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ABSTRACT 

A sequential estimation procedure for estimating the mean of a 

population is proposed. The technique uses as a measure of variability 

the Stnll of ranges observed in successive pairs of observations. By 

using this easy~to-compute statistic, the procedure can be conveniently 

used in the field; whereas other techniques requiring recomputation of 

the stnlls-of-squares at each step are difficult to apply. The properties 

of the procedure are examined under the usual normality asstnllption and 

also under a variety of non-normal conditions. 
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1. Introduction 

The best-known sampling procedure for estimating the mean with pre-

. scribed precision in the absence of variance information is that of Stein [6]. 

Although his method guarantees (under the assumption of an underlying normal 

distribution) a confidence level not less than the specified probability, 

prudent choice of the first stage sample size is necessary to minimize the 

chance of obtaining an excessively large total sample size. In addition, 

whenever the nature of the sampling activity precludes the use of a calculator, 

there is the major inconvenience of having to manually compute the first stage 

sample variance before sampling can resume • 

Alternatives which have been proposed in the literature include a modifi­

cation of Stein's method (Wormleighton [8]), an analogous two-stage procedure 

based upon the range (Knight [2]), and various fully sequential methods re­

quiring the repeated calculation of the sample variance until a stopping 

boundary is first crossed {Stein [7], Anscombe [1], Ray [3], Robbins [4], and 

Starr [5]). Each of these schemes shares with Stein's two-stage procedure at 

least one of the two aforementioned drawbacks. 

The sequential rule presented in this paper is matched, in its ease of 

execution, only by Knight's range-based method; yet the proposed method yields 

excessive sample sizes with considerably less frequency. Unlike Knight's 

procedure the one we propose is relatively insensitive to moderate departures 

from normality. Finally, the new method has the advantage over both two-stage 

procedures in not requiring a prior estimate of the population variance in 

order to ensure a reasonable over-all sample size. 

As with other fully sequential rules, the one we propose yields a coverage 

probability which differs slightly from the desired confidence coefficient. 
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However, if the underlying distribution is normal, the coverage probability 

converges asymptotically to the nominal value. For non-normal distributions, 

the coverage probability converges asymptotically to a value (usually close 

to the nominal level) that depends upon the degree of non-normality. 

2. The Sequential Procedure 

Ideally, what is sought is a sequential estimate, X, of the population 
n 

mean,µ, satisfying the condition 

P( I xn - µ I $. d) ~ 1 - a (2. 1) 

2 when the variance, cr , is unknown, and both d and a have been specified in 

advance of sampling. Stein's two-stage sampling procedure attains this goal, 

but has (in addition to the disadvantages mentioned above) the built-in 

inefficiency of estimating cr 2 using only data from the first stage sample. 

Stein [7] also proposed a sequential estimation procedure that advocates 

sampling until the first t.ime the usual fixed sample size confidence interval 

(calculated after each observation as if N were the prespecified sample size) 

has half-width less than d. The procedure we present is analogous to Stein's 

second proposal, except that the successive confidence intervals are based upon 

the mean range of successive observation-pairs rather than upon the standard 

deviation (a saving of computation very important in field work). 

Suppose x1 ,x2 , ••• is a sequence of independent and identically distributed 

random variables sampled from a normal distribution. Stein's fully sequential 

(as opposed to two-stage) procedure samples until 

(2.2) 

is first satisfied (sN
2 

is the sample variance and ta,N-l is the two-sided 
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critical value for the t-distribution). Suppose, now, that observations are 

taken two at a time, and that as sampling progresses, the ranges of successive 

pairs of observations are acctnnulated to form the sequence (T
2
,r

4
,r

6
,T

8
, ••• } 

defined by 

The stopping rule we propose is to sample until 

(n - 1)
312 d 

T < -----------
n - 2eQ',n-l 

where 9 1 is defined by Q' ,n-
k 

Z (n-1) 2 

Q' 
2 \ [(4/n)(n-1) - 2Z (2 - 4/n)] Q' 

Our proposed 1-Q' confidence interval for the mean is then 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

where N is the first n satisfying (2.4). In the remainder of this section, 

we will develop some of the rationale for our choice of stopping rule. 

