial, so we take I= 8. 

To find a difference of ldJ/cr = 1.5 with power= .50, we need nine observations 

per cell, or nine blocks in this case. Thus this specification requires a 

total of 72 experimental units. 

Example 3 

The last example will illustrate the advantage that can be gained if 

the experimenter can specify in advance one orthogonal comparison that is 

important as an alternative hypothesis. For instance, in a one.-way ANOVA 

with seven groups, the groups may involve six different levels of ·a treatment 

plus a control. 

Treatment 
Level 

I 
0 

II 
1 

III 
2 

IV 
3 

V 
4 

VI 
5 

VII 
6 

One particular comparison of interest may be the linear contrast among groups. 
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The comparison may be partitioned out of the total sum of squares for treat­

ments as a single degree of freedom. Essentially this says that the treatment 

means are of the form 

µ
1 

= M + B (Level) 

= M +. B • i . 

Now for any orthogonal contrast, L = E AiTi with E Ai= 0, the associated 

2 E ai in the noncentrality parameter ts given by 

= 
(E A iJL 1) 

2 
E Ai 

2 

For our example with a linear contrast, A•= i-3, 
]. 

6 2 
[ E (i-3)(M + B • i)] 

0 =-----------6 

2 
= 28 B • 

E (i-3)
2 

0 

(4.1) 

i = 0,1, ••• ,6, and 

Suppose that a= 5 and that we want to find a slope of 1.0 or more with pro­

bability .95. To start with, a slope of 1.0 implies d = 6.0, and for I= 7 

with pattern of variability B 

\d)/a x Comparative Factor= 1.2 x ,j 56/36 = 1.5 

and 20 observations per treatment group, or 140 total observations, are required. 

Now taking advantage of the linear contrast that is prespecified, we can deal 

with only~ degree of freedom instead of six and use the tables for I= 2. 

Also, since 

E a 1
2 = 28 B

2 

compared with 
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d
2
/2 = 18.0 

for pattern A, the comparative factor is J 28 B
2
/18. Using I= 2 with 

ldl/cr = 1.2 x ,j 28/18 = 1.5, we find that 13 observations are needed per 

group. (Note that for a linear contrast the comparative factor is always 

the same as for pattern Bin Table 1.) · This is slightly conservative since 

the error degrees of freedom will be greater than the one-way ANOVA for which 

the I= 2 table was constructed. However, for practical purposes it is not 

far from the exact figure and is relatively easy to compute • 

... 
\ 

\ 
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.. ~ Table 2a 
I = 2 

... Power 

1 di la (X .50 .60 .70 .80 .90 .95 .99 

--
4.00 .05 2 3 3 3 3 4 4 - . 01 3 3 4 4 4 5 6 

3.00 .05 3 3 3 4 4 5 6 
.01 4 4 5 5 6 6 8 

--
2.50 .05 3 3 4 4 5 6 8 

.01 4 5 5 6 7 8 10 - 2.00 .05 4 4 5 6 7 8 11 

.01 6 6 7 8 10 11 14 

~ .05 4 5 6 7 8 10 14 
1.75 .01 7 8 9 10 12 14 18 

.. .05 5 6 7 9 11 13 18 
1.50 . 01 8 9 11 13 15 18 24 

- 1.40 .05 6 7 8· 10 12 15 20 
.01 9 10 12 14 17 20 27 

1.30 .05 6 7 9 11 14 17 23 

--- .01 10 12 14 16 20 23 31 

1.20 .05 7 8 10 12 ·16 20 27 

' - .01 11 13 16 18 23 27 36 

1.10 . 05 8 10 12 15 19 23 32 - .01 13 15 18 22 27 32 42 

1.00 .05 9 11 14 17 23 27 38 
.01 15 18 21 26 32 38 50 .., 

0.90 .05 11 14 17 21 27 34 47 
.01 19 22 26 31 39 46 

_. 
0.80 .05 14 17 21 26 34 42 

.01 23 27 32 39 49 - 0.70 .05 17 21 27 34 44 

.01 29 35 41 50 .. .05 23 29 36 45 0.60 .01 39 47 

- 0.50 .05 32 41 
.01 

~ 

.. 



