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1. Introduction. 

In group-testing we are allowed to test any number of units from the same 

or different sources but each test of a batch of (say, x) units gives us one 

of two possible results: i) either all x units are good or ii) at least one 

of the x units is defective and we don't know which one{s). In this paper 

our goal is again to classify units efficiently in the sense of minimizing the 

number of tests required. This paper is a generalization of previous work in 

group-testing [ 3 ] , [ 4 ] in the sense that we allow units to have different 

probabilities q
1
(i = 1,2, ••• , k) of being good whereas previous work assumed 

a common value of q for all units. Each value of i (i = 1,2, ••• , k) 

corresponds to a different source or stream of units and each stream represents 

an assembly line type of operation with an unending number of units coming 

forth to be testedG Each unit from the i
th 

strean can only be good (with 

probability q.) or defective (with probability p. = 1 - q.). 
1 1 1 

All units from 

the same or different streams represent independent binomial chance variables. 

The one restriction that we put on the plan or strategy for testing units 

is that no stream should be held up indefinitely, i.e., any unit in any of the 

k streams will be classified in some finite number of tests. 

For convenience we sometimes group the units into sets of size k, where 

the j
th set consists of the j

th unit from each of the k sources. Let C 

denote the total number of such sets; we consider both the case c = oo and the 

case in which c is large but finite. For convenience and in order to make 

meaningful comparisons we rephrase our goal as the minimization of the expected 

number·of tests per set of units classified, subject to the restriction mentioned 

above. 

For any set of q .. -values we can always write these as powers of one q 
1 

{say, the smallest q)o We do not treat the most general case of unequal 
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q.-values since we assume that the q.-values are integer powers of the smallest 
1 · 1 

q. ·In this case we can interpret the unit with probability (say) q3 as being 

a set of 3 units, each with probability q, and we only want to know whether this 

set contains all good units or at least 1 defective unit. The advantage of this 

interpretation is that we can bring to bear on the problem information from 

other papers such as ( 3 ] • Below we refer to this idea as group-testing with 11.1 

groups or the G-point of view as opposed to the individual or I-point of view. 

2. Vertical vs. Horizontal Procedures. 

A vertical procedure is one for which the probability that a unit is not 

classified until after m units from subsequent sets have been classified tends 

to zero as m ~ oo. This insures us that no one source will be held up indefinitely • ..,_ 

The problem of finding the optimal vertical procedure is not easy and it turns 

out to be useful to find the optimal procedure in another class of procedures 

that we call 'horizontal'. One of the main results of this paper is to point 

out that for every horizontal procedure we can find a·vertical procedure which 

I i 
~ 

I 

is equivalent in the sense of having the same expected number of tests per set J 
classified. 

To explain the horizontal procedure we assume a large finite c and later 

let c ~ 00 • Rather than give a formal definition of a horizontal procedure, 

we illustrate it by an example. Suppose k = 4 and let xi denote a unit from. 

h .th source which has probability i 
of being good {i = 1,2,3,4)0 To be t e 1. q 

specific, we take q = .9. A horizontal procedure sh gives us an ordered 

list of preferred batch structures for testing and a plan {or tree) for testing 

each of these batches. Suppose a particular horizontal procedure s~4) gives 

us the list 
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Stage 1: {x3, x4) 

Stage 2: (xl' x2, x4) 

~ (2.1) 8(4) = {xl, x2) h St~ge 3: x2, x2, 

Stage 4: (xl' xl, xl' xl, xl, xl' xl) . 

Then in Stage 1 we continue to test pairs {x
3

, x4) according to a specific 
~ 

given plan specified by the procedure until the units are all classified. 

A particular plan (later shown to be optimal for the example above) i3 the 
• 

• 

~ 

-

following, where arrows to the left (right) indicate success (failure): 

Since we 

the x
3

•s 

scheme. 

Test (x
3

, x4) 

/'··-. 
End ~ Test x

3 /\';J 
End End: Put x

4 
back among the unclassified 

binomial units. 

Figure 1. Plan ( or Tree) for Testing (x
3

, x
11

) • 

start with the same number of x's of each type it is easy to see that 

will be depleted (i.e., classified) before the x4•s under the above 

In the group-testing terminology we only use plans that take us from one 

.._ ir-situation {where the units are all binomially distributed) to the very next 

-i 

H-situation. 

In Stage 2 of (2.1) we continue testing triples (x.i_,x2 , x4) according to 

a specific plan given by the proceduresi4),until another type of unit is 

depleted; in this case the x4 is depleted earlier. In Stage 3 we continue 

~ until the x
2

's are depleted and finally in Stage 4 we test seven units of 

type~ according to a specific plan unt~l all the remaining units are classified. 
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It should be carefully noted that when we let c "700 the limit of the 

horizontal procedure is not a procedure at all. However we are interested 

in the limit L as c "700 of the expected number of tests per set classified 
00 

since, as we shall see later, there is a vertical procedure with the same 

value L = L where L is the expected number of tests per set classified. 
00 

Furtheremore we can find the horizontal procedure with the smallest L -
00 

value. We have some reasons to believe that these equivalent vertical procedures 

are optimal in the entire class of vertical procedures. 

A vertical procedure is defined to be equivalent to a horizontal procedure 

if it has an expected number of tests per set classified that is equal to the 

limiting L-value of the horizontal procedure. 

3. An Example of a Vertical Procedure Equivalent to a Horizontal Procedure. 

Using group-testing terminology we define a G-situation to be one in which 

we have information that some set of units contains at least one defective. 

The restriction to nested procedures in which we try to locate 1 defective unit 

in the smallest possible number of tests then gives us an R1-type procedure 

(cf. [ 3 ]) in which the G and H-situations are the only two that are possible. 

For the example illustrating equivalence suppose k = 3 and for the three 

types of units we take and and 4 
q3 = (.9) 

respectively. From the G-point of view we have an equal number of groups of 

sizes 1, 2 and 4; all units have the coUD110n probability .9 of being good 

and we are only interested in knowing whether or not each entire group is good. 

·rom the I-point of view, in the sequal we shall refer to the unit that has 

probability i 
q as type i or simply as the i-unit (i = 1,2, ••• ) when the i-values 

are different; hence for our example above a test on (1, 2, 4) is equivalent to 

a test on (x1 , x2 , x
3
). We now define a horizontal procedure for the above 

problem and find its L
00

- value; we then derive the equivalent vertical procedure 

and prove the equivalence by showing that L=L· 
00 
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.. 
-.i A tree is a rule or plan,as in Figure 1 above,which specifies what units 

to test i) initially in the H-situation and ii) in each succeeding G-situation -until the very next H-situation is reached. For convenience we refer to a 

particular tree by the units tested initially, e.g., the particular tree for 

testing (x1 , x
2

, x
3

) can be referred to as the (1, 2, 4)-tree • 

._ Let the horizontal procedure Sh be defined by 

• (3.1) 

:~1(1, 2, 4) ( 

sh = .. (2, 4) ( , 

. (4, 4) ) 

where the (1, 2, 4), (2, 4) and (4, 4) trees are given by 

- (3.2) 
End ~End H(4) 

x = (.1, 2, 4)4 G(l, 2, 4)~ G{l, 2)-4H(2, 4) 
:x=(l, 2) x=(l) 

we& 

- (3.3) X= 
/End ~End 

(2, 4)~G(2, 4)~H(4) , 
x={2) 

(3.4) X = -
.. ~End ~End 

{~, 4~G{4, 4)~H(4) 
x=(4) 

In each of the above trees the horizontal· (resp., slanted) arrows corresponds_ 

- to a failure {resp., success} on that particular trial. The expression "H(4)" 

{say) in (3.2){say} means that from the (1, 2, 4) grouping that we tested on . ' 

.11~ first step of the tree, a single 4-unit ha: been left unclassified at the 

end of the tree and returns to the binomial state; the word "End" in (3.2) means 
~ 

that the entire (1, 2, 4) grouping has been classified. We start testing with 

._ c sets of (1, 2, 4)'s and work (1, 2, 4)-trees until we exhaust the 1-units. 

The number of such trees is, of course, c and the number of tests involved is 

• cE{TjT124), where E{TIT
124

) is the expected number of test& per (1,2,4)-tree. For 

large c (c ~ oo), the number of 4's (respo, 2·'s} remaining after the l's have 

been exhausted is c(l-q3) (resp., c{l-q)). A single 2-unit is used up on each 
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(2, 4)-tree and thus the number of such trees until the 21 s are exhausted 

is c(l-q); since q2 4's are classified per (2, 4)-tree, the number of 4-units 

remaining is c{l-q3) - c(l-q)q~-= c(l-q2 ). Also, (l+q
4

) 4's are classified 

per_ (4, 4) tree and thus it takes c(l-4
2

) such trees to exhaust the 4's, with. 
l+q c(l-q2) . 

the.number· of tests involved equal to_ 4 E(TjT44}. It is easy to 
l+q 

verify that 

(3.5) 

Therefore, 

(3.6) 

E(TIT124) = 3 - q3_ q7 

6 
E{TIT24l = 2 - q 

E{TIT44} = 2 - q
8 

• 

L = 
00 

c(3-q3-q7) + c(l-q)(2-q6) + c(l-42) (2-q8) 
l+q 

C 

where ~ is written both as a ratio of polynomials for q close to .9 and also 

numerically at q = .9. 

I 

~ 

We now define the equivalent vertical procedure. Let the Si (i = 1,2, ••• , 5) ~ 

which represent the five possible H-situations be defined by 

(3.7) 
sl = H( •••• ), s2 = H{4, ••• ), s3 = H(4,4, ••• ), S4 = H(2,4, ••• ), 

s
5 

= H(2,4,4, ••• ), 

where H( •••• ) represents a binomial state with an equal number of l's, g's, 

and 4's; H{4, •••• ) represents one where there is an extra 4, etco Our vertical 

procedure can then be described by the trees 

(3.8) 
~ Si /Si /Si+l 

S. ----~G(l,2,4)~G(l,2)~S. 
3 i a (i = 1,2), 

x={l,2,4) x={l,2) x={l) 

(3.9) 
---..:, 81 ~81 

s
3 

· G(4,4)/s
2 

x={4,4) x={4.) 