Let w be the mean (w = 2 T /n) of the progressive range increments, and 
n 

iet 8 · be defined such that the variable 
Q' 'n - - -

Z = J n (X - µ.) /w n n (2.7) 

has probability Q' of falling outside the interval (-9 n'+e n). Then, provided 
Q', Q', 

that the value of n at which sampling terminates is independent of the obser-

vations, it follows that 

P( Jn ex - µ,)/; < -e ) = Q'/2 n - Q',n (2. 8) 

or, equivalently, upon multiplying by w/0 and rearranging, that 

P( J~ (X - µ,)/cr + ;.9 lo< 0) = Q'/2 • n Q',n (2.9) 
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Now if n is large enough so that the distribution of w can be assumed to 

be essentially normal, then, for any fixed n, the expression to the left of the 

inequality in (2.9) will also be normal, with mean E(;/0 )•8 and variance 
a,n 

2 - 2 cr [V(w/0 )·A + l}. The value zero on the scale of this distribution may 
a, n 

therefore be mapped directly onto the lower a/2 percentage point, -z, of the 
a 

standard normal distribution by the usual transformation 

-E(w/cr )9 
-z = _____ __.cy ......... ,n_'"""""" 

et [V(;/cr)•e
2 + 1/2 
et' n 

(2.10) 

to yield, upon rearrangement, 

z 
e 
et' n 2-

[E (w/cr) 
(2.11) 

Since the mean and the variance of the standard range for pairs of independent 

normal variables are known to be 2/J-; ~ 1.12838 and (2 - 4/n) ~ 0.762676, 

respectively, and since ;/cr is just the average of n/2 such ranges, the expression 

for A can be further simplified to that previously given in (2.5). 
a,n 

Having thus found a means of deriving approximate values fore , we can 
a,n 

proceed to compute the 1-a confidence limits for the mean, given by 

(2.12) 

again provided n is not dependent on the observations. 

Upon comparison of this result with (2.1), it is clear that if n were 

such as to satisfy the inequality 

or its equivalent 

w 8 /J-;,_ ~ d 
et ,n 

T $. n 

n3/2 d 

2 e 
et ,n 

(2.13) 

(2.14) 

then precision specifications would be fully met. We are thus led to consider 
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what would happen if n were chosen to be the smallest sample size, N, ful­

filling this requirement. 

As it turns out, the true confidence coefficient under this stopping rule 

is unacceptably low unless the width of the confidence interval is made in­

finitesimally small. If, however, the stopping boundary is shifted ahead by 

a unit amount, producing the requirement that sampling should stop whenev~r 

T < N -
= 

(N - 1) 3/ 2 d 

2 ea,N-1 
(2.15) 

then the discrepancy between the true and the nominal confidence levels, as 

is shown in what follows, is minor. A table of values of BN ford= 1 is 

given in Table 5. Section 6 contains a numerical example illustrating the 

procedure and the use of the table. The next three sections deal with pro­

perties of the procedure. 

3. Properties of the New Procedure 

In this section some properties of the stopping rule and the resulting 

estimation procedure are·reported. In particular, results of exact computations 

for the normal distribution are presented. 

The probability that the procedure stops after n observations is given by 

P(N = n) = P(T < B , T 2 > B 2 , . • . , T
2 

> B
2

) n - n n- n- (3.1) 

where T is the cumulative sum of pairwise ranges and the B's are the critical 
n .n 

values given by (2.15). Since the distribution of N is extremely difficult to 

handle analytically, exact computations were carried out on the computer for 

certain cases with the normal distribution. (In the robustness study reported 

in Section 5, Monte Carlo methods were used.) With 0
2 known, the optimal sample 
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size satisfying the desired criteria is given by 

,/ z 2 
= Q' (3. 2) 

Since finding the exact distribution of N involves a great deal of machine 

time, only cases for n0 = 5,10,15, •.. ,70 and a= .05 were computed. 