- · Table 2b 
I = 3 

... 
Power 

!di /a O! .50 • 60 .70 .80 . .90 .95 .99 -
4.00 .05 2 3 3 3 3 4 4 .. .01 3 3 4 4 4 5 6 

3.00 • 05 3 3 3 4 5 5 6 
.01 4 4 5 5 6 7 8 --

2.50 .05 3 4 4 5 6 7 8 
.01 5 5 6 7 8 9 11 -

2.00 . 05 4 5 5 6 8 9 12 
• 01 6 7 8 9 11 12 16 - 1.75 • 05 5 6 7 8 10 12 16 
.01 7 8 10 11 13 16 20 

- .05 6 7 8 10 13 15 21 
1.50 .01 9 11 12 14 18 20 26 

-- 1.40 .05 7 ~ 9 11 14 17 23 
.01 10 12 14· 16 20 23 30 

- 1.30 .05 7 9 11 13 17 20 27 
.01 12 14 16 19 23 27 35 

1.20 .05 8 10 12 15 19 23 31 _, .01 13 16 18 21 26 31 40 

1.10 • 05 10 12 14 17 22 27 37 

-- .01 16 18 21 25 31 36 47 

1.00 .05 11 14 17 21 27 32 44 
• 01 18 22 25 30 37 43 -

0.90 .05 14 17 21 25 33 40 
.01 22 26 31 36 45 .., 

0.80 .05 17 21 26 32 41 50 
.01 28 33 38 45 

-- 0.70 .05 22 27 33 41 
.01 35 42 49 .. .05 29 36 44 0.60 .01 48 

... 
0.50 .05 41 

.01 

~ 

.. 



.. Table 2c 
I = 4 

.. Power 

I di ta a .50 .60 .70 .80 .90 .95 .99 ... 
4.00 .05 2 3 3 3 3 4 5 .. .01 3 3 4 4 4 5 6 

3.00 .05 3 3 4 4 5 5 7 
.01 4 4 5 5 6 7 9 .. 

2.50 
.05 3 4 4 5 6 7 9 
.01 5 6 6 7 8 9 12 

--
2.00 .05 4 5 6 7 9 10 13 

.01 7 7 8 10 12 13 17 ... 
1. 75 

.05 5 6 7 9 11 13 17 

.01 8 9· 10 12 15 17 21 

- .05 7 8 9 11 14 17 22 
1.50 .01 10 12 13 16 19 22 28 

... 1.~0 .05 7 9 11 13 16 19 26 
• 01 11 13 15 18 22 25 32 

1.30 .05 8 10 12 14 18 22 29 

-- .01 13 15 17 20 25 29 37 

1.20 .OS 10 11 14 17 21 25 34 - .01 15 17 20 23 29 33 43 

1.10 .OS 11 13 16 20 25 30 40 
._ .01 17 20 23 27 34 39 

1.00 .OS 13 16 19 23 30 36 49 
.01 21 24 28 33 40 47 

'-' 

0.90 .05 16 19 23 28 36 44 
.01 25 29 34 40 49 

--
0.80 .05 20 24 29 36 46 

.01 31 36 42 50 
al 

0.70 .05 25 31 37 46 
.01 40 47 .. .05 33 41 so 

0.60 .01 - 0.50 .05 48 
.01 .. 