(3.10) 
_.----- · 

1 8
i-3 /

8
i-3 

S ... ....- -, G(2,4 )~--. S. 
2 1 i-

(i = 4,5). 
x=(2,4) x=(2) 

- 6 - ... ' 

J 



• 

._ It is useful to characterize our system as a Markov chain with 

state space If P = (p .. ) 
l.J 

is defined as the matrix 

8 of transition probabilities, i.e., the matrix of probabilities of switching 

-
-
--
-
lt"J 

in a single tree from state Si to state S. (i, j = 1,2, ••• , 5), then its 
J 

value for q near .9 is easily seen to be equal to 

q(l-q2), o, 1-q, 0 

o, q3, q(l-q2), o, 

(3.11) 
4 4 

O, 0 p = q , 1-q, o, 

q2, 1-q2, o, o, 0 

q2, 1-q~, o, 0 

Using {3all) and the equations 

(3.12) TT. = ± rr.p .. (j = 1, ••• , 5) 
J i=l ]. l.J 

to solve for the Tf j, we find that .. q4 1-q2 4 1 q {1-q) 1-q 
Tf1 =- TT - - TT = , TT5 TT4 = 

(3.13) -
._ where 

(3.14) -Next, let 

~ 
number of 

D" 
, 2 - D 

, 

·4· 5 
D = 3 - q - q 2 + 2q - q • 

ET. be the expected number 
1. 

units classified in the tree 

3 D 
, 

of tests and EN. be 
]. 

starting in state s. 
]. 

L, the expected number of tests per set of units classified, 

• vertical 

._ (3.15) 

-
-
-

procedure is then given by 
5 
L) TT.ET. 

i=l ]. ]. 
L=3----

i 
LI TT .EN. 

i=l ]. ]. 

:z: --D D 

the expected 

(i = 1,2, ••• , 5). 

evaluated for the 



i.e., L is equal to 3 times the expected numbers of tests per unit classified. 

Evaluating ETi 

ET. 3 = 
1. 

(3~16) ET
3 

= 2 

ET. =2 
1. 

and EN. (i = 1,2, ••• , 5) for q 
1. 

close to .9 yields 

- q3 ·7 EN.= 1 + q + q3 (i = 1,2), - q '. 1. 

8 EN
3 

1 4 
- q ' = + q 

' 
6 EN. 1 + q2 (i = 4, 5). - q ' = 

1. 

Using the above together with (3.13), (3.14) and (3.15) results in (3.6) ,. i.e., 

7-2q-2q2-q3+5q4-2q5-q6-q7-q8 
( 3 .17) L = --------------........... ------------- :=:: 2 .1196 

1 + q 
at q = .9. 

Notice that the expression in (3.17), is the same as in (3.6). This' 

result is not surprising since it is easy in this case to see the equivalence 

of the hoii.zontal and vertical approaches. In Section 8, it is proved that 

every horizontal procedure is equivalent to a vertical one. 

4. Finding the Optimal Procedure: Trial and Error Method. 

In searching for the optimal horizontal procedure we use the G-point of 

view which helps us to bring to bear information from previous work on group

testing. It was seen in Section 6 of [ 4] that in the case of an infinite number 

of units with the same q-value we get an 'optimal' tree i) by maximizing the 

(Shannon) information in each H-situation and ii} by using the R
1
-procedure 

(, •- ~ j ] ) for each G-situation. We use these guidelines as a first step to 

eljmjnate lots of possibilities in finding the optimal horizontal procedure. 

_;_. u~ ex, mple, if k = 4 and let q. = qi (i = 1,2,3,4) where q = .9. 
1. 

By 

r 3 ] we know (using the G-point of view) that we need 7 'units' to maximize 

the information; thus we can use (3, 4), (1, 2, 4), (1,2,2,2), (1,1,1,1,1,1,1) 

etc. Furthermore if the collection of 7 'units' is defective then we would like 

to select 3 1units 1 for test in this G-situation, e.g., from a (1, 2, 4) defective 

set we can test the combination (1, 2) on the very next test. Generalizing 
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.. 

• 

the above example, let k = 2, 3, 4 and 5 with q. = qi(i = 1,2, ••• , k) 
i 

and 

q = .9. Using the above-mentioned guidelines the optimal horizontal procedures 

S~k), found.by trial and error, are given by 

(2) ff ~·2,2,2) ] s(3) -sh = , h -
(1,1,1,1,1,1,1) 

• (4.1) 
r· 
(3~4) (3,4) - s~4) = ~ (1,2,4) s(5) -

(1,2,4) 

, (1,2,2,2) h -
(1,2,2,2) (1,1,1,1,1,1,1) 

~ I 
(1,1,1,1,1,1,1) (5) 

• The la~t row of si5) has an extremely simple tree, the (5)-tree, since it 

tests the units one-at-a-t~me. We find a theoretical basis for these results 

• in the next sectione 

--
5. Theoretical Results with S~ecial Reference to k = 2 • 

A group of units (x1 , x
2

, •.• , xi) will be called coarser than another 

.,. group (y1 , y2 , ••• , yj) if i < j and there exist ordered, unequal integers 

-
-
e 

-

·\' ,e2,•••, ,ei-1 such that 

,el 1,2 j 

(5.1) x1 = 6 y Q'; x,, = tJ y ; • • • , X • = Z: y 
r_ 1 Q' 1 1 Q' Q'=l a=l,1+ Q'=l,i-1+ 

where at least one sum contains 2 or more elements. 

Unless stated otherwise we assume that all of the trees used in this paper 

utilize in addition to properties i) and ii) of Section 4 the assumption iii): In 

a G-situation if there is more than one combination that satisfies ii) we take 

.., the coarsest of these combinations. For example, suppose q1 = .9, q
2 

= (.9) 2 

and we use (1,1,1,2,2) in the first test. Then, if it turned out to be defective, 

• we could test (1,1,1) or (1,2) in the resulting G-situation. According to 

- - 9 -
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assumption iii) we prefer (1, 2) since it is coarser than (1,1,1). This 

assumption has not been proved but has proved to be the right attack in a 

number of numerical examples. We have proved that if this plan is used in 

the G-situation then the same plan of using the coarsest combination of those 

that satisf·y property ii) should also be used in the H-situation. 

A tree T
1 

is said to be coarser than another tree T
2 

if from the 

G-point of view the total number of 'units' at each step of T1 is the sane, 

i.e., the probability of a positive result is the same and from the I-point 

of view the group tested under T1 is coarser than the corresponding group 

tested in T
2

; clearly, the finer tree T
2 

can continue beyond T
1

• If a 

family of trees exhibits the property that any pair of trees (in the family) 

can be compared as to coarseness, then we refer to it as a linear (coarse

fine) family of trees. 

We emphasize the case k = 2, in which there are only 2 types of units • 

The two types are .e.-units with probability 
1 

q 
.ei 

of being good, where 

.e2 = dt1 > .e1 and d is a positive integer. Let 3 be a linear family of 

trees containing trees which range in coarseness from some coarsest 

tree in to the finest tree T .e , where 
1 

is also 

included in 3. 

F\.·1 4 a given tree T0 , let E{TIT0) denote the expected number of tests 

classified under 

u. ' ')' ,_ 

denote the expected number of £.-units 
1 

T0 (i = 1,2). As above,we use T.e to denote the tree 
2 

consisting only of t2-units. Let T(d, .e
1

) denote the 

tree in 3 which starts by testing d of the .e
2
-units; recall that .e

2 
= dt

1
• 

We now state our theorem and illustrate it before going through the proof. 

Theorem 1. 

A necessary and sufficient condition that a horizontal procedure rest~icted 

to a linear family 3 does best by choosing the coarsest possible group of units 
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'.is that ... 

.. {5.2) 

.- Illustration of the Result; 

· Let .e1 n: 1 and .e2 = 2.t1 = 2 

being good (i = 1,2") where q = o9• 

and suppose x. has probability 
1 

i q of 

Thi linear family ~ of trees consists 

of the four trees 

(1,1,1,1,1,1,1), 

(1,2,2,2), (1,1,1,2,2), (1,1,1,1,1,2) and 

which are listed in the order of co~rsest to 

• finest. Below we give each of the four trees in detail: 

-(5.4) 

• (5.5) 

-

:.tEnd 

G(2,2)~ H(2) 
~End J"x=(2) LH(2,2) 

H----~ G(l,2,2,2)4 G(l,2)~H(2,2,2) 
x=(l,2,2,2) x=(l,2) x=(l) 

~End 
. G(l,l~H{l) 

/x={l) 
. G{l,l,2~H(l,1) 

~End ,l\<=(2) H(l,1,2) 
H--------~G(l,l,l,2,2)~G(l,2)~H(l,l,2,2) 
x={l,1,1,2,2) x=(l,2) x={l) 

End 

G(l,l)~H(l) 
/x={l) · H(l, 1) 

G(l,1,1,1)4G(l,l)~H{l,1,1) 

Lx=(l,1) x=(l) 

~ End ( 1, 1, 1, 1) 

H =- )G(l,1,1,1,1,2) G(l,2)-4(1,1,1,1,2) 
x=( 1, 1, 1, 1, 1, 2) x=( 1 , 2) · x={ 1) 
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_________,End 

G{l,l)~r::::::::::,.----~H(l) 
X={l) 

/ H{l,1) 

G(l,1,1,l~G(l,1) ..-------::::: H(l,1,1)· 
x=(l,1) x={l) 

• 

~End 

________.;,H(l,1,1,1) 

G{l,1)-~------~HH(l,1,1,1,1) 
/x={l) 

(5.6) H(•)-------___,. G{l,1,1,1,1,1,1 
x={l,1,1,1,1,1,1) x={l,1,1) 

G{l,1,l~H(l,1,l,l,1,1,1) 
x={l) 

The tree TL (or T1) is given in (5.6); the tree TL (or T2) and the 
1 2 

tree T(d, L1) (or T(2, 1) . are respectively given by 

~nd 
G(2,2~H(2) 

End fi=2 

,I(•) ~ G(2,2,2~H(2 ,2) 
X=2 

(5.7) X = (2,2,2) 

·~ End End 

H ( • ) .--::::::::::::> G ( 1 , 1 )~ ( 1) 
X=l 

(5.8) X = (1,1) 

By elementary calculations we obtain from (5.6), (5.7) and (5.8) for q = .9 

(5.9) 

(~·.10) 

(5.11) E(TIT(2,1)) = 2-q2 = 1.19; E{N(l)IT(2,l)) = l+q = 1.9. 

The condition (5.2) of Theorem 1 is satisfied when q = .9, L
1
= 1 

since 

(5.12) .7085 2: (1.9)(~4725) - (1.19-1) = .7078. 
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i..i 

i 

* _. 'Hence according to Theorem 1 we conclude that the best horizontal procedure Sh is 

-
.. 
-
... 

