```
Foct
TWO-WAY ORDER STATISTICS
    by
        Sanford Weisberg
Technical Report No. 196
1 January. 1973

Summary. If a complete two-way table with one observation per cell is written so that the rows and columns are ordered, least to greatest for each, then the entry in the ij-th cell of the reordered table is called the ij-th two-way order statistic. Under the random effects model, the moments of the two-way order statistics can be simply expressed in terms of the moments of the usual (one-way) order statistics. Using these relationships, linear unbiased estimates of row and column effects are obtained. Tests for normality among row effects and among column effects similar to the W test proposed by Shapiro and Wilk (1965) are also derived.
1. Two-way order statistics. Consider an rxc table with one observation per cell. The usual random effects model is as follows:
\[
\Omega_{I I}\left\{\begin{array}{l}
x_{i j}=\mu+a_{i}+b_{j}+e_{i j} \quad i=1,2, \ldots, r ; j=1,2 \ldots, c  \tag{1}\\
\left\{a_{i}\right\},\left\{b_{j}\right\},\left\{e_{i j}\right\}, \text { are independent, normally } \\
\text { distributed with zero means, and variances } \\
\text { given by } \sigma_{A}^{2}, \sigma_{B}^{2} \text { and } \sigma_{e}^{2} \text { respectively }
\end{array}\right.
\]

We shall assume this model throughout.
A subscript replaced by \(a\) ". " denotes an average over that subscript. Thus, for example, \(X_{i}=\sum_{j} X_{i j} / c\) is the \(i-t h\) row mean. Let \(X(i \cdot)\) be the \(i-t h\) smallest row mean, \(i=1,2, \ldots, r\), and \(X(\cdot j)\) be the \(j-t h\) smallest column mean, \(j=1,2, \ldots, c\). We shall call the observation in the row with the i-th smallest mean and in the column with the \(j\)-th smallest mean the \(i j-t h\) twoway order statistics. Thus, when we reorder the rows and columns of the table according to means, least to greatest for each, then \(X_{(i j)}\) is the observation in the \(i j-t h\) cell of the reordered table. For example, Table la gives a realization of a \(5 \times 5\) table of unordered observations from \(\Omega_{I I}\) with \(\sigma_{A}^{2}=\sigma_{B}^{2}=\mu=0\) and \(\sigma_{e}^{2}=1\) (this is the null case of no row or column effects). Table lb gives the reordered table of the \(X_{(i j)}\). Note the general orderliness of the table, with large values near the southeast corner and small values near the northwest corner. In this table, \(X_{(55)}\) is not the largest observation in the table.

\section*{Table 1 about here}

Let \(M=X_{\text {. . }}\) be the grand mean of the observations, \(R_{i}=\left(X_{i}-X_{\text {. }}\right)\) be the \(i-t h\) (unordered) row effect, \(C_{j}=\left(X_{j}-X_{j}\right)\) be the \(j-t h\) (unordered) column effect, and \(D_{i j}=\left(X_{i j}-X_{i}, X_{j}+X_{\ldots}\right)\) be the \(i j-t h\) residual. As in analysis of variance, we have the identity
\[
\begin{equation*}
X_{i j}=M+R_{i}+C_{j}+D_{i j} \tag{2}
\end{equation*}
\]

The four terms \(M, R_{i}, C_{j}\), and \(D_{i j}\) lie in orthogonal subspaces and are independent (by normality). Let \(g\) be any function of \(R^{\prime}=\left(R_{1}, \ldots, R_{r}\right)\) and \(h\) be any function of \(c^{\prime}=\left(C_{1}, \ldots C_{c}\right)\). Then \(M, g(R), h(C)\), and \(D_{i j}\) are independent, and the distributions of \(M\) and \(D_{i j}\) are unchanged. Specifically, let \(g\) be the function that orders the \(R_{i}{ }^{\prime} s: g(R)=\left(R_{(1)}, \ldots, R_{(r)}\right)\) where \(R_{(i)}=\left(X_{(i \cdot)}-X_{. .}\right)\), and let \(h\) order the \(C_{j}{ }^{\prime} s: h(C)=\left(C_{(1)}, \ldots, C_{(c)}\right)\) where \(C_{(j)}=\left(X_{(\cdot j)}-X_{. .}\right)\). The \(D_{i j}\) are independent and identically distributed and hence are uneffected by permutation of subscripts. Thus the ij-th two-way order statistic can be written
\[
\begin{equation*}
X_{(i j)}=M+R_{(i)}+C_{(j)}+D_{(i j)} \tag{3}
\end{equation*}
\]
where the four terms on the R.H.S. of (3) are independent, and \(D_{(i j)}=\) \(X_{(i j)}-X_{(i)}-X_{(j)}+X_{\text {. }}\) is distributed as any of the unordered \(D_{i j}\).