i_, 



J 
Table 2d 

-- I = 5 

... Power 

l dl la (X .50 .60 .70 .BO .90 .95 .99 

--
4~00 . 05 2 3 3 3 4 4 5 

.01 3 3 4 4 5 5 6 ·-
3.00 .05 3 3 4 4 5 6 7 

.01 4 5 5 6 7 7 9 -
2.50 .05 4 4 5 5 6 7 10 

.01 5 6 6 7 9 10 12 - 2.00 .05 5 5 6 7 9 11 14 

.01 7 8 9 10 12 14 18 

. illlli • 05 6 7 8 9 12 14 18 
1. 75 .01 9 10 11 13 15 18 23 

- 1.50 • 05 7 9· 10 12 15 18 24 
.01 11 13 14 17 20 23 30 

1.40 .OS 8 10 11 14 17 20 27 - .01 12 14 16 19 23 27 34 

1.30 .05 9 11 13 16 20 23 31 _. .01 14 16 19 22 26 31 39 

1.20 .05 10 12 15 18 23 27 37 .. .01 16 19 21 25 31 36 46 

1.10 .05 12 15 17 21 27 32 43 
.01 19 22 25 30 36 42 -

1.00 .05 14 17 21 25 32 39 
.01 22 26 30 35 43 -

0.90 .05 17 21 25 31 41 47 
.01 27 32 37 43 - 0.80 .05 22 26 32 39 50 
.01 34 39 46 

- .05 28 34 41 50 0.70 .01 44 

.., 
0.60 .05 37 45 

.01 

- 0.50 .05 
.01 

-' 

i.; 



... ,; Table 2e 
I = 6 

.... Power 

I dJla a .so .60 ~10 .80 .90 .95 .99 -
4.00 .05 2 3 3 3 4 4 5 - .01 3 3 4 4 5 5 6 

3.00 .05 3 3 4 4 5 6 7 
.01 4 5 5 6 7 8 9 - .. 

2.50 .05 4 4 5 6 7 8 10 

.01 5 6 7 8 9 10 13 
'-

2.00 .OS 5 6 7 8 10 11 15 
.01 7 8 9 11 13 15 19 

WIiii 

1.75 .OS 6 7 8 10 12 14 19 
.01 9 10 12 13 16 19 24 

. ,._ 
.05 8 9 11 13 16 19 25 

1.50 .01 12 13 15 18 21 25 32 

- 1.40 .05 9 10 12 15 18 22 29 
.01 13 15 17 20 24 28 36 

.... 1.30 .05 10 12 14 17 21 25 31 
.01 15 17 20 23 28 32 41 

1.20 .05 11 13 16 19 24 29 39 
tai .01 17 20 23 27 32 38 48 

1.10 . 05 13 16 19 23 29 34 46 
._ .01 20 23 27 31 38 44 

1.00 • 05 15 19 22 27 34 41 
.01 24 28 32 38 46 _., 

0.90 .05 19 23 27 33 42 50 
.01 29 34 39 46 - o.ao • 05 23 28 34 42 
.01 36 42 49 - 0.70 .05 30 37 44 
.01 47 - .05 40 49 0.60 .01 

- .05 0.50 .01 

'-I 

i.-



.; Table 2£ ... 
I = 7 

.. Power 

I di ta a .50 .60 .70 .80 .90 .95 .99 - 4.00 .05 3 3 3 3 4 4 5 
.01 3 4 4 4 5 5 6 

'-II .05 3 4 4 5 5 6 8 
3.00 .01 4 5 5 6 7 8 10 

'-' 2.50 .05 4 4 5 6 7 8 10 
• 01 6 6 7 8 9 10 13 

_. 2.00 .05 5 6 7 8 10 12 15 
.01 8 9 10 11 13 15 19 

1. 75 
.05 6 7 9 10 13 15 20 

..i .01 9 11 12 14 17 19 25 

1.50 .05 8 10 11 14 17 20 26 
-' .01 12 14 16 18 22 26 33 

1.40 .05 9 11 ~3 15 19 ·23 30 - .01 14 16 18 21 25 29 37 

1.30 .05 10 12 15 18 22 26 35 
.01 16 18 21 24 29 34 43 

1-, 

1.20 .05 12 14 17 20 26 30 40 
.01 18 21 24 28 34 39 50 - 1.10 .05 14 17 20 24 30 36 48 
.01 21 24 28 33 40 46 