-
-

(5 .13) s* = 8 (2) = \(1,2,2,2) } • 
· h h l(l,1,1,1,1,1,1) 

Thus the result obtained in Section 4 by trial and error (cf. (4.1) can be 

obtained from Theorem 1. 

Remark. 

We note in this example that the same result holds regardles~ of the 

relative proportion of 1-units to 2-units at the outset. 

Proof of Theorem 1. 

Consider 2 successive trees in the linear family 3, which we write as 

Tc for the coarser and TF for the finer. If the coarser tree has a units 

of ty:-,e t
1 

then we can write the trees (in terms of the starting groups) as 

-.. (5.14) Tc= (£1' tl' 00
·' tl' £2, £2,•••, £2) 
~ ~ 

-
.. 
-
... 

-

· a b 

TF = (tl, £1,•••, £1' tl, £1,•• 0
' £1, £2, £2,•••, £2) 

l_ --.,.. .) ~ ~ 

a d b-1 

where a::: 0, b 2: 1 and d > 2o We now show that T 
C 

gives better results 

than TF if and only if (5.2) holds. Our proof is in three parts; in part A 

we assume that the ratio p > 0 of t
1
-type to t

2
-type units is sufficiently 

~:mall so that the coarsest tree in ~ will exhaust the t 1:type unit first, if 

it i~ repeatedly applied to the units. It follows that all the trees of 3, 

.1nd in particular Tc and TF, wil 1 have the same pruperty. In comparing 

T and TF we will be interested in the events (with reference to the T tree): 
• C C · 

(5.15) B1 = {all t
2
-units are classified and the last one classified is goal}, 

-
(5.16) B

2 
= {all t

2
-units are classified and the last one classified is defective}. 

• We write Q (0 ~ Q ~ 1) for the probability that all t
2

-units are classified and 

· this enables us to write for the events B1 and B2 - - 13 -

-



(5.17) 
t t 

P{B1) = Qq 2 ; P{B2) = Q(l-q 2). 

The Tc tree differs from the TF tree only when all the t2-units are 

classified and only if the last t 2- unit is.defective {cf. (5.3)-(5.6)). 

·This observation leads to the relation 
t 

(5.18) E{TjTF) = E{T'ITc) + Q(l-q 2 )r:1e1 

where 01 is the conditional probability,given a G(t
1
,t

1
, ••• , t 1) situation 

as a starting point,that it will take i tests to return t8 the very neAt 

H-situation. From the T(d, t 1) tree (cf. (5.8)) we note that 

£2 
(5.19) E{TfT(d, t 1)) = 1 + (1-q )Ei0i 

and hence we can write (5.17) in the form 

(5.20) E{TjTF) = E{TITc) + Q[E{TIT(d, t 1)J - 1]. 

Similarly, comparing the units classified, we use (5.16) and obtain 

(5.21) 
t t 

E{N(t1) ITF) = E{N(t1) !Tel + dQq 2 + Q(l-q 2 )Ej9J 

where ej is the conditional probability,given a G(t1 , t
1

, ••• , t
1

) as a 

starting point,that j units of type t 1 are classified by tRe time we reach 

the very next H-situation. From the T{d, t 1) tree {cf. (5.8)) we note that 
t i· 

(5.22) E{N(tl)IT{d, tl)) = dq 
2 + (1-q 2)Ej0j 

;_i,,d hence we can write {5.20) in the form 

(5.23) E{N(t1)1TF) = E{N(t1)1Tc) + QE{N(t1)1T(d, t 1)). 

The two results {5.20) and (5.23), will be used later. 

To compare the trees TC and TF 

or strategies s
1 

and s
2 

defined by 

(5.2lf) s1 = P:J , s2 = 1 ::
2 

\ 

we compare the two horizontal procedures 
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both based on the same numbers of units, Mi of type .ti {i = 1, 2). Under 

the assumption that p = ~/~ is small, the units of type .e1 will be 

depleted first and the expected number of tests under s.{i = 1, 2) needed to 
i 

classify all these units is given by 

._ (5.25) ~ 
E{Tls1) = EfN<.t~ llT_J E{TITc} + 

~ E {N ( .e2) I Tc} 

M2 - E{N(.t1)1TcJ 

E (N(.t2) IT .e2 J. E{TIT .e }, 
2 

... 

.. 
-
-

and the same result holds for s2 if we replace TC by TF. To show that 

E(Tjs1) ~ E{Tjs2) for p sufficiently small is now equivalent to showing 

that 6c ~ ~ where 

1 [ E{N{.t2) Ire) . 1 
(5.26) ~c = E(N(.t )IT J E{TITc} - E(N(t )IT J E(TIT.e J 

1 C 2 .t2 2 

and the same holds for ~ if TC is replaced by TF. 

• Using (5.20) and (5.23) and the additional fact that 

(5.27) E{N(.e2)1TF} = E{N{.t2 )1Tc} - Q, - we obtain for ~ the result {in terms of TC only) 

_. (5.28) ~ = E{N( .e. l IT_] + QE}N(.l. llT(d.t.)] [ E{TITcl + Q[E{TIT(d,.e1)}-1] 

.. 
-
-
... 

-
-.if 

-

(5.29) 

[E{N(.t2) I Tc} - Q] ] 
- { (: )IT J E(TIT.e) 

2 .e2 2 

For convenience we use F, G, H, I, J to denote as follows 

E {TI T .e } 

F = -r-~c. }I... } ; G = E{TITc) - E{N(.t2) ITc)F; 
·2 

H = E{N(.t1)1Tc); I= E(TIT(d, .e1)) - 1 + F; J = E(N(.e1)1T{d, t 1). 

Then by straightforward algebra the inequality ~C ~ '\- becomes 

- 15 -



(5.30) G < G + QI or GJ < HI• H _ l-l ..l. O_T -

If we solve the latter inequality for F, then we obtain 

(5.31) F > 
E(N(t1)1T(d, t 1 )}E{TITc} - E{N(£1)1Tc}[E{TIT(d, £1)} - 1] 

E{N(£1)1Tc) + E{N(£1)1T(d, i 1)}E{N(£2)1Tc) 

To simplify the above result we consider the numerator in (5.31) (call it 

N(T )) and the denominator in (5.31) (call it D(T )) separately with the tree 
r r 

TC replaced by an arbitrary tree Tr in 3. It is easily seen by using (5.20), 

(5.23) and (5.27) that 

(5.32) N{Tc) = N(TF) = N(Tr) and D(Tc) = D(TF) = D(Tr) 

for any pair TC and TF {contiguous or not) in 3. Hence for any TC in 3 

(5.33) N(Tc) = N(Tt) and D(Tc) = D(Tt ). 
1 1 

Using these results in (5.31) and noting that E{N(£
2

)1T£} = O 
1 

we obtain 

(5.34) 
the final resu~~T ) E(N(tl)IT(d, Ll)}E(TITli_} - (E(TIT(d, tl)} - 1). 

F > _..2_ = E(N(tl)ITtl) 
- D(T £ ) 

1 

This proves Theorem 1 for· small p. 

~ar' B of Theorem 1. 

F·Y: given trees TC and TF as in (5. 14) we define p* as the supremum 

c+ -a bes of p for which both trees exhaust the £
1
-type unit first. We 

** define p as the infimum value of p for which both tests exhaust the ~-type 

* ** first; then p ~ p and we can write 

C5 -~-n * E{N(£1)1Tc} ** E{N{£1)1TF} 
P = E(N(t2) IT0 J ' P = E(N(£2 ) ITFJ • 

* ** In Part B of our proof we assume that p < p and consider this interval 

* ** p < p ~ p , where the tree TC exhausts the £2-type unit first and TF 
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- ,, 

.., 'exhausts the .e
1

-type unit first. We consider the two horizontal procedures 

or strategies Si and s; defined by -
-
-
... 
... 

-
-
-

(5.36) t )TC} • r~1 s 1 = 2 T J,l , s 2 = l T J,2 • 

For 

(5.37) 

* ** p < p < p and M. {i = 1, 2) as defined above we have as iri (5.25) 
- l. 

M_ E {T IT ) [ M E {N( .e ) IT } ] E {T I T .e } . , -~ C 2 1 C 1 
E{Tls1} = E(N(L

2
)1Tc} + !\- EN(L

2
)1Tc E(N(t1)1T,,

1
} ' 

(5.38) E{Tls~} = E{Tls2), 

where the latter is the analogue of (5.25). Since our result clearly depends 

only on the ratio p, we can without loss of generality set ~ = p and ~ = 1. 

Then 1'.,r * ** p < p::;: p we can write {5.37) and {5.38), respectively, as 

(5.39) 

* E{TIT .e ) 

E(Tlsi) = E{N(~ )IT J E{TITc) + (p-p*) E(N(.e )jT J • 
1 C 1 t 1 

~ (5.40) 
[ 

E{N(.e ) IT }] E{TIT .e ) 

E{Tls~) = E{N(.eP)IT J E{TITF) + 1 - P E(N(.e2)ITFJ E(N(.e )jT J 
1 F 1 F 2 t

2 

We now regard ·E{TIS!) and E{Tls.) as functions of p and write E {Tjs!) 
... 1. 1. p 1. 

* and E {Tis.) (i = 1, 2). For p = p the second part of {5.37) (in brackets} p 1. 

.. (5.41) 

w (5.42) 

* ** ~ · anishes and we can write for p < p < p - E{TjT 1, ) 

* 1 Ep{Tlsi) = E *{Tisi)+ (p-p) 
p ~ Nl 

1 
* [ E{T.ITF) E{N(.e2) ITF) 

EP{Tls2) = E *{Tls2) + (p-p) EN(.e )IT - E(N(t )IT J 
p 1 F 1 F 

~(~IT~/ · l 
111111 

Since we have already shown that E *{T!s1)::: E *{Tls
2

} in Part A of the proof 
p p 

and because of the linearity in p it is sufficient for us to show that .. 
- 17 --
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(5.43) 
, * E{TITc) ** * E{TITc) . 