Figure A goes about here 

For n
0 

= 25, the exact distribution of the stopping time N is given in 

Figure A. In this case, the mean stopping time is 31.5 with the median and 

mode of the distribution at 32. More than 50% of the distribution is concen­

trated in the points 26-38. Also, note that the righthand tail of the distri­

bution is not too long. This implies that excessive sample sizes occur 

infrequently. 

For notational purposes, let us follow Starr and define D(n0) and C(n
0

) 

as the expected sample size and coverage probability, respectively, for optimal 

sample size no. These are given by 

00 

D(n0) = E(N\ n0) = L n P(N = nlno) 
n = 2 

(3.3) 

n even 

and 
00 

C(n
0

) = P<I~ - µI -5: dlno) = L P(IXn - µI -5: d\N=n)P(N=nln0) . 
n = 2 

(3.4) 

n even 

Table 1 goes about here 

Table 1 gives the values of D(n0) and C(n0) for the computed values of n
0

• 

As can be seen from the table, the pairwise range procedure takes, on the 

average, about six more observations than the optimal sample size for the 

known variance case. Also, the coverage probability is not bounded below by 

.95, but goes slightly below and starts to come back to .95 by n0 = 70. The 
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·shape of the coverage probability function is very similar to that found by 

Starr for the fully sequential procedures based on the sample variance (see 

the next section). It can be easily shown (via the central limit theorem and 

the law of large nwnbers) that as n0 increases, the coverage probability ap­

proaches l""Q'. Thus, for an average cost of a few observations and a minute 

increase in the error rate, the sequential pairwise range procedure provide~ 

a fixed-width confidence interval with 0
2 unknown. 

4. Comparisons with Other Procedures 

4.1 Stein's Two-Stage Sampling Scheme 

Briefly, this method involves taking the sample in two stages, the first 

of which supplies the variance estimate s 1
2 from which the size of the second 

sample is derived. The total sample size N is then given by the rule: 

N = 
2 2 2 max ( n

1
, 1 + [s

1 
t _1/d]} 
Q' ,nl 

(4.1) 

where t 1 is the two-sided critical value of at-distribution with n
1

-1 
Q' 'nl -

degrees of freedom, and [x] is the greatest integer less than x. When the 

underlying distribution is normal, then l""U' is a guaranteed lower bound for the 

true confidence level or coverage probability. Despite this remarkable property, 

the Stein procedure still has the two unattractive features mentioned in the 

introduction. 

Because the performance characteristics of the method are more readily 

obtained for an underlying normal distribution, we have confined our comparisons 

to this case only. And since the sample size distribution corresponding to 

Stein's method depends upon the initial sample size n1 , we have in all instances 

chosen the n1 for which E(N) is a minimwn. (Note that this biases the com­

parisons in favor of the Stein procedure.) 
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If we bypass the restriction that N be an integer, then the relationship 

between E(N) and n1 is found to be (with error less than unity) 

· 2 (nl -l) 2 
nlf Fn -1<Xo) + 2 (l - Fn +1<Xo )) } 

1 Xo 1 
E(N) = (4. 2) 

where Fv(x
0

2
) is the chi-square c.d.f. with v degrees of freedom evaluated at 

2 
Xo = 

n1 ( n1 - 1) Z O' 
2 

t
2 

no 1 Ol ,n-

and is represented graphically in Figure B for selected values of n0 

(4. 3) 

(= 0
2 

ZOl 
2/a2) and for the case 1-0l = .95. Optimtnn n1 values can be read 

directly from this graph. 

Figure B goes about here 

The performance of any sequential procedure is expressible not only in 

terms of expected sample size, but also by the magnitude of the upper 95-th 

percentage point of the sample size distribution, for there is little merit 

in having a small expected N if inordinately large values have a high pro­

bability of occurrence. In the case of Stein's procedure, the 95-th percentile 

of N is given by 

t2 

)( 
2 

) ( a ,n1 -1 X.os,n1-1 
(4.4) n.95 = no z 2 n -1 1 

Ol 

Table 2 goes about here 

Both the expected values and 95-th percentiles of the sample size distri-

butions generated by the use of optimum n
1 

are listed in Table 2. Compared 

to the other sequential methods, Stein's is best by the criterion of expected 

sample size and is close to the sequential variance procedure (see Section 4.3 

for the sequential variance method) on the 95-th percentile. However, to 

quote Starr [5], " ... it is 
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clear that if we had precise knowledge of cr ... we would not rely on any sequential 

procedure, but simply preassign n the smallest integer value satisfying 

2 2 2 n > cr Z /d. Therefore, the only case of interest to sequential analysis 
ct 

is when cr is unknown. In this event an inappropriate (unlucky) choice of 

. n1 can have costly results." 