-' .05 16 20 24 29 36 43 1.00 .01 25 29 34 39 48 

- .OS 20 24 29 35 44 0.90 .01 31 36 41 48 

- 0.80 .05 25 30 36 44 
.01 38 45 

0.70 .05 32 39 47 - .01 50 

0.60 .05 43 
wt .01 

0.50 .05 
\ad .01 

~ 

--



.... .; Table 2g 
I = 8 

-- Power 

I di la a .so .60 .70 • 80 .90 .95 .99 
. \ad 

4.00 • 05 3 3 3 3 4 4 5 
.01 3 4 4 4 5 5 6 

\al 

3.00 .05 3 4 4 5 6 6 8 
.01 4 5 5 6 7 8 10 

\al 

2.50 .05 4 5 5 6 7 8 11 
.01 6 6 7 8 9 11 13 

., 
2.00 .05 5 6 7 9 11 12 16 

.01 8 9 10 12 14 16 20 

-- .05 7 8 9 11 13 16 21 
1.75 .01 10 11 13 15 18 20 25 

'-' 1.50 • 05 9 10 12 14 18 21 27 
.01 13 15 17 19 23 27 34 

1.40 .05 10 11 13 16 20 24 31 - • 01 14 16 19 22 26 30 39 

1.30 .05 11 13 15 18 23 27 36 
la! .01 16 19 22 25 30 35 45 

1.20 .05 12 15 18 21 27 32 42 - .01 19 22 25 29 35 41 

1.10 .05 15 17 21 25 32 37 50 
.01 22 26 29 34 42 48 

'-' 

1.00 .OS 17 21 25 30 38 45 
.01 26 31 35 41 50 

4-:1 

0.90 • 05 21 25 30 37 47 
.01 32 37 43 

-- 0.80 .05 26 32 38 46 
.01 40 47 

. - • 05 34 41 49 0.70 · • 01 

tat 0.60 .05 46 
.01 

- 0.50 .05 
.01 

-
\al 



Table 2h 
'-

.: 
I = 9 

.; 

~ Power 

I di ta Ci .50 .60 .70 .80 .90 .95 .99 

·-
4.00 .OS 3 3 3 3 4 4 5 

.01 3 4 4 4 5 5 6 
la 

3.00 .05 3 4 4 5 6 6 8 
.01 5 5 6 6 7 8 10 

-i 

2.50 .05 4 5 5 6 8 9 11 
.01 6 7 7 8 10 11 14 

'-' .05 6 7 8 9 11 13 17 
2.00 .01 8 9 10 12 14 16 20 

.... 
1.75 

.05 7 8- 9 11 14 16 21 

.01 10 12 13 15 18 21 26 

~ 1.50 • 05 9 10 12 15 18 22 28 
.01 13 15 17 20 24 28 35 

1.40 .05 10 12 14 17 21 25 32 - .01 15 17 20 23 27 32 40 

1.30 .05 11 13 16 19 24 28 37 
\al .01 17 20 22 26 31 36 46 

1.20 .05 13 16 19 22 28 33 44 
.01 20 23 26 30 37 42 -

1.10 .05 15 18 22 26 33 39 
• 01 23 27 31 36 43 50 .., 

1.00 .05 18 22 26 31 40 47 
.01 28 32 37 43 

_. 
0.90 .05 22 27 32 38 48 

.01 34 39 45 
_, 

.05 28 33 40 48 0.80 .01 42 49 

'-* .05 36 43 0.70 .01 

._, 0.60 .05 48 
.01 

0.50 .05 _. 
.01 

._. 

_. 