E **{Tisi}= P E{N(t )IT J + (p - P) E{N(t )IT· J 
p 1 C 1 t 1 

= E **{Tl S}, 
p 

in order to show the inequality for * ** p <p~p. Using {5.35) to replace 

* ** p and· p · and (5.20), {5.23) and {5.27), to get it all in terms of the 

TC tree, 

where 

(5.45) 

we can write {5.43) as 

G1 [Hl+ QJ Hl] G1+ QI 1 

E**"{Tlsi}=H+ H-Q· -H :v·~ H-Q =E**{Tls~} 
p 2 2 2 2 p 

E{TIT t } 

F' = E{N<',_)IT~ J , G' = E{TITc}, Hi= E{N(.ti)ITc} (1 = 1, 2) 

1 

* ** Straightforward algebra now shows that {5.44) holds for p < p ~ p if and 

only if 

(5.46) 

As in the proof of {5.32) we_ can easily show that the numerator N'(T) in (5.46)
1 

regarded as a function of the tree T, is the same for T = TC as for T = TF 

~nd the same holds for the denominator D1 (T) in (5.46). Thus we can take 

l=· 1~· T any tree in the family 3 and we can replace TC 

obtafoing {since H
2 

is replaced by 0) 

I'H2 + G' = E{TITt }; JH2 + H1 = E{N{t1)ITt }. 
1 1 

in (5.46) by Tt, 
1 

.Urns we have equality in (5.46) and Part B is proved, i.e. , Theorem 1 holds for 

* ** ** p < p ~ p • Moreover we attain equality in (5.2) when p = p • 

. ** In Part C of the proof we conside~ the range p > p where TC and TF 

both exhaust the t 2-type unit first. Defining the horizontal procedures or 

strategies s1 and s" by 
2 

- 18 -



.. (5.48) 

.. we find, as in {5.41), and {5.42) that 

E{TIT.e} 

... (5.49) EP{Tls~} = E **{TlsIJ + (p-p**) E{N(.t
1
)jT.t J (i = 1, 2). 

p 1 

Since we have already that E **{Tisi}= E **{TIS~) it follows from (5.49) 

** that for all p > p 
p p 

._. (5.50) E {Tis")= E {Tis") 
p 1 p 2 

and this completes the proof of Theorem 1. 

Remarks on Desirable Extensions of Theorem 1 • 

.i It would be desirable to find a condition as in Theorem 1 and show that 

it holds for the case of three types of units, say .e1 , .e2 , and Consider 

the case .e1= 1, t2= 2, and .e
3
= 3 as an example; we assume that the three 

types each have proportion l/3. The trees of interest no longer form a linear 

coarse-fine set; in addition to the coarse-fine set for the 2-type case with 

_. .e1= 1 and £2= 2, we now wish to consider trees for (3, 2, 2), for (3, 2, 1, 1) 

and for (3, 1, 1, 1, 1). Tree structures for (3, 2, 2) and (3, 1, 1, 1, 1) for 

q = .9 would be 

_, (r· cl) 
.)•) 

(5.52) 

-

~End 

l
G~i,l~H(l) 

H(l,1) 

G(l,1,1,1 (1,l~H(l,1,1) 
· End x={l, 1) x=l 

H( •) ~ G(3,l,l,1,1) H(l,1,1,1) 
X={3,1,1,l,1) X=3 
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The (3,3,1)-tree (wi~h a total of 7) also maximizes the information on the 

first step when q = .9 but it is eliminated from consideration because any 

strategy beginning with the (3,3,1)-tree aiways does worse than the 

horizontal procedure or strategy 

(5.53) r . (3,3) 1 = (<1,1,1,1,1,1,1)1 
1<1;1,1,1,1,1,1~ 2 (3,3) J 

In other words (3,3,1) is not a good combination for q = .9 because it is 

better to test the l's and 3's separately, in either order. The optimal 

strategy for q = .9 is s< 3) given in (4.1). 
h 

Similar extensions to the case of 4 types and to any number of types of 

units would, of course, also be desirable and the trial and error results 

of · Sectior 4 wili" then become special applications of the general theorem. 

6. Using Recursive Equations to Find the Optimal Horizontal Procedure. 

In this section, we illustrate a recursive equation technique for finding 

the optimal horizontal procedure. It is·done for the case when there are k = 5 

streams of units but the technique is valid for any k. 

We begin testing with c units from each stream where c is large but 

finite. Let H(p1 , p
2

, p3, p4, p
5

) denote the expected number of tests 

needed to classify all the remaining units if we start from an H-situation 

• 

I ' 

, I .... 
I ._ 

·i , 'd.ch cpi units from the i 
th 

stream {i = 1,2, ••• , 5) are still unclassified. '-' 

We assume that at least one of the p. {i = 1,2, ••• , 5) is positive. Then 
1. 

lL ,)l' P2, P3, P4, P5) 

equations: 

(6 .. 1) 

(6.2) 

for the optimal horizontal procedure satisfies the following 

+ H(c1{T
0

),c
2

(T
0
), ••• ,c

5
(T

0
)), 

Min {bi{T
0
)), 

i=l ,2, ••• ,5 
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i . h t d b f i f h · th 1 'f· d st e expec e num er o un ts rom t e 1 stream c ass1. 1.e 

per T
O
-tree .. For given (p

1
, p

2
,.· •• , p

5
), we restrict 3i(p

1
, p

2
, ••• , p

5
) to 

-' the class of all possible trees which maximize the information obtained from 

their very first step. This restriction can be justified by reasoning simil~r 

to that given at the beginning of Section 4. We note that since for some i 

the H expression on the right-hand-side of the eq~ations in (6.1) contains 

at least one more zero than the one on the left-hand-side; we thus define 

_. (6.4) .H(O,O,O,O,O) = O. 

as a boundary condition for the set of equations in (6.1). Let us also note 

that :i(TO) and bi(TO) are functions of pi as well as of rO; this 

._ functional dependence is not explicitly shown in these expre£sions because 

of their resulting cumbersomeness, but should be understood. 

-

We illustrate the above technique in finding the optimal horizontal 

procedure for the case when q., the probability of the i th unit being good, 
1 

· 1 i (. 1 5) h 1s equa to q 1 = ,2, ••• , , were q is close to .9. From the recursive 

equations, we find that 

(6.5) 

whe :·e T 
1 

is the ( 3 ,4 )-tree, where 

b*(r1) = b
3

(T1) = c, E{TIT1) = 2-q7 

c1(r1) = c2(r1) = c
5
(r1 ) = 1, c

3
(T1) = O, c4(T1) 3 = 1-q, 

and where 3'(1,1,1,1,1) consists of the trees 

i
(l,2,4), (1,1,1,4), (3,4), (3,2,2), (3,3,1), ] 

{ 6 • 7) ( 3 , 2 , 1, 1) , ( 3 , 1 , 1 , 1, 1), ( 1, 1, 5 ) , ( 1, 1 , 1, 2 , 2) , ( 1 , 1 , 1 , 1 , 1 , 2) , 

(1,2,2,2), (1,1,1,1,1,1,1), (2,5) 

In finding (6.5), we also find that 

.. (6.8) 

- - 21 -



where T
2 

is the (1,2·,4) tree, where 

(6.9) 

* c{1-q3) I 3 1 b (T2) = b4(T2) = 
3 

, E{T T2) = 3-q -q, · 
. q 

1-q3 (1-q3)q 
c

3
{T2) = c4{T2) = O, c1(T2) = 1 - -

3
-, c2{T2) = 1 - 3 , c5(T2) = 1 

q . q 

and where J( c 1(T 
1
), ••• , c

5 
(T 

1
)) contains the trees 

(6.10) 

(6.11) 

where 

(6.12) 

f ·c 1 , 2 , 4) , ( 1, 1, 1, 4), ( 1 , 1, 5 ) , ( 1, 1, 1, 2, 2) , ( 1, 1, 1, 1, 1, 2) , ] ; 

L<1,2,2,2), c1,1,1,1,1,1,1), c2,5) 

* H(c1(T2), ••• , c
5

{T2)) = b (T
3

)E{TjT
3

) + H(c1(T
3
), .•• , c5(T

3
)), 

, E{TIT3) = 3-2q7, 

T
3 

is the (1,2,2,2)-tree, where 

c(l - (1-q3}q \ 
* q3 } 

b (T3) = b2(T3) = 3 
q+q +q 

* . b (T3) 
c2(T

3
) = c

3
(T

3
) = c4(T

3
) = O, c1(T

3
) = c1(T2) - c , c

5
(T

3
) = 1, 

and where J(c1(T2), c2(T2),oo•, c
5

(T2)) contains the trees 

(6.13) f(1,1,5), (1,1,1,2,2), (1,1,1,1,1,2), (1,2,2,2),J; 
(1,l,l,1,1,1,1), (2.5) . ) 

(6.14) * H(c1(T
3
), ••• , c

5
(T

3
)) = b (T4)E{TIT4) + H(c1(T4), ••• , c

5
(T4}), 

pl,'. 1 T4 is the (1,1,1,1,1,1,1)-tree, where 

l ., ... j) 

* c[cl(T3)] 7 
b (T4) = bl(T4) = 2 3 6, E{TIT4) = 3+q-3q 

l+q+q +q + ••• + q 

c1(T4) = c2(T4) = c
3

(T4) = c4(T4) = O, c
5

(T4) = 1, 

and where J(c1(T
3
), c

2
(T

3
), ••• , c

5
(T3)) contains the trees 

(6.16) lc1,1,5), c1,1,1,1,1,1,1)]; 

and finally 
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-
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-·-

{6.17) H(0,0,0,0,1) a cE{TIT
5
), 

where T5 is the (5)-tree and 

(6.18) E{TIT5) = 1. 

After finding the optimal strategy af each step we conclude that the optimal 

horizontal procedure for q in the neighborhood of .9 is given by 

(6.19) s(5) 
h = 

(3,4) 

(1,2,4) 

(1,2,2,2) 

(1,1,1,1,1,1,1) 

(5) 

as stated at the end of Section 4; the expected number of tests per set 

of un~ts classified, [from (6.5), (6.8), {6.11), {6.14), (6.17)] for q = .9 

is given to at least 4 decimals by 

(6.20) H(l,l,l,l,l) = 1.521703 + (.371742)(1.792703) + (.299813)(2.043406) 
C 

+ (.062956)(2.465109) + 1 

= 1.521703 + .666423 + .612640 + .155193 + 1 

= 3.955959 = 3.9560 (to four decimal places). 

_, The (3,4), (5), {l,2,2,2) and (1,l,l,1,1,1,1)-trees are given at the beginning 

of Section 2, at the end of Section 4 and at the beginning of Section 5, respectively. 