Just how costly (in terms of additional observations) these results can 

be is illustrated by the consequences of choosing n1 = 10 when cr/d is such 

that n
0 

= 80. Calculation reveals the 95-th percentile of N for Stein's 

procedure in this case to be 205, whereas it could have been as small as 110 

had optimal n1 been used instead. By comparison, n_ 95 under the proposed 

pairwise range method is found to be only 118. 

From these facts, even if allowance is made for the computational incon­

venience of the Stein procedure, the fully sequential range-based method would 

appear to be the preferable choice for normally distributed populations with 

unknown variance. 

4.2 Knight's Two-Stage Method 

Knight's procedure is identical to Stein's two-stage method exc~pt that 

the scale parameter estimate is based upon the range in place of the standard 

deviation. Since the range is extremely sensitive to non-normality (this 

the major reason we use the pairwise range), the Knight procedure performs 

very poorly in cases with small departures from normality. Also, even for 

normal populations, the expected sample sizes and 95-th percentile points are 

unacceptably large. For example, in the example given above for Stein's 

procedure (n0 = 80, n1 = 10), the 95-th percentile for Knight's is 223. This 

should be compared with 205 for Stein and 118 for the pairwise range procedure. 
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From these considerations, it appears that practical use of the Knight procedure 

is precluded from all cases except those in which sampling costs are nil and 

populations can be assumed normal. 

4.3 Sequential Stopping Rules 

We refer here to fully.sequential schemes in which observations are taken 

one by one (or two by two) until n first satisfies a criterion such as 

2 2 2 
s < N d /t N l • N - a, - (4.5) 

_,_ Reference to this type of stopping rule seems first to have been made by Stein [7], 

following which Anscombe [l] derived some asymptotic results applicable both 

• 

-
to this procedure and to some minor modifications thereof. Subsequently, 

Ray [3], Robbins [4], and Starr [5] published numerical values of the coverage 

probabilities and expected sample sizes corresponding to selected values of 

fl!!( cr/d, for an underlying normal distribution. 

~ 

-
-
-~ 

• 

~ 

...,, 

~ 

.... 

Because all five authors cited have contributed to the development of 

this approach, it is properly termed the Stein-Anscombe-Ray-Robbins-Starr 

sequential rule. However, in the interest of brevity, we will refer to it 

here ·Simply as the sequential variance procedure. 

To simplify calculations, Ray, Robbins and Starr modified the stopping 

rule to the extent that sampling had to terminate on an odd integer. Other 

variations introduced by Starr included the setting of a minimum size for n 

and the addition of various preplanned numbers of observations to the sample 

after first crossing the stopping boundary. 

In terms of coverage probabilities, his best results occurred under his 

rule "E," in which minimum N was set at 3 and the number of extra observations 

added to the sample was 4. Table 3 and Figure C compare the coverage probabilities 
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for this rule to those for our range-based procedure. Although the sequential 

· variance rule yields slightly better values than ours when n0 ls y,rcnl:l'r 

than 47, the magnitude of the difference is minor • 

Table 3 and Figures C and D go about here 

The sample size distribution for the sequential variance procedure with 

n0 = 25 is given in Figure D. Expected values and 95-th percentiles for 

the sequential variance method as-well as those for the Stein and pairwise 

range procedures are listed in Table 2. 

Figure E goes about here 

Figure E presents a comparison of the interquartile intervals of the 

sequential variance and pairwise.range methods. Note that the variability 

of the sample size is greater with the pairwise range. This is caused by the 

inefficiency of using the range in place of the standard deviation for our 

scale estimate. The greater efficiency which is evident in the sequential 

variance procedure is attained, of course, at the cost of requiring recalcula­

tion of the sample variance ~ith the addition of each new pair of observations, 

an inconvenience which our range-based method avoids. 