Table 2i .. 
I= 10 

._ Power 

J di ta O! .50 .60 .70 .80 .90 .95 .99 -
4.00 .05 3 3 3 3 4 4 4 .. .01 3 4 4 4 5 5 7 

3.00 ~05 3 4 4 5 6 7 8 
.01 5 5 6 6 7 8 10 ._ 

2.50 .05 4 5 6 6 8 9 11 
.01 6 7 7 8 10 11 14 

_, 
2.00 .05 6 7 8 9 11 13 17 

._01 8 10 11 12 15 17 21 

... .05 7 8 10 12 14 17 22 
1.75 . 01 10 12 14 16 19 21 27 

-.I .05 9 11 13 15 19 -22 29 
1.50 • 01 14 16 18 21 25 29 36 

- 1.40 .05 10 12 15 17 22 25 33 
.01 15 18 20 23 28 33 41 

1.30 .05 12 14 17 20 25 29 39 _, 
.01 18 20 23 27 33 37 48 

1.20 . 05 14 16 19 23 29 34 45 
1..1 .01 20 24 27 31 38 44 

1.10 .05 16 19 23 27 34 40 
.01 24 28 32 37 45 

'-' 

1.00 .05 19 23 27 33 41 49 
.01 29 33 38 44 -

0.90 .05 23 28 33 40 50 
.01 35 41 47 .. 

0.80 .05 29 35 42 50 
.01 44 .. 
.05 37 45 0.70 .01 

_, .05 50 0.60 .01 

- 0.50 .05 
.01 

-
'-



- Table 2j 
I= 12 

... Power 

1 di la a .50 .60 .70 .80 .90 .95 .99 
\al 

4.00 .05 3 3 3 4 4 5 6 

\al 
.01 3 4 4 4 5 6 7 

3.00 .05 4 4 4 5 6 7 9 
.01 5 5 6 7 8 9 11 -

2.50 .05 4 5 6 7 8 9 12 
.01 6 7 8 9 10 12 15 

-- 2.00 .05 6 7 8 10 12 14 18 
.01 9 10 11 13 15 18 22 

- • OS 8 9 10 12 15 18 23 
1.75 .01 11 13 14 16 20 23 28 

\al .05 10 12 14 16 20 24 31 
1.50 .01 15 17 19 22 26 30 38 

_, 
1.40 .05 11 13 16 18 23 27 35 

.01 16 19 22 25 30 34 43 

1.30 .05 13 15 18 21 26 31 41 .. .01 19 22 25 29 34 40 50 

1.20 • 05 15 17 21 25 31 36 48 
lal .01 22 25 29 33 40 46 

1.10 .05 17 20 24 29 36 43 
al 

.01 26 30 34 39 47 

1.00 .05 . 20 24 29 35 44 
.01 31 35 41 47 -

0.90 .05 25 30 36 43 
.01 38 43 50 - 0.80 • 05 31 37 45 
.01 47 .. 

0.70 .05 40 49 
.01 

-- .05 0.60 .01 

\am 0.50 .05 
.01 

. 
_. 

~ 



Table 2k 
la! 

I= 15 

,.. Power 

ldl la Ct .so .60 .70 .80 .90 .95 .99 
la 

4.00 . 05 3 3 3 4 4 5 6 
.01 4 4 4 5 5 6 7 .... 

3.00 .05 4 4 5 5 6 7 9 
.01 5 6- 6 7 8 9 11 ... 

2.50 • 05 5 5 6 ; 9 10 13 
.01 7 7 8 9 11 13 16 

'-' 

2.00 .05 7 8 9 10 13 15 19 
.01 10 11 12 14 17 19 23 

... .05 8 10 11 13 16 19 25 
1.75 .01 12 14 15 18 21 24 30 

- 1.50 .05 11 13 15 18 22 25 33 
. 01 16 18 20 24 28 32 41 

lat 1.40 .OS 12 14 17 20 25 29 38 
.01 18 20 23 27 32 37 46 

1.30 .05 14 16 19 23 29 33. 44 
lai • 01 20 23 27 31 37 42 

1.20 .05 16 19 22 27 33 39 .. . 01 24 27 31 36 43 50 

1.10 .05 19 22 26 32 39 46 
.01 28 32 37 43 

lclll:I 

1.00 .05 22 27 32 38 47 
.01 34 39 44 ... 

0.90 .05 27 33 39 47 
.01 41 47 - 0.80 .05 34 41 49 
.01 

... .05 44 0.70 .01 

._, 
0.60 .05 

.01 

..., 0.50 .05 
.01 

lal 

-