The (1,2,4)-tree is given by 

(6.21) 
~End .,...,.-:tEnd __..AH(4) 

H(•)--------. G(l,2,4)~G(l,2)~H(2,4) 
x=(l,2,4) x={l,2) x={l) 

- i We can similarly show that for k = 2,3,4 and qi= q for i = 1,2, ••• , k, 

- that the optimal horizontal procedures is· given by sik) (k = 2,3,4) 

·defined at the end of Section 4, and the expected number of tests per set 

l.i of units classified for these procedures is 

- 23 -



(6.22) 

H(l,l,0,0,0) ~ l. 1803 , 
C 

H(l,1,1,0,0) =::: 2 .0l88, 
C 

.H(l,1,1,1,0) ::::: 2 •9560, 
C 

respectively. Note that the last result is exactly one less than the result 

in (6.20) where the 5-unit$ are tested one-at-a-time. 

The above calculations were done by hand. The recursive equation technique 

is particularly important because it enables us to use the computer in more 

complicated situations. 

7. Comparison with Finite Models. 

This work on finite models was motivated by an unpublished table of 

R.R. Coveyou [l]. His table can be used for the batch group-testing problem 

if we knew a priori that there is exactly one defective unit contained in one 

of several batches. Then the problem can be handled by known techniques 

in information theory, coding theory, and/or search theoryo 

For example, we might have 10 objects grouped into batches of size 1,2,3,4 

and we want to know which of these four batches is the one that contains a 

particular unit which we call defectiveo All the 10 objects {or units) have 

the same chance of being the defective unit; thus we can call this a homogeneous 

model. The problem is to find in the ~ma.llest expected number of steps (i.e., 

tests) which of these four batches .{or groups) contains the bad unit. Here 

we never break up the batches and at each step we select one or more batches 

and see if all the units contained therein are good or if the bad unit is 

among them. In this problem the optimal procedure is unique and starts by 

testing the single batch of size 4 {not two batches addinR to five or four). 

The expected number of tests is 1.9 and the lower bound by information theory 

is 1.846 according to the table [1] of Coveyou. One of Coveryou 1s.main 

interests was in systematically arranging a large class of such problems. 

- 24 -
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.., Of course, the above model has little in connnon with our problem since 

we do not know at the outset whether any units or how many are defective. In 

our case all the units have a connnon probability q of being good and _p = 1 - q 

of being defective and we assume mutual independence at the outset. Nevertheless 

some numerical comparisons between our problem and that of Coveyou {in addition 

to the fact that he provided a strong motivation) may also be of interest. We 

apply our general method to the same problem as above with four batches of 

sizes 1, 2, 3 and 4; special attention is given to the case q = .9. We 

distinguish an ordered and an unordered problem; in the former we apply the 

restriction that some ordering is given for the four patches {say 1, 2, 3, 4) 

and we cannot classify any batch strictly before one that precedes it; this 

is usually called the "firstcome-first served" property in queueing theory. 

Clearly the unordered problem must give the best results but a basic property 

of group-testing holds for the fixed-ordering problem and not for the general 

unordered case. 

The derivation of these procedures {due to space problems) will be 

published separately. To illustrate the results let H{l,2,3,4) denote the 

..i total expected number of tests required in the unordered problem for different 

values of q. The value of H(l,2,3,4) is given below by seven polynomials 

strung together to form a continuous nonincreasing function, running constant 

- at 4 for q close to zero and decreasing to 1 as q ~ 1; the value at 

q = .9 is 3.0202. 

~1-Procedure Results for Unordered H(l,2,3,4)-Problem 

Polynomials Range Initial Strate.gy 

4 O<q< .6823 1 or 2 or 3 or 4 
3 .6823 ~ q < .8o87 (1,2) or 3 or 4 5-q-q 

6-2q-q2-q5+q 6 
.8o87 ~ q < .8518 (1,2) or 4 

(7.1) H(l,2,3,4) 2 2 3 5 .8518 ~ q < .8679 (1,2,3) or 4 = 7- q-q -q -q 
8 2 3 6 10 .8679 ~ q < .9057 (1,2,3) -2q-q -3q -q +q 

8-2q-q2-2q3-q6-q 10 
.9057 :Sq< .9566 (1,2,3,4) l 2 3 6 .9566 ~ q < 1 (1,2,3,4) 9-2q-q -3q -2q 
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In this unordered case the optimal strategy in the G-situation does not depend 

only on the defective set but also on the binomial set. Thus a basic result 

that holds for batches of size 1 (cf. Theorem 1 of [3]) does not hold here. 

In the corresponding· fixed ordering problem the optimal strategy in the G-situation 

does depend only on the d~fective set and this simplifies the theory. Actually 

we give the numerical answers for several problems related to those used 

in other sections of this paper. For the unordered problem with q = .9 some 

optimal results in the class of NAR procedures (nested procedures that recombine 

binomial sets) are 

(7.2) 

H(l,2,3,4,5) = 3.9588 

H(l,2,3,4) = 3.0202 

a(1,2,4). 2.1296 

For the fixed order problem we use the notation Hf and put the arguments 

in the given fixed order. Then we obtain 

(7.3) 
H~(l,2,3,4,5).= 3.9936, 

Hf(l,2,4,3,5) = 3.9644 

and the latter is the best result among the- 5! = 120 possible fixed-orderings 

uf (1,2,3,4,5). For the fixed-ordering problem with batch sizes (1,2,3,4) 

(7.4) 
Hf(l,2,3,4) = 3.0311, 

Hf(3,l,2,4) = 3.0202; 

the latter result is the same as for the unordered problem and hence is the··best 

result among the 4! = 24 possible orderings of (1,2,3,4). For the fixed-order 

problem with batches of size (1,2,4) we obtain 

and this is already the miniDnlm of the 3! = 6 possible orderings of (1,2,4). 
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The Asymptotic Equivalence of Horizontal and Vertical Procedures. 

Let C denote the number of sets of units; the sets all have a similar 

composition, e.g., (1,2,3,4) is a set of size 4 with respective probabilities 

2 3 d 4 of being good. We note that for finite the horizontal q, q, q, an q C 

type schemes are bona-fide procedures but when c = oo and the strategy contains 

more than one type of tree, they are not bona-fide procedures. Hence it is 

desirable to show for c = oo that for every horizontal procedure ~here is an 

equivalent vertical procedure (i.e., one that will eventually classify any 

given unit in the infinite collection of sets) which has the same "limiting 

efficiency" as the horizontal procedure it is associated with. 

Before we prove the above (as Theorem 3) let us give a formal definition 

of the "limiting efficiency" of both a horizontal and a vertical procedure. For 

the horizontal -procedure, we let be the number of tests used in 

classifying c sets of units and we write its limiting efficiency (denoted by 

Eff = lim 
h c~ oo 

C 

For the vertical procedure, we let T[N] (resp., S[N]) be the number of tests 
V V 

used (resp., sets classified) in working through N trees and we write its 

_limiting efficiency ( denoted by E.f f ) as 
ET[N] v 

(8.2) Eff = lim [NJ 
v N~ oo ES 

V 

Theorem 3. 

For every horizontal 'procedure' Sh with c = oo there is an equivalent 

vertical procedure s whose group-testing efficiency can be obtained by 
V 

analyzing the corresponding efficiency of Sh. 
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Proof: 

The basic idea of the proof is that we can crystallize certain structural 

properties of the horizontal'procedure' Sh that determine the asymptotic 

proportion of the time (i.e.,of the total number of trees used) that we use. the 

trees of each type. In the definition of the hori~ontal procedure the various 

trees are listed in preferential order to ensure that with probability one 

there is no infinite delay in the classification of any units, i.e., no unit 

gets classified after an infinite number of units with positive probability. 

We then argue that the associated vertical procedure must have the same 

asymptotic structure and hence it ·is a bona-fide procedure with the same 

efficiency as sh. 

In the course of the proof we carry along the so-called (1,2,3,4) example 

which starts with equal· proportions of units of type i which have probability. 

qi (i = 1,2,3,4) of being good and, in particular, for q = .9. The general 

nature of our proo~, however, can be carried over to any other such case. In· 

the above case we start with the horizontal procedure 

(3,4) Tl 

(6.3) s<4) (1,2,4) T2 
= = h 

(1,2,2,2) T3 

(1,1,l,l,1,1,1) T4 

which has 4 trees, three of which are given in Figure 1, (5.3) and (5.6) and 

t ! . fourth is, as in ( 6.21), 

( L 1+) 

~End End ..,.;-H(4) 

H( •) .,__~----1G(l,2,4)~G(l,2).L._iH(2,4) 
x=(l,2,4) x={l,2) x=l 

The order of these 4 trees in (8.1) has been purposely arranged so that for 

any (large) finite number c of sets with probability approaching one as 

c ~ 00 , i) the first tree if repeated over and over again will eliminate the 
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~3-units (before the 4-units), ii) the second tree, if repeated, will eliminate 

the 4-units{before the 1-units and before the 2-units), iii) the third tree, 

if repeated, will eliminate the 2-units (before the 1-units, and hence iv) 

the fourth tree will be used infinitely often in the limiting case (c -+oo). 

For any horizontal procedure Sh we can calculate the proportion of 

trees of ~ach type that are used (in the limit as c-+ oo) and thus calcµlate 

its limiting (c -.+oo) efficiency. The particular calculations for 

deferred until later when we use them to illustrate this fact. 

s(4) 
h 

are 

Let the limiting proportion for the Ti tree be denoted by pi (i = 1,2,3,4). 

We first define a vertical procedure s(4), then show it has these same 
V 

limiting proportions and from this fact show that it has the same limiting 

effici~ncy as s~4 ) •. 

Recall that a set (1,2,3,4) consists one of each of the types i.= i 
1. 

(i = 1,2,3,4). A broken set is one for which at least one unit has been 

classified. Since the 3-unit always gets used up when we break a set, this 

is equivalent to saying that at least one unit has been involved in a group

test. Any unit in a broken set is a free unit; if the set is not broken then 

-, it is a bound unit. 

We define a vertical procedure Sv associated with Sh by establishing 

a preference scheme among the different H-(i.e., binomial} situations that can 

arise with respect to free and bound units. We denote a unit of type i as 

an i-unit (i = 1,2,3,4) and a tree that starts by testing (3,4) as a (3,4)-tree. 

For 

(8.5a) 

(8.5b) 

this preference scheme is 

Preference 1: If none of the following 3 preference situations arise 

then test (3,4)(i.e., use the (3,4)-tree) by breaking up a new set. 