5. The Effects of Non-Normality 

Adopting the notation used by Starr [5], the consistency and efficiency 

of a sequential procedure are defined, respectively, by 

'1".n() = . C (nO) / (1-a ~ 

and 

Tlno = D(nO)/nO 

(5.1) 

(5. 2) 

where C.(n0) and D(n0) are given by (3.3) and (3.4). In this section we examine 
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the performance of the proposed method, as expressed by these measures, under 

various departures from normality.· 

Sequential procedures based upon the sample variance are known to be asymp­

totically consistent and efficient for any distribution with a finite variance 

[5]. However, our method is based upon the mean range of paired observations, 

not upon the sample variance. Since the relationship between the expected 

range and the standard deviation varies with the distribution, it is not 

surprising that both the asymptotic consistency and efficiency ot· the method 

vary as wel 1. 

Indeed, it can be shown that 

lim 
T)n = [ E (Rzla)/(2/J--;) )

2 
no-+a:> 0 

(5.3) 

and 

lim 
[ 1 - 2 I ( -Z J-;;- ) } / ( 1-a) 'rn = 

no-+co 0 ct (X) 
(5.4) 

where R2 is the range of two independent observations from any given distribution 

and t(Z) is the standard normal distribution function. 

Table 4 and Figure F go about here 

Using Monte Carlo simulation, we estimated the small sample coverage 

probabilities C(n0) for various types of departure from normality. These 

simulation results are shown in Table 4 and Figure F. Six non-normal distri­

butions were selected for study. The contaminated normal, double exponential, 

and t with 6 degrees of freedom all have coverage probabilities similar to the 

normal. For the uniform distribution, C(n
0

) is greater than the nominal .95 

value, while for the exponential, the coverage probability is far below .95. 

Also, included in the study was a real finite population of tenth-acre forest 

plot voltnnes. For this population, the coverage probability was similar 

to that for the normal. 
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It is evident from our results that although the proposed procedure 

is affected by extreme departures from normality, moderate departures have 

·only a minor influence on the coverage probabilities. 

6. Numerical Example 

A test of the practical utility of the pairwise range procedure was 

performed on a series of forest inventory tree counts obtained from the 

University of Minnesota's Cloquet Forestry Center. The sample pa~h generated 

by the data is shown in Table 6. and graphically displayed in Figure G along 

with the stopping boundary corresponding to a confidence level of 95% and a 

confidence interval half-width of d = 4. As demonstrated in the figure, 

the stopping criterion was met by the first 32 sampling units. 

Tables 5 and 6 and Figure G go about here 

By way of comparison, the Starr sequential variance scheme (procedure E) 

was applied to the same set of data with results as shown in Figure G. 

Although this stopping boundary was crossed at n • 31, the procedure required 

the addition of four more sampling units. 

Thus, in this example, the pairwise range procedure led to app_roximately 

the same sample size as the sequential variance scheme, although it required 

but a fraction of the computational effort. 
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Table 1 

Pairwise Range Procedure: Expected Sample Size and' 
Coverage Probability for·an Underlying Normal Distribution 

Ideal Ideal 
N E(N) C(N0) N E(N) C(N0) 

5 12.3 .9953 55 60.8 .9481 

10 17.2 .9812 60 65.7 .9480 

15 22.0 .9698 65 70.7 .94790 

20 26.7 .9621 70 75.7 .94792 

25 31.5 .9570 75 80.88 .94858 

30 36.3 .9536 80 85.58 ' .94798 

35 41.2 .9514 85 90.78 .94518 

40 46.0 .9500 90 95.58 
·. 9468

8 

45 50.9 .9490 95 100.68 .94858 

50 55.9 .9485 100 105.68 .94918 

8
Estimates based upon Monte Carlo simulation; number of trials 
per estimate= 50,000. 



Table 2 

Expected Values and 0.95 Quantiles of 
Sample Size Distributions Under Three Sequential Procedures 

Ideal Pairwise Range Stein's Two-Stage Sequential Variance (Starr) .... N E!N} .95% E!N} .95% E{N} .95% 

