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Suﬁmary. If a complete two-way table with one observation per cell
is written so that the rows and columns are ordered, least to greatest for
each, then the entry in the ij-th cell of the reordered table is called the
ij-th two-way order stati stic, Under the random effects model, the moments
of the two-way order statistics can be simply expressed in terms of the
moments of the usual (one-way) order statistics. Using these relationships,
linear unbiased estimates of row and column effects are,obéained. Tests for
normality among row effects and among column effects similar to the W test

proposed by Shapiro and Wilk (1965) are also derived,



1. Two-way order statistics. Consider an rxc table with one observation

per cell. The usual random effects model is as follows:

i=1,2,...,r; j=1,2...,c

X..=p t+ta, +b, +e
iy ~ i j ij
QiI {ai}’i-bj}"{eij}’ are independent, normally (1)
distributed with zero means, and variances
R 2 2
given by Ops Op and °,. respectively
We shall assume this model throughout,
A subscript replaced by a ".'" denotes an average over that subscript,
‘Thus, for example, X, =2 Xij/c is the i-th row mean. Let X(i°) be the i-th

]
smallest row mean, i = 1,2,...,r, and X('j) be the j-th smallest column mean,

j=1,2500e5 ¢c. We shall call the observation in the row with the i-~th
smallest mean and in the columm with the j-th smallest mean the ij-th two-
way order statistics. Thus, when we

reorder the rows and columns of the table according to means, least to
greatest for each, then x(ij) is the observation in the ij-th cell of the

reordered table. For example, Table la gives a realization of a 5x5 table

of unordered observations from,QII with oz = og = =0 and o: = 1 (this is the

null case of no row or column effects). Table lb gives the reordered table

of the X Note the general orderliness of the table, with large values

ian:
near the southeast corner and small values near the northwest cornmer. 1In

this table, is not the largest observation in the table.

X (55)

Table 1 about here

Let M = X be the grand mean of the observatioms, Ri = (Xi.- X,.) be
the i-th (unordered) row effect, Cj = (X-j - X ) be the j-th (unordered)
column effect, and Dij = (xij - Xi- - X-j + X ,) be the ij-th residual. As
in analysis of variance, we have the identity

X,.=M+ R, +C, +D,.. (2)
1] 1 J 1]



The four terms M, Ri’ Cj’ and D,, lie in orthogonal subspaces and are

ij
independent (by normality). Let g be any function of R’ = (Rl"“’Rr) and

h be any function of C’ = (Cl"°°cc)' Then M, g(R), h(C), and D,, are

ij

independent, and the distributions of M and D,, are unchanged. Specifically,

ij

let g be the function that orders the Ri's:_ g(R) = (R(l)""’R(r)) where -

R - X, ), and let h order the Cj's: -h(C) = (C

@ = Fiey %)’

where C(j) = (X(-j) -X ). The Dij are independent and identically distributed
and hence are uneffected by permutation of subscripts, Thus the ij-th two-way

order statistic can E; writteﬁ'+ R 4C +D 3
(i3 ~ (1) (i) (13)

where the four terms on the R.H.S. of (3) are independent, and D(ij) =

X,... =X, ..-X .. +X is distributed as any of the unordered D,..
(13 T @ ten” e Y 1]

2, Moments of two-way order statistics, We can now prove the following

theorem:

2 _ 2
Theorem. Let SA = oA

Then, writing u(iln) for the i-th order statistics from an independent normal

2 2 2, 2 2
+ ce/c, 85 =0p *+ ce/r and S* =g¢

2 2 2
A Togtog

sample of size n, we have

B(X(g5) =B+ S3E@) ) +S E(u( ey (%)

Var(X; ) = s+ S2I1 - var(u g )1 + s211 - Var(u 4] (5)
SRy K ggy) = o - SplL - Var(ugg) )1 SiCoviu g g ) o A (6)
COV(X(i.),X(kj)) = ; + SZCov(u( | )’u(k|r) sg[l - Var(u(jlc)) , (i#k) ()
cOv(x( Y (kz)) = SZCov(u(i|r),u(k]r)) + SECov(u(j]c),u(zlc)) , (i#k,j#2) (8)

Proof. Taking the expected value on both sides of (3) gives
EX,..,) = E(X + EX, . - - 9
( (13)) ( (i,)) ( (,J)) B 4 (9
The unordered row means are identically distributed with mean p, variance

2, 2 2 ) 2 2, 2 2
Ty +-oB/c +-ce/c and common correlation Py = (oB/c)/(oA + cB/c + ce/c).