··Preference 2: If the free units include a 1-unit, a 2-unit and a 

4-unit, then use the (1,2,4)-tree. 
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(8.5c) 

(8.5d) 

Preference 3: If the free units include a 1-unit and three 2-units, 

but no 4-units, then use the (1,2,2,2)-tree. 

Preference 4: If the free units include seven 1-units, but (no 

4-units and at most two 2-units) or (one 4-unit and.no 2-units), 

then use the (1,1,1,1,1,1,1}-tree. 

The event in Preference 4 dealing with one 4-unit and no 2-units can be 

neglected asymptotically since we are eliminating 4-units before 2-units with 

probability approaching one as c ~®; in fact we claim that this event 

cannot occur at all. 

These four preference rules implicitly define a vertical procedure s . 
v' 

we can describe a small part of the procedure by 

(8.6) 

L
H(l,2,1,2,1,2) 

· x=(l,2,2,2) 

~H(l,2,1,2) G(3,4jl,2,l,2,1,2) 
/' x=(3,4) x=(3) 

H(l,2)----- LH 
x=(3,4) ., ., x=(3,4) 

H( • G(3,4j 1,2),,,,,.,, )H(l,2,4 G(l,2,4) 
x=(3,4) x=(3) x=(l,2,4) X=(l,2) 

where H(•)indicates a binomial situation with no free units; H(l,2)[say] 

-indicates that a 1- -artd 2-unit are free, etc., and where the dashed lines 

lead to states not filled in. 

1 ·~ now note that both the vertical procedure defined by (8.3) and 

tl,P horizontal 'procedure' s~4 ) defined by (8.1) have certain properties in 

conunon that characterize the asymptotic structureo These are 

1) Every 3-unit is tested with a 4-unit. 

2) Every 4-unit that is not classified by 1) is tested simultaneously 

with both a 1-unit and a 2-unit. 

3) Every 2-unit that is not classified by 2) is tested simultaneously 

with a 1-unit and two other 2-units. 
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C ~ 00 

4) Every 1-unit that is not classified by 2) or 3) is tested simultaneously . 

with six other 1-units. 

Implicit in these properties is the ·fact that with probability~ 1 as 

the 3-units get depleted first, then the 4-units, then the 2-units and 

finally the 1-units. These four properties determine the relative proportion 

of the trees that are (3,4)-tr~es, {1,2,4)-trees, (1,2,2,2)-trees and 

(1,1,1,1,l,1,1)-trees which nn.1st of course add to one. Since s(4 ) and s<4 ) 
V h 

have the same asymptotic structure and since s~4) has been constructed so 

that with probability~ 1 as c ~ 00 there is no infiniLe delay in classifying· 

any one unit, the same property must also hold for s(4). 
V 

This proves that 

is indeed a vertical procedure and justifies our notation for it. More-

over L1e· above four asymptotic ( c ~ 00) relative proportions for 

also hold for s~4 ). In particular, with probability ~ 1 as 

s<4) must 
h 

C ~ oo the 

(1,1,1,1,1,1,1)-tree will be used infinitely often in the vertical procedure 

s(4). 
V 

We claim that the above result holds for any associated pair of horizontal 

procedure Sh and vertical procedure s . 
V 

The properties that we want for 

the vertical procedure S , such as no infinite delay, are built beforehand 
V 

into the horizontal procedure Sh. The horizontal procedure Sh then becomes 

~imply a mathematical convenience for calculating the asymptotic {c ~ 00) 

properties of the vertical procedure 

Illustration. 

s • 
V 

,_ After studying the efficiency of various horizontal schemes (which are 

easier to work with than vertical schemes) by trial and error methods as in 

Section 4 we decided for q = .9 to first use the (3, 4)-tree and finally 

arrived at the horizontal procedure in (8.3). Not only can we say that 

th~ 3-units are depleted but the proportion of 4-units remaining {assuming 

a large number C of sets of units) is 
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(8.18) Prop. (4's after Step I)= 1 - q3 • 

A simple analysis of the (1,2,4)-tree in (8.4), which makes up our Step II, 

shows that for q = .9 the 4-units are depleted before the I-units or the 

2-units. Since the probability of classifying the 4-unit ~s q3 it follows. 

that we use the (1,2,4)-tree N(l,2,4) = c(l-q3)Jq3 times compared to the 

(3,4)-tree being used N{3,4) = c times. Since the 2-unit is classified ln 

Step II with probability q · it follows that the proportion of 2-units after 

Step II is 

(8.19) -
l-q3) Prop. {2's after Step 11) = (1 = 
q2 

":) 

q2 + q-'- 1 

q2 

In Step III we analyze the (1,2,2,2)-tree given in (5.3) and find that for 

q = .9 the 2-units get depleted before the 1-units. Also the expected 

number of 2-units classified by the {1,2,2,2)-tree is q + q3 + q5 and hence 

the number of these trees used is 

(8.20) 

Note that we definitely use up one 1-unit per tree in Steps II and III. Hence 

the proportion of I-units after Step II is l-(l-q3)/q3 = (2q3-1)/q3 and after 

Step III it is, using {8.20), 

( " \_ .•. - .L' Prop.(1 1s after Step III)= 243- 1 _ (q
2

+q
3
-l)ll-q

2
) = q+q

2
+q

3
+q~-2q

7
-2 

q3 q3(1-q) q(l-q) 

SJ ·~ r~nch tree in Step IV classifies (1-q7)/(1-q) unitsof Type 1, it follows 

that the number of trees used in Step IV is 

{8.22) 

The sum of these four N-values {divided by c) is found to be 

(8.23) 
4 2 3 4 l -q-q -q -q ( ) c I::N = 7 = D say 

1-q 
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1-i 'and hence the four desired relative proportions are 

(8.24) 
1 1-q3 (q2+q3-ll(l-q2) -2+3q-q5-2q7+2q8 
D, q3D , . q3(1-q )D , q(l-q6)(1-q7)D 

for the trees used in Step I, II, III, and IV, respectively. For q = .9 the· 

numerical values for these four proportions are .576531, .214321, .172852, and 

.036295, respectively. 

An interesting result about the computation in (8.23) and (8.24) is that 

1 D = - EN represents the asymptotic (c ~oo) expected number of trees required 
C 

to classify one set. Since there are no infinite delays, D/4 is the asymptotic 

{c -?oo) expected number of trees per unit classified. Hence 4/D is the 

asymptotic (c ~oo) expected number of units classified per tree used; this 

holds ior both procedures and s(4) 
V • 

Hence the use of D as a normalizing constant puts our calculations on 

a per set basis and if w~ multiply through by 4 in (8.24) the proportions will 

be on a per unit basis. In other words, for the number of units. U that are 

classified per tree used we can write the identity, using (8.24) 

(8.25) lim E{U) = ½{(l+q3)1 + (l+q+q3)(1-j3
) + (l+q+q3+q5) ~q

2
+q

3
-l4 

C-? oo q q (l+q2 +q ) 

7 ( 5 7 8 + ( 1-q )-$.r3q-q -2q +2q)} 4 
1-q q(l-q6)(l-q7) = i5' 

the "dentity being obtained by cancelling D in the last two parts of (8.25). 

Th,_: four quantities (l+q3), (l+q+q3), (l+q+q3+q5) and (1+q+q2 +q3+q4+q5+q6 ) 

used in (8.25) represent the expected number of units classified in each of 

the four trees that make up our strategy s~4) in (8.3) and each is easily 

i..1r obtained by a simple analysis of the appropriate tree. 

The asymptotic (c-? oo) efficiency is the ratio of the asymptotic expected 

number of tests to the asymptotic expected number of units classified. For 

· the (1,2,3,4)-problem using the result (8.25), we can write the asymptotic .... 
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; 

I 

efficiency ( on a per unit classified basis} of any strategy S with no infinite . U 
delays as 

lim E{Tls) 
(8.26) ( ) 

C-? 00 · 

Eff 8 = lim E(u!s) = f lim E{Tls) 
C-? 00 

C-? 00 

and we multiply this by 4 to put it on a per set basis. For the- strategy 

s~4) the 'per-set' efficiency Eff' reduces to 

(8.27) Eff'(S~4)) = (2-q7) + (3-q3-q7) (1-q3) + (332q7)(q2r3-1) 
. q3 q (1+q2+q) 

+ (3+q-3q7)(-2+3q-q5-2q7+2q
8

) 

q(l-q6)(1-q7) 

This has some nice properties. Suppose we consider the corresponding 

(1,2,3,4,5)-problem using the same procedure s~4 ) and testing each 5-unit 

separately; call this s~5). For the vertical procedure s~5) the 5-units 

are tested when they are free and again there is no infinite delay. Then 

the efficiency on a set basis for or s<5) 
V 

is obtained by simply adding 

1 to the result in (8.27). 

For q = .9 the numerical value for s~4 ) s<4) 
V 

and in(B.14) is 

?..956o and, as mentioned above in Section 4,this was found to be optimal. For 

t:he (1,2,3,4,5)-problem with q = .9, the optimal procedure is the one 

d,· ,_.ribed above, i.e., the procedure associated with 

thi:> optimal efficiency is 3.9560 for q = .9. 
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9. Lower Bounds. 

For each of these problems one can obtain lower bounds exactly as was 

done in previous papers [3], [4], [5]; we omit their derivations. One lower 

bound is based on information lower bound (we denote it by ILB) and it is 

given by 

(9.1) ILB = -~Qilog2Qi 

where the sum is over all possible states of nature for each set, Q. is the 
. l. 

probability of the i th possible state and m. =-= i. For example, in the 
l. 

H{l, 2, 3, 4) problem {finite or infinite model) we consider the 16 possible 

states of nature: all four batches are good with probability Q
1 

= q 1? the 

4-unit is good and the others are bad with probability Q2 = q
4

{1-q){l-q2 ){1-q3), 

etc., so that i runs up to 16 in (9.1). 

For q =-= .9 we obtain for the three problems H(l,2,3,4,5), H{l,2,3,4) 

and H{l,2,4), respectively, 

(9.2) ILB(l,2,3,4,5) = 3.9181; ILB{l,2,3,4) = 2.9ll-19; ILB(l,2,4) = 2.0~0. 

Recall that we obtained for the infinite model· 

~ (9.3) H (1,2,3,4,5) = 3.9560; H (1,2,3,4) = 2.9560; H (1,2,4) = 2.1196 
00 00 00 

and for the finite model we obtained 

(9.4) H(l,2,3,4,5) = 3.9588; H(l,2,3,4) = 3.0202·;· H(l,2,4) = 2.1296. 