5 12.3 18 9.1 17 11.6 17 - 10 17.2 26 14.2 24 15.7 23 

15 22.0 34 19.3 32 20.4 29 

20 26.7 40 24.2 39 25.1 37 

25 31.5 48 29 .1 45 29.9 43 

30 36.3 54 34.1 51 34.8 49 

35 41.2 60 39. 0 58 39.8 55 

40 46.0 68 43.9 64 44.8 61 

45 50.9 74 48.9 70 49.8 67 

50 55.9 80 53.9 75 54.9 73 

~ 55 60.8 86 58.9 81 59.9 77 

60 65.7 92 63.8 87 64.9 83 

..... 65 70.7 98 68.7 93 70.0 89 

70 75.7 104 73.7 99 75.0 95 

\!Iii 
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Table 3 

Interquartile Intervals and Coverage Probabilities for 
the Pairwise Range and Sequential Variance Procedures 

Pairwise Range Sequential Variance (Star~) 

Interquartile 
C(N) 

Interquartile 
C(N) Interval Interval 

(10,14) • 9953 ( 9,13) • 9944 . 

(14,20) .9812 (13,19) .9771 

(16,26) .9698 (17,25) .9641 

(20,32) .9621 (21,31) .9561 

(24,38)· .9570 (25,35) .9526 

(28,44) .9536 (29,41) .9504 

(34,50) .9514 (35,47) .9493 

(38,56) .9500 (39,53) .9489 

(42,60) .9490 (43,57) .9487 

(46,66) .9485 (49,63) .9487 

(50,72) .9481 (53,69) .9488 

(56, 78) .9480 (59, 73) .9489 

(60,82) .94790 (63,79) .9490 

(64,88) .94792 (67,85) .9491 



-

--
no 

5 

10 

15 

· 20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

80 

85 

90 

95 

100 

Table 4 

Coverage Probabilities unde_r the Pairwise . 
Range Procedure for Various Underlying Distributio~sa 

Contaminated 
C Normal 

.9969 

.9853 

.9746 

.9653 

.9586 

.9513 

.9526 

.9495 

.9470 

.9438 

.9430 

.9418 

.• 9413 

.9413 

.9404 

.9436 

.9412 

.9407 

.9393 

.9393 

Double 
Exponential 

.9967 

.9870 

.9771 

•. 9678 

.9604 

.9555 

.9515 

.9476 

.9465 

.9453 

.9420 

.9401 

.9395 

.9400 

.9380 

.9383 

.9375 

.9385 

.9403 

.9372 

Exponential 

.9986 

.9794 

.9516 

.9311 

.9122 

• 9022 

.8943 

.8887 

.8879 

.8811 

.8814 

.8830 

.8772 

.8785 

.8808 

.8820 

.8845 

.8825 

.8818 

.8808 

t (6 d.f.) 

.9966 

.9850 

.9752 

.9641 

.9586 

.9533 . 

.9503 

.9498 

.9466 

.9456 

.9455 

.9439 

.9422 

.9430 

.9445 

.9431 

.9420 

.9420 

.9434 

.9435 

Uniform 

.9906 

.9726 

.9602 

.9540 

.• 9504 

.9484 

.9462 

.9468 

.9462 

.9472 

.9470 

.9474 

.9460 

.9481 

.9476 

.9466 

.9494 

.9488 

.9495 

.9487 

b Real· 

.998 

.982 

.970 

.962 

.954 

.951 

.946 

.951 

.953 

.951 

.948 

.952 

.945 

.953 

.949 

.939 

.947 

.945 

.949 

.965 

aEstimates based upon Monte Carlo simulation; nwnber of trials per estimate= 50,000. 

bReal finite population of tenth-acre forest plot volumes (hundreds of cubic feet 
per acre) sampled with replacement. 

cMixture of N(0,1) and N(0,9) with mixing probabilities .90 and .10. 