To find the expectations of the order statistics X(i°) we consider the

variables YorYqp2eees¥yo each independent standard normal. We can then

write, following Dunnett and Sobel (1955),

X, = o} +o2/e +02/cl® (1 - p %y, +otyg) +u L= L2,.,r (10)

" Now ordering'the Yi induces the same ordering on the Xi°; hence we can write
2 2 2, % % %
= + - L+ + . 11
X(i) [o, +op/c +o /cI®[(1 - p,) Yeiy tPaYl T (11)

' 22, 2
Taking expected values on both sides of (1l) and writing SA =0, + ce/c gives

| E(x(i')) =pu + SAE(u(ilr)). (12)
A similar argument leads to
E(X(.j)) =p + SBE(u(jlc)) (13)

where S; = og + gi/r. Substituting (12) and (13) into (9) proves equatioﬁ'(é).
For variances and covariances, noting that the four terms on tﬁe R.H.S.
of (3) are independent, we have , for some i', j', k', and 2',
COV(X(ij)’x(kz)) = Cov(Xffﬂﬁap
+ [Cov(X(i.),X(k.)) - Cov(Xig,Xﬁ,)] (14)
+ [Cov(X(.j),X(.z)) - COV(X.j%X.ZO]-
since all other terms add to zero for all i, j, k, £. With the assistance of
(10) and (11), and similar expressions for columns, (14) simplifies to become
(5) through (8) in special cases, and the theorem is proved.
For the special case where r = ¢ = 10, oz = o§ =y =0, and 02 =1 (the

null case), the expected values of the two-way order statistics and their

standard deviations are given in Table 2.

Table 2 about here

Properties of moments. For simplicity we shall discuss only the null

case with r = ¢ = n, say, although the results will be qualitatively

applicable to the more general case. For the null case, we find that E(X

(nn))



reaches its maximum value of 1.05 at n = 5 and then slowly returns to zero
at ratei¢7135_3737 (recall that the expected value of the largest (one-way)
order statistic grows large at rate »/log n), Gumbel (1958)), implying that,
| for vefy large tables, the ordering has only minor effect (on means), as can
be seen in Figure 1. |
Figure 1
Again setting r = ¢ = n, if we expand S'D‘(X(ij)) =‘¢VZ§Z§;;;;Y in
Taylor series, we get the approximation
1

Y =1-——+ o(n'l) (15)

S'D'(x(ij) w1 T

In Figure 2 the largest and smallest standard deviation in an nxn table for
n < 20 is graphed as well as the approximation (15). The maximum fractional
error due to using the approximation is approximately ;if or about 9% for

a 10x10 table and 2% for a 50x50 table.

Figure 2 about here

Unlike the usual (one-way) order statistics, we see from (7), (8), and
(9) that some of the covariances between the two-way order statistics will
be negative, although all the covariances are small.

For further discussion of the moments, see Weisberg (1973).

3. Linear estimation of S, and S_. Let 8’ = (4,8,,55) be a parameter
vector;

X )

L
X - (Xll,o..,ch,x21,...,xzc,..., re

be the observation vector and

1 seees 1 1 seees 1 1

(llr))""’E(u(llf))’E(u(er))""’E(u(zlr))’°"’E(u(r|r))
E(u(llc)),...,E(u

(clc)),E(u(1|c)),--oaE(u(clc)),...,E(u(clc))

A = E(u

the design matrix, Then equation (4) can be rewritten

E(X) = A8. (16)



If the variance-covariance mat;rix of the X(i 1) is known (up to a constant
82= c: + c‘ﬁ + oz) , then the generalized Gauss-Mgrkov theorem would give
the best linear unl'n’.asedv estimate (BLUE, Lloyd, 1952) of & This is, writing.
S%S for the covai:iance matrix,
b=z s (n
In ra;ndom effects models, assumingz known is equivalent to assuming that
oi and 0123 are known.
To find linear estimates in the one-dimensional case, Gupta (1952)
considered the simplification of setting ¥ = I. For the normal distribution
| the resulting estimates of up and ¢ are asymptotically maximum likelihood estimates
(Ali and Chan (1964)) and hence are efficient. Even in small samplés, the
efficiency of Gupta's estimate relative to the BLUE is high (for n < 10,
the efficiency is > 99.2%, Chernoff and Lieberman (1954)).
Analogously for the two dimensional case, we set £ =1 in (17). The
resuiting estimates are thus
3= @n lans. (18)
We call §' = (.E,gA,gB) the simplified linear unbiased estimate (SLUE).
Sincg 2 E(u(ilr)) =0,0 simplifies to

Iy X,.
5=\ 5% = g"ilrx(i-) (19)
58 MleEe

where .
2
A,y = ECu,, 2J[E .
The coefficients ljlc are given for 2< r, ¢ < 20 in Table 3. Missing values

can be filled in by the relations }\ilr = and, if r = 2m+1,’

X itl-r|r

A 0. The last column of Table 3 gives E[E(u(jlc))]z’ which will be

m+1|r =

needed in Section 4.