The other lower brund is always superior to, i.e., larger than,the ILB. 

It is the expected length of the most economical code due to Huffman for the - given probabilities Q.; we denote it by HLB. 
l. 

The procedure of deriving it is 

lat described in [4]; there is no explicit formula for this lower bound. For 

q = .9 we obtain in the above three problems 

(9.5) HLB{l,2,3,4,5) = 3.9469; HLB(l,2,3,4) = 3.0035; HLB(l,2,4) = 2.1174. 
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It is interesting to note that while the ILB is a iower bound for 

both models the HLB:is a lower bound only for the finite model; this 

further justifies .the consideration of both bounds. The HLB (ILB) 

is generally not attainable by any nested group-testing procedure 

in the finite (in either) ~odel. 

:1 • 

In the finite model·version of the (1,2,4)-problem it'is.interesCing:to 

note that a non-nested procedure does exist that attains the HLB at the right 

end of (9.5). * The following non-nested procedure R 

(9.6) 

End End End End End End End 

H(l,2,4)4 G(l,2,4) t G(l,2) t J(l2,14)4 H(2,4) ~(2,4)4 H(4) 4 End 
· test(l,2) test(l,4) test(l) test(2,4) test(2) Test(4) 

consisting of a single chain of length 7 and terminating arrows elsewhere, d·oes 

attain the HLB for q = .9. The fact that we tested (14) after 1(12) was bad' 

(and had to write something other than G or H, namely, J(l2, 14) in (9.6)) 

* shows that the procedure R is not a nested one. In fact, the expected 

number of tests is easily shown to be (compare with the HLB in (9.5)) 

( 'j. 7) 

and the latter is 2.1174 for p = .1. The same procedure can be applied in 

:in tJV i ,,us manner to the infinite model, simply by repeating the operation 

on s 11c•.:cssive sets, and the HLB is the resulting measure of efficiency. 

Some discussion of when the HLB is attained for the case of a common 

(known) q is given in [5] but the general case of unequal q's has not been 

thoroughly investigated. In general, if we start with four or more batches the 

HLB is not attainable; we conjecture that it is not attainable in the other two 

problems, (1,2,3,4) and (1,2,3,4,5), discussed above for non-trivial q. In 

particular, for q = o9 we conjecture that these twp p~oposed nested procedures are 

- 36 -

J 

I 

I 

Ii.I 

I 

I 

.J 

.... 



-

-
-

... 

• 

,optimal among all group-testing procedures. 

For the (1,2,3,4)- problem it should be clear from (9.3) and (9.5) 

that even if there existed a procedure R that attained the HLB = 3.0035 

in the finite model, the analogue or repetition of R for the infinite 

model would still not compete with the proposed nested procedure.8(4) 
V 

(cf. (8.3) through (8.6)) which has efficiency Hm(l,2,3,4)=2.9560 < HL:B;:3.0035. 

This whole question of when there exists a non-nested procedure that is 

better than the proposed nested procedure will have to be treated in a 

separate paper. 

- 37 -



Acknowledgement. 

The authors wish to acknowledge a number of conversations with Professor 

s. Kumar of the Canadian Government, Department of Indian and Northern Affairs. 

Thanks are also due to Professor R. A. Elashoff since the basic ideas were 

developed.while working on contract NIH-E-71-2180 at the University of 

California Medical School in San Francisco, Califo~nia. The author~ also 

wish to acknowledge with thanks the help of Dr. w. E. Lever of the Oak 

Ridge National Laboratory, Oak Ridge, Tenn. in deriving the exact form of 

the procedure R1 for the (1,2,3,4)-problem as given in {7.1). 

- 38 -

• 
~ ... 
• 

~ 

I 

~ 

-



-

, 

'Appendix to Section 5. 

In this appendix, we give a partial proof (indicating where it is not 

complete) that if we restrict our attention to trees which maximize the 

information on their very first step (in the H-situation), then Condition (5.2) 

for the application of Theorem 1 is always satisfied. (we also assume, as 

usual, that all trees under consideration satisfy (ii) of Section 4 above.) 

Since we are often interested in trees which maximize this informa.~ion, Theorem 1 

provides us with a valuable tool in our search for the optimal procedure. 

Let denote the root of a a+l 1-x -x = O; it is easily seen that 

these roots increase with a and converge to 1 as a~ oo. For any given q, 

this sequence determines an integer m = m(q) such that 

(with equality on either side, say q < q 1>. - m,m+ 

qm-1,m < q < qm,m+l 

It is shown on p.1215 of 

• [ 3] that for trees which only use one type of unit, each with probability q·of 

being good, the choice of(the above) m = m(q) such units to test on the 

initial H-situation maximizes the information. The integer m in turn 

determines two other integers when we write 

(5.54) 

thus for m = 4, we have ~ = 2 and a= o. * Let H (m) denote the expected 

number of tests to get from one H-situation to the next, if we use m units 

in our first test.Now (5.54)is in accord with equation {20a) on p. 1190 of [ ] 

._ ~nd from (23) of [ 3 ], we easily obtain 

(5.55) ... 
where m is chosen to maximize the information from the first test in the 

_. initial H-situation. The result given in (5.55) was shown to hold in an 

interval ending at q = 1 but the fact that this interval always starts to 

the left of q 1 has been verified up to m = 16 (and beyond) but not shown 
m- ,m 

111111 ·to hold for all m; all the calculations to date support this conjectureo 

This conjecture has been proved by F. K. Hwang in [2]. 
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Suppose we are wQrking with two types of units, say e1 = 1 and e2 = d· 

d is a positive integer), i.e., q· and q are the probabilities of being 

good for the two types. of units. a Let m =.2 + 13 be the maximizing-information 

value for all q in the interval q < q < q and define T
1 m-1,m - m,mrl 

the tree that initially tests m of the 1-units. It follows 

* that E{TIT
1

) = H (m) as given in (5-.. 55).. It is also easily seen that 

(5.56) 
. m 

I 
m m-1 ( ) m-2 o 1-q E{N(l) T1) = mq + mq p + m-1 q p + ••• + lq p = l-q • 

to be 

Let us first consider the case when dz 2. Then T(2, 1) starts with x = (1,1) 

and 

(5.57) E{TIT(2,1)) - 1 = (1-q2
); E{N(l)IT(2,l)) ~ 1 + q. 

Hence for che right side of (5.2), we have 

(5.58) 

Let T
2 

be the tree which uses only the 2-units and maximizes the 

information on its first step. Suppose m is odd and hence (for m > 1) 

m-1 · 
cannot be a power of two. At this.point we are not sure whether 2 or 

-·';
1 two's maximize the above information. Consider T

2 
first with m;~ two Is 

and then (later) with ~l two's. We use the same formula as in (5.55) above 

wi~h q replaced by q2 and (m, a, 13) replaced by cm;l 'a-1, 13; 1), 

-ri-=-, :)·.tively. This gives for procedure T
2 

(5.59) E{TIT2) = a(l-qm-1) + qm-1-2(13-1). 

m-1 . , starting with 2 twos 

Similarly, using {5.56) with {q, m) 

m-1 

1 db ( 2 m-1) . . 1 rep ace y q, 2 , respective y, 

(5.60) E{N(2)IT(2)) = _l-_q_ 
1-q2 

and hence the left side of (5.2) is given by 
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ta.I· {5 .61) 
E{TIT2) :. l-q2 m-1 m+l-2~ -cc JI- 1 :z!! m-1 [0'(1-q ) + q J. 

2 1-q 

.... To show the inequality in (5.2) is equivalent to showing that 

.... (5.62) 
m+l-~ m-2~ 

q > q 
m-1 - -. -m-

1..;,q 1-q 

and this in turn is equivalent to showing that - (5.63) q(l-qm)?: (l-qm-1) 

~ or that 

1a1 (5.64) 
m-1 m 

1-q - q ~ o. 

... 

I.I 

The latter inequality holds for q > q 1 • 
m- ,m 

We now consider T2 with (~1) two's 

cases according as (i) 0 < S < 2Q'-1 or (ii) 

and break things up into two 

Q' Q' 1 a = 2 - 1. rf o < a < 2 - , 

we have from (5.55) and (5.56) with 

._ a;1), respectively, 

(q, m, Q', a) replaced by (q2
, ~

1 , Q'-1, 

(5.65) 
..i 

E {T·, T2} = a( l-qnH-1) + qm+l-2([3+1), 

(5.66) 
i.. 

nH-1 
E(N(2)IT2) ~ l-q 

1-q2 

Then the left side of (5.2) becomes 

la 

( 5.frr) 
E{TIT2) 1_42 ( mt-1) ra-1-2[3] 

- -----=- [a 1-q + q • t c JI 21 - l-qrn..1., - Hence, comparing with (5.58), we have to show that 

._. (5.68) 
m-l-2f3 m-2f3 

q > q 
mt-1 - m 1-q 1-q .. and this is easily seen to be equivalent to 

-(5.69) 
m m+l 

1-q - q ?: o. 
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The latter holds for q < q 1· - m,m+ 
If 13 = 2a-1, then from (5.55) and (5.56), 

m+l ) with (q, m, .Q', 13) replaced by (q2 , 2 , a, 0 , it follows that 

(5.70) 

(5.71) 

E{TIT2) = ct(l-qm+
1

) + 1, 

1-qm+l 

l-q2 

Again in this case {namely when 13 = 2C/- 1), (5.2) is true if and only if 

(5.72) 

Hence the inequalities (5.64), (5.69) and (5.72) all hold for qm-l,m ~ q ~ qm,m+l' 

which is exactly the interval we assumed at the outset. The case m even 

must also be considered but it is easy to see that this leads to equality in 

(5.2). We have thus proved for the case d = 2 the following theorem: 

Theorem 2. 

Let the two types of units be the e1 = 1-unit and e
2 

= d-unit. If we 

restrict ourselves to trees which maximize the information on their initial 

step (and also satisfy (ii) of Section 4) then condition (5.2) always holds. 