N 

2 ... 4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 
-' 32 

34 

36 

38 

40 

42 

44 

46 

48 

50 

52 

54 

56 - 58 

60 

.. 
Note: 

Table 5 

Standardized Stopping Boundaries (d = 1) for 
the Cumulative Pairwise Range Statistic 

Stopping Boundary 
N 

Stopping Boundary 
95% 99% 95% 99% 

62 132.1 97.70 

64 138.8 102.8 

1.128 66 145.7 107.9 

3. 258 68 152.6 113.2 

5.565 2.359 70 159.7 118.5 

8.143 4.464 72 166.8 123.9 

10.98 6.638 74 174.1 129.4 

14.07 8.959 76 181.4 134.9 

17.38 11.44 78 188.9 140.6 

20.91 14.07 80 196.~ 146.3 

24.64 16.86 82 204.1 152.1 

28.56 19.80 84 211.8 157.9 

32.67 22.87 86 219.7 163.9 

36.96 26.08 88 227.6 169.9 

41.42 29.41 90 235.7 176.0 

46.04 32.88 92 243.8 182.1 

50.81 36.46 94 252.0 188.3 

55.74 40.16 96 260.3 194.6 

60.82 43.98 98 268.7 201.0 

66.05 47.91 100 277 .2 207.4 

71.41 51.94 102 285.8 213.9 

76.92 56.08 104 294.4 220.5 

82.55 60.32 106 303.2 227.1 

88.32 64.66 108 312.0 233.8 

94.21 69.10 110 320.9 240.5 

100.2 73.64 112 329.9 247.3 

106.4 78.27 114 339.0 254.2 

112.6 82.99 116 348.2 261.2 

119.0 87.81 118 357.4 268.2 

125.5 92. 71 120 366.7 275.2 

For confidence interval of width d, multiply table value by d. 
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Table 6 

Example of Pairwise Range Sampling 

N <~-1 '~) ~x TN B 
N 

2 ( 6, 7) 1 1 

4 (29,16) 13 14 

6 (32,25) 7 21 4.51 

8 ( 3,24) 21 42 13.26 

10 ( 1, 18) 17 59 22.26 

12 (18,27) 9 68 32.57 

14 (23,18) 5 73 43.93 

16 (11, 4) 7 80 56.27 

18 ( 8, 13) 5 85 69.52 

20 (15 ,33) 18 103 83.63 

22 (46, 17) 29 132 98. 56. 

24 ( 6, 4) 2 134· 114. 26 

26 (27, 8) 19 153 130.68 

28 (16,21) 5 158 147.84 

30 (12,25) 13 171 165.64 

32 (27,26) 1 172 184.14 

34 ( 4,19) 15 187 203.25 

36 ( 8, 2) 6 193 222.96 

38 (14, 18) 4 197 243.30 

40 (21,32) 11 208 264.19 

Note: The data are tree counts from forest 
inventory plots established in the University 
of Minnesota's Cloquet Forestry Center. The 
stopping boundary corresponds to a 95% con­
fidenc·e interval of half-width d = 4. 



Figures 

A. The Exact Sample Size Distribution under the Pairwise Range Procedure 
for no· 

B. · The Expected Sample Size for Stein's Two-Stage Procedure for n0 and n1. 

Note: To find E(N), specify n1 on the horizontal axis, locate the 

contour line corresponding to n0 , and read E(N) on the vertical axis. 

C. C(n
0

) for the Pairwise Range and the Sequential Variance Procedure. 

D. The Exact Sample Size Distribution under the Sequential Variance Procedure 
for no= 25. 

E. Central 50% of the Sample Size Distribution under the Pairwise Range 
and the Sequential Variance Procedure. 

F. Coverage Probabilities under the Pairwise Range Procedure for Various 

Underlying Distributions.ab 

G. Example of Pairwise Range and Sequential Variance Sampling Using the 
C Same Data. 

a 
Estimates based upon Monte Carlo simulation; number of trials per estimate= 50,0C 

b 
Real finite population of tenth-acre forest plot volumes (hundreds of cubic 
feet per acre) samples with replacement. 

cTree counts from forest inventory plots in the University of Minnesota's 
Cloquet Forestry Center. The sequential variance procedure is Starr's method E. 
In both methods the 95% confidence interval half-width is specified at d = 4. 
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