Table 3 about here




4, Relation to analysis of variance. Since -§A is a contrast among

thé (ordered) row means, it follows that
§§, = ——=— =c (2 2y g2 20)
§8, = = e (D [ECugy),y)10) 5 (20)

is a sum of squares in the row space. 1t follows from Ali and Chan (1964).
that SA is asymptotically the maximum likelihood estimate of SA (given
normality), so that S—\‘E;A has the same asymptotic distribution as the usual

. 2
maximum likelihood estimator, SS, = cEX(i_) - rcX?' . Hence,

A
asymptotically, SS ~ (r- 1)82)(2 L Since §SA is independent of MSe, writing
s, = SSA/(r-l), -
= A
F = w (21)

o

is asymptotieally distributed as F(r-1, (r-1)(c-1)) and provides a test of

012&.= 0. Consideration of Scheffé's (1959) S-method shows that F < Ms A/Mse and

hence the test F is conservative. Here, MS_is the usual within-mean square

estimate of o2, and MS, is the rows mean square.
If the row effects are not normally distributed, then expectation of SS

will be reduced, For testing the normality assumption in one

dimension, Shapiro and Wilk (1965) considered the statistic

SS .
W o= §S—A (22)
A

except that their estimate of S, was the BLUE rather than the SLUE used here.

A
They have tabulated percentage points of the null distribution of W for

3<n< 50 for p = .01,.02,.05,.10,.50,.90,.95,.98,.99. The hypothesis of
normality can be rejected if the observed value of W is less than the tabled
critical value. Sampling experiments (Weisberg, 1973) indicate that the percentage
points of the statistic given at (22) are well approximated by the values given
by Shapiro and Wilk, often providing a slightly conservative test,

The statistic given at (22) was discussed by Shapiro and Francia (1972) for use

in large samples (they call it W'). They give percentage points for large samples.

Table 4 about here




After similar arguments are applied in the column space, the results

can be summarized in the Analysis of Variance Table given as Table 5.

Table 5. Analysis of Variance

Source d.f. ss Ms F w
Rows - < r-l SSA MS, MSA/MSe

N , "s~A s, Ms, /Ms, _ .

Lack of Fit | 55,-85, | §8,/88,
Columns : c-1 S8, MS, MSB/MSe

A §7s} s, MSo/MS _

Lack of Fit 85,-55; SS,/88,
Residual (r-1)(c-1) SSe MSe

5.  Example. As an example, a 10xl0 table was generated such that the
row effects were independent and identically drawn from a normal distribution,
: 2
mean 0, Ou

.115). The column effects were all set to zero, except in one column the

= 0.1 (the actual numbers drawn had mean .061 and sample variance

effect was 0.953, chosen so that the sample variance of the column effects
would equal 0.1. Table entries were then generated by (row effect) + (column
effect) + standard normal (N(0,1)) deviate. The resulting array is to be

given in Table 6, in which the ordering according to row and column means

has already beén accomplished., Thus the cell entries are the two-way

order statistics. The ordered table appears to be relatively well behaved
with larger values near the southeast corner and smaller values near the

northwest corner of the table.

Tables 6 and 7 about here

The Analysis of Variance for this data is given in Table 7. Either

F test for rows (H: OZ

for columns is not significant. Furthermore, W for rows is not significant,

= 0) is significant (.025 < p < .05), while the F test

while W for columns is significant (.025 < p < .05). The significant



value of W leads to rejection of the random effects model for columns.

. 2 .
" The conclusions to be drawn from the analysis are that ¢, 1is non-zero

A

(it can be estimated in the usual way--c.f. Scheffé (1959)--or, as a more

—

conservative approach, by using MBA in

2
place of MSA) and, while we have no reason to suspect that ¢ is non-zero,

B
we ‘reject the hypothesis of normality among the column means, so that there is
some indication that not all the columns are the same.