It is our conjecture, though, that Theorem 2 is true for all d > 2. In 

ine with this conjecture, we extend the proof of Theorem 2 by virtue of the 

following lenmia: 

Fm· any two divisors of· m, say a' > a, 

(5.73) 
E{TITa) E{TITa,) 

E{N(a)ITaJ ~ E{N{a')ITa,J 

where T (resp., T ,) is the tree which maximizes the information on its a a 

initial step and works only with a-units (resp., a '-units)' i.e.~ with 

a a' 
unit·.:c-; having probability q {resp., q ) • We prove Lemma 1 for a = 1 and 2 

and conjecture that it is true for all a. The case a= 2 is the one needed 
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._ to show that Theorem 2 holds for all values of d =a'> a= 2, which are 

multiples of 2 and divisors of m. This is so because by proving Theorem 2 

for d = 2, we.have shown that 

_. (5.74) 
E{TIT2} 

E{N(2 )1T
2

} 2: rightside of (5.2), 

and, together with (5.73), this implies that 

(5.75) 
· E{TITa,) 
E{N(a')!Ta,}?: right side of (5.2), 

which in turn proves Theorem 2 for d = a'. 

_, We now prove Lemma 1 for a = 1 and 2. Let m = 2a + f3 (o ~ f3 < 2a), 

where we are writing a for a{m) and 13 for f3{m). Let m be chosen so 

that q 
1 

< q < q 
1

• The number of units we test on the first step of 
m- ,m - m,m+ 

the T, 
a 

tree is thus m/a' (recall that a' is a divisor of m). Replacing 

{q, m, a, 13) by 
a' 

{q , m/a', a{m/a'), 13{m/a')) in (5.55) and (5.56) gives us 

(5.76) E {N( a' ) IT .J = 
a 

, m-2a '13(m/a') 
(1-qa ){a{~)+ 1 + q ). a 1 m 

-q 

._ Let a{m/a) = a*; for a= 1 or 2 or any power of 2, 13{m/a) = 13/a. It 

thus follows that 

(5.77) 
E{TjTa) 

E{N{a)ITa} 
a * qm-213 

= (1-q ){a + 1 + m }. 
1-q 

We say x and y belong to the same power cycles if they have the same 

-, r-·-value, i.e., a{x) = a{y). 

Part 1: Assume m/a and m/a' are in the same power cycle. 

Suppose first that a= 1 and the above assumption holds; then to prove 

-.i Lelllllla 1, we have to show {by (5.76) and (5.77)) that 

m-2f3 , * m-2a '13 ( m/ a ' ) 
(1-q){a* + 1 + q } < (1-qa ){a + 1 + q ). 

m - m 1-q 1-q 
_. (5. 78) 

- 43 -



a' Since a' > 1, 1-q < 1-q and since a{m/a') 2: 0 it suffices to show 

that 

(5.79) 
2a a'-1' 

1 ::S q (l+q+ ••• ,+q ) • 

Since a'> 2 we have at least two terms on the right side of ·(5.79) ~nd we 

can disregard the remaining terms. Since a< m/2 it follows that 2a ::S m-1 

and hence the result follows since 

(5.80) 

Suppose a= 2 and the assumption of Part 1 holds. We have to show that 

(5.81) 
m-2a d' * m-2a'a{m/a') 

(1-q2 ){a* + q ) < (1-q ){~ + q ) 
m - m 1-q . 1-q 

or that 

(5.82) * 2(1 a'~2){1 m) (1 a') m-2a'a{m/a') > (1 2) m-2a a q -q -q + -q q - -q q • 

Since a{m/a) = a - 1 for a= 2, we have by the assumption of Part 1 

(5.83) m 2 a-1 B a-1 ( / ') -:-r=-:-r2 +~>2 =a ma 
a a a -

and hence, since a'> 2, 

(',,. 84) J3 ( m/ a• ) = ~a - 2a-1 = ~ - ( 1 - ~) 2a-l > ~ • 
a a a 

1hus we can replace m - 2a'a(m/a') in (5.82) by m-2a and it suffices to 

,. n;.ch obviously holds; this completes the proof under the Part 1 assumption. 

~art 2: Assume m/a and m/a' are not in the same power cycle. 

We will show that it suffices to assume adjoining power cycles, i.e., 

* a{m/a) = a =1-t-a(m/a'). 
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Suppose a= 1 and that m/a and m/a' are in adjoining power cycles. 

Using (5.76), (5.77) and the fact that S(m/a') 2: 0, it is sufficient to show 

that 

(5.86) * a a 1 -a · · m a I m m-2S a m a 
a q (1-q )(1-q ) + (1-q )q 2: q (1-q ) + (1-q }{1-q ) • 

For m = 2 we take a= 1 and a'= 2 and the inequality reduces to 

... 1 - q - q2 ~ O, which holds for m = 2; hence we can assume m 2: 3. For a = 1, 

* a ~ 1 we first treat 

Case 1: a'> 2a = 2 and m > 2S + 1. 

· Dividing (5.86) by 1-qa, and using the facts that a 1-a a 
1-q 2: 1-q and 

(5.87) a' 2a a a 
1-q ~ 1-q = (1-q )(l+q) 

it sutiices to ·show that 

._. (5.88) a( m) m( a) m-2a ( m) q 1-q + q l+q 2: q + 1-q • 

Since m m-1 1-q ~ q , it suffices to show that 

a m-2a > m-1(1 ) q - q - q -q. 

or equivalently that 

m-2S-2 m-2 1 + q + ••• + q ~ q • 

._. Here we use the fact that m > 2S + 1 or m - 2S - 2 ~ O. 

.... 

For the case m = 2S + 1 we disregard the possibility that a'= 2 

since m is now odd and cannot be a multiple of 2. 

Case 2: m = 2S + 1, a' 2: 3 • 

From (5.86) by substitution and straightforward algebra we now have to 

i- show that 

(5.91) 
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or equivalently that 

(5.92) 2 3 a'-1 2s+1 
q + q + ••• + q 2: l-2q 

Since there is at least 1 term on the left side of (5.92) we have to show that I I 

i i , I .. 
(5.93) 

\ i 

which holds for m = 2B+l:;:: 3 since the first three terms alone.are nonpositive. LI 
If m/a and m/a' are * (k+l) cycles apart (k = 1,2, ••• ) then o ~ (k+l), 

a' > -:> and - .) 
m?:: 3. Using (5.76), (5.77) and the fact that a(m/a'):;:: 0, it 

is sufficient to prove that 

a a'-a) m) ( a' m m-2S a ) m) a (k+l)q (1-q (1-q + 1-q )q 2: q (1-q) + (k+l (1-q (1-q ). 

* ' Using the fact that (5.86) is true for a = 1, proving (5.94) amounts to 

proving that 

(5.95) 
a a' 3 

1 - 2q + q < 1 2q + q ~ 0 

or that 

(5.96) (1-q)(1-q-q2 )::: o; 

this holds even for m > 2. 

Since a' cannot be less than 2 for a= 1, we have completed the 

proof for a= 1. 

Now we consider the case a= 2 with m/a and m/a' in adjoining power 

c ··>s, i.e., under Part 2. Again we wish to show (5.86). Since a ::5 m/2, it 

* fullows that m/a > 2 and hence a ::=: l; it suffices to prove (5.86) with 

... 1 as before .. 

Case 1: a' > 2a = 4 and m > 4. 

From (5.86) we have to show that 
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. ~ .. 
0 

' ._ Since 1 - q8 -a> 1-qa for a' 2: 2a, it suffices to show that 

(5.98) q2 ~ l + qm-2a_ 2qm - m m-1 or, replacing 1-q by q , that 

• (5.99) q2(1-qm-2a-2)::: qm-1(1-q) 

... 

... 

-

or equivalently that 

(5.100) q2 + q3 + + m-2a-1 m-1 . • •• q ~ q • 

For m::: 2a + 3 the result follows from (5.100); hence we need only consider 

the two remaining possibilities m = 2a + 2 and m = 2S + 1. Since a= 2· we 

rule out m = 2a + 1 since m must be even to be a multiple of a. For 

._ m = 2a + 2 we need only consider a::: 1 since m::: 4 • 

... 

.... 

[Remark: We note that the smallest m of this type is m = 6 with a'= 6 

and after that we have m = 14 with a'= 7 or 14; we note that S(m/a') = 0 

in these cases.] 

Since m = 2a + S = 2a + 2 it follows that S is an even integer and 

1a11 hence m = 2S + 2 contains a factor of 2 but not 4. Hence a' > a must 

... 

1..1 

... 

contain a factor other than 2 and since a'> 4 we can assume that a'::: 5 

or that a' - a::: 3. It now follows from (5.97) that it is sufficient to show 

that 

(5.101) q2(1+q+q2) 2:: (q2+1-2qm)(l+q) 

or, using the fact that m m-1 1-q ~ q , that 

._ (5.102) 44 ::: 4m-1(1_42) 

and this clearly holds for m:::5• If a' < 2a = 4 then we need only consider 

... 
a' = 3 and m > 6. 

Case 2: a' = 3, a = 2 and m > 6. -
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* m For 13 = O the inequality (5.86) with a = 1 reduces to 1 - q - q ::: 0 ... 

which clearly holds for m ~ 2; hence we can assume f3 ~ 1. In this case 

(S ~ 1) we need the exponent 2a'S{m/a') in (5.82). Since a'< 2a (strictly) 

* 
(5.103) 2a'13(m/a') = 2(m-a 12a - 1) = 2m - ~(m-a) = m;3a 
and hence m - 2a'S(m/a.1 )::: (m-313)/2. Using (5.100), (5.101) and the above 

* result (5.103) and then setting a = 1, it suffices to show that 
m-3~ 

(5.104) q 2 {1+q+q2 ) ~ {l+q)qm-2S + (l-qm)(l+q-q2 ). 

Replacing 

(5.105) 

1-qm by qm-l and dividing by qm-2S, it suffices to show that 
a-m 

2 . 2Q-l 2° 2Q+l q (l+q+q2 ) ~ 1 + q + q ~ + q ~- q ~ • 

Since 13: (m-1)/2, and m ~ 6, the powers on the left side of (5.105) are 

at most (-m-1)/4 + 2::: 1/4 and since ql/4 > q, q-7/4 ~ 1 and q-3/4 ~ 1, 

it suffices to show that 

(5.106) 1 213-1 > 213(1 ) - q - q -q 

or equivalently that 

2s-2 213 1 + q + ••• + q ~ q 

and this clearly holds for 13 ~ 1. 

l1'· M11.k: Although we assumed m ~ 6 in the above, the assumption that m/a 

anrl 11 1
/ a.' are in adjoining cycles actually requires that m be at least 18, 

.in wh;, h case m/a = 9 and m/a 1 = 6. If m/a and m/a I are more than 

one cycle apart, then the same argument as in (5.94), (5.95) and (5.96) shows 

that the result holds a fortiori.] 

This completes the proof of Lemma 1 for a= 1 and 2. 
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