Residual analysis. The usual residuals from the model are computed as

-X -X +X . (23)

deapy T *ap “X*aoy " Xepn X

As an added benefit of computing‘§A and’§B, another set of residuals can be
computed:

[p+8 L\E(u '§BE(u (24)

dap = *ap - (o’ * Gley 1

The usual residuals add to zero in each row or column: Z)d(ij) ZDd(ij) 0,
while the new residuals only add to zero over the whole table: 23 dzij) 0.
Of course, 2 d d(i ) > 2 d ; however, since the error is spread throughout
the table in a different fashion, the new set of residuals may be useful in

finding failures of the model.
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, Table 1.

PRIGINAL DATA

RoV
MEANS
079 -026 036 -el4 '009 007
-1.07 «54 2411 47 1458 72
075 2.12 048 "012 -v.02 064
"1054 1001 .ll 1013 "1027 ~-ell
037 ".02 .'098 1028 -1 017 -.10
COLUMN
MEANS "olll 068 42 «46 -e19
PRDERED DATA
ROV
MEANS
-1027 "1054 o1l 1.13 1.01 ~ell
-1'17 ~37 "098 1028 "002 ‘010 ‘
-.09 079 036 ‘044 --26 007
-.02 «75 «48 =.12 2,12 «64
1.58 =1.07 211 47 54 «72
CALUMN
MEANS ~e19 "'014 42 «46 068



Table 2.

i

i K

L

I

L i

Expected values and standard deviations of

two-way order statistics for a 10x10 null table.

-.9732 -.8033 -.5941

«9321

-+8033
9251

-06941
«9230

“06054
«9221

“05254
«9217

-.4478
«9217

-¢3578
«9221

-+2791
«9230

‘01699
‘© «9251

0
.9321

«9251

-+6333
«9181

-+5241
+9159

°04354
«9150

-+«3554
«9145

-¢2779
«91456

-«1979
«9150

'01092
«9159

0
.9181

«1699
«9251

Column -1.5328:1.0014

means 5865

4632

« 9230

‘05241
«9159
-e4149
«9138

-«3263
«9128

-e2463
«9125

-.1687
«9125

-.0887
«9128

0]
«9138

«1092
«9159

«2791
«9230

-+«5551
2183

~-.6054

«9221

‘04354
«9150

-03263
9128

-.2376
«91109

“.1576
«9115

-.0800
«9115

N
«9119

- 0887
«9128

«1979
«2150

3678
«9221

-+3755
« 3974

~-+5254
«9217

-+3554
9145

-¢2463
«9125

-.1576
«9115

-+0776
«9112

0
.9112

« 0800
«9115

. 1687
«9125

« 2779
9146

- 4478
«9217

-.1227

« 3887

-e4478
«9217

-02779
«9146

-.1687
«9125

-+.0800C
9115

0
«9112

«0776
9112

« 1576
«9115

«2453
«9125

+ 3554
«9145

«5254
«9217

« 1227
« 38537

-.3678
.9221

-+1979
«9150

-.0887
«9128
+9119

0800
«9115

« 1576
«9115

«2375
9119

«3253
«9128

« 4354
«9150

«5054
«9221

«375%5
« 3974

-e2791
«9230

-.1092
.9159

0
«9138

.0887
.9128

« 1687
«9125

«2463
«9125

«3263
.9128

<4149
«9138

«5241
«915¢9

5941

«9230

.6551
.4183

-.1699
«9251

0
«9181

1092
«9159

« 1979
9150

«2779
«9146

«3554
+ 9146

.4354
.9150

.5241
.9159

«6333
<9181

+8033
<9251

1.0014
« 4632

0

«9321

«1699
«9251

«2791
«9230

« 3678
9221

<4478
9217

«5254
«9217

«6054
9221

«6941
«9230

8033
«9251

«3732
+9321

1.5388
-5868

Row
means’

-1.5388
«5868

-1.0014
<4632

-+6561
«4183

-« 3756
« 3974

-.1227
. 3887

« 1227
« 3887

« 3756
« 3974

65561
4183

1.0014
.« 4632

1.5388
.5858

- II -



Table 3.

CGEFFICIENTS FOR SIMPLIFIED LINEAR UNBIASED ESTIMATES OF
S AND S FBR r AND ¢ LESS THAN @R EQUAL T@ 20

r,c 1 2 3 4 5 -6 7 8 : 9
2 +8862
3 +5908
4 4484 L1294
S 3640 <1549
6 o3078 <1559 <0490
7 «2676 +1499 ,0698
8 2373 1420 .0788 .0254
9 2136 1341 «0823 40395
10 1944 41265 40829 0475 0155
11 «1787 «1196 0821 «0520 +0253
12 <1654 41133 .0805 «0545 L0317 «0104
13 1542 1076 +0785 <0557 40359 <0176
14 Jl444a 1024 .0764 <0561 <0386 0227 .0075
15 +1359 e0977 0742 «0560 «0404 «0263 0129
16 1284 ,0934 .0720 0555 0415 .0288 0170 .0056
17 .1218 .0895 .,0699 0548 .0421 0306 0200 ,0099
18 +1158 .0860 .0678 0540  .0423 .0319 .0223 .0132 .0044
19 1105 .,0827 .0659 0531 «0423 .0328 .0241 «0158 0078
20 41056 0796 0640 0521 «0422 0334 .0254 .0178 0106
NGTE: ALL ENTRIES HAVE A SUPPRESSED MINUS SIGN

10

«0035

20 E(u

.+6366
1+4324
2.2956
3.1950

4.1166

5.0528

5.9995 -

69539
79143
8.8793
98481
10.8200.

1147945
1247712

137497
14.7299
15.7114
16 46942
17.6782

2
(ilr))

-Z‘[-



- 13 -

Table 4. Critical values for Shapiro
and Wilk's W.*

Level
r,e - 0.0l 0.02 0.05 0.10
3 0.753 0.756  0.767  0.789
4  .687 .707 .748 .792
5  .686 .715 .762 .806
6 .713 .743 .788 .826
7 .730 .760 .803 .838
8  .749 .778 .818 .851
9 .764 .791 .829 .859
10 .781 .806 .842 .869
11 .792 .817 .850 . .876
12 .805 .828 .859 .883
13 .8l4 .837 .866 .889
14  .825 . 846 .874 .895
15 .835 .855 .881 .901
16 . 844 .863 .887 .906
17 .851 .869 .892 .910
18  .858 .874 .897 .914
19 .863 .879 .901 .917
20 .868 .884 .905 .920

*Abstracted from a larger table in
Shapiro and Wilk(1965).



Table 6. Artificiél data set arranged to give
the two-way order statistics.

Column
' means
-1.66  -1.40 .03 -.38  -1.06 -.70 .86  -2.95 -1.83  1.54 -.75
17 .12 -2.19  =l.01 .30 -.38  -2.74 -.21  -1.28 .50 -.67
-.24 .11 -.57  -1.05 -1.24 -.73 -.02 -.52 1.32 .70 -.22
-.13 -.86  -2.12 -.46 -1.45  -.34 .52 1.89  -1.11 2,20 -.19
.20 -1.16 1.68 -.49 -.57 .55 1.09 .49 -.35  -.93 .05.
.01 .17 -.60 -.05 -2 .75 .28 .48 1.12 .23 .21
-2.32 1.05 .73 -1.98 2.08  1.12 -.48 1.00 .85 .93 .30
.21 -.15 1.38 1.70 -.65 -.81 .68 -.53 .53 2.61 .50
-.38 -.35 -.92 1.92 2.04 .53 .98 1.37 1.00  -.54 .57
.77 .29 .56 .60 .36 .16 -.71 .09 3.51  2.31 .79
Row ~ _34 .22 -0 -2 -.04 .01 .05 .11 .38 .96

means

-<|7‘[-
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Table 7. Analysis of Variance for
' - the data in Table 6.

Analysis of Variance

SLUE Effects

Source d.f. S8 MS

Rows 9 24,076 2.675
SA 23.342 2,594
Lack of Fit .734

Columns 9 12.545 1.394
SB 10.336 1.148
Lack of Fit 2.209

Residual 81 100.165 1.237

Mean‘= .0580
S, = .5431
SB = ,3614

2.16
2.10

1.13

.970

.824



E( Xf'h.n))

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

L Lty L1 I -‘ !
1 2 3 4 6 8 10 20 30 50 100 - 500 1060

Fig\iré 1. Largest expected value from an n % n standard normal table.

-9'[-



1.00
0.95
0.90
O.85v
0.80
0.75
0.70

0.65

0.60'

Figure
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standard
deviation
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standard ,/
~ deviation /
, 4
B /"\/\app’roximation
- ,I, . :
V4
, .
d L 11t at 1 L 11 L
2 3 4 56 8 i0 20 30 40 50

2, Largest and smallest standard deviation from an n x n

normal table along with the approximation 1 =- H%T .
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