2. Moments of two-way order statistics. We can now prove the following theorem:

Theorem. Let \(\mathrm{S}_{\mathrm{A}}^{2}=\sigma_{\mathrm{A}}^{2}+\sigma_{\mathrm{e}}^{2} / \mathrm{c}, \quad \mathrm{S}_{\mathrm{B}}^{2}=\sigma_{\mathrm{B}}^{2}+\sigma_{\mathrm{e}}^{2} / \mathrm{r}\) and \(\mathrm{S}^{2}=\sigma_{\mathrm{A}}^{2}+\sigma_{\mathrm{B}}^{2}+\sigma_{\mathrm{e}}^{2}\). Then, writing \(u_{(i \mid n)}\) for the i-th order statistics from an independent normal sample of size \(n\), we have
\[
\begin{align*}
& \left.E\left(X_{(i j)}\right)=\mu+S_{A}^{E(u}(i \mid r)\right)+S_{B} E\left(u_{(j \mid c)}\right)  \tag{4}\\
& \operatorname{Var}\left(X_{(i j)}\right)=s^{2}+s_{A}^{2}\left[1-\operatorname{Var}\left(u_{(i \mid r)}\right)\right]+s_{B}^{2}\left[1-\operatorname{Var}\left(u_{(j \mid c)}\right)\right]  \tag{5}\\
& \left.v\left(X_{(i j)}, X_{(i \ell)}\right)=\sigma_{A}^{2}-S_{A}^{2}\left[1-\operatorname{Var}\left(u_{(i \mid r)}\right)\right]+S_{B}^{2} \operatorname{Cov}{\left(u_{(j \mid c)}\right)} u_{(\ell \mid c)}\right),(j \neq \ell)  \tag{6}\\
& \operatorname{Cov}\left(X_{(i j)}, X_{(k j)}\right)=\sigma_{B}^{2}+S_{B}^{2} \operatorname{Cov}\left(u_{(i \mid r)}, u_{(k \mid r)}\right)-S_{B}^{2}\left[1-\operatorname{Var}\left(u_{(j \mid c)}\right)\right],(i \neq k)  \tag{7}\\
& \operatorname{Cov}\left(X_{(i j)}, X_{(k \ell)}\right)=s_{A}^{2} \operatorname{Cov}\left(u_{(i \mid r)}, u_{(k \mid r)}\right)+s_{B}^{2} \operatorname{Cov}\left(u_{(j \mid c)}, u_{(\ell \mid c)}\right),(i \neq k, j \neq \ell) \tag{8}
\end{align*}
\]

Proof. Taking the expected value on both sides of (3) gives
\[
\begin{equation*}
E\left(X_{(i j)}\right)=E\left(X_{(i \cdot)}\right)+E\left(X_{(\cdot j)}\right)-\mu . \tag{9}
\end{equation*}
\]

The unordered row means are identically distributed with mean \(\mu\), variance \(\tau_{A}^{2}+\sigma_{B}^{2} / c+\sigma_{e}^{2} / c\) and common correlation \(\rho_{A}=\left(\sigma_{B}^{2} / c\right) /\left(\sigma_{A}^{2}+\sigma_{B}^{2} / c+\sigma_{e}^{2} / c\right)\).

To find the expectations of the order statistics \(X_{(i \cdot)}\) we consider the variables \(y_{0}, y_{1}, \ldots, y_{r}\), each independent standard normal. We can then write, following Dunnett and Sobel (1955),
\[
\begin{equation*}
x_{i}=\left[\sigma_{A}^{2}+\sigma_{B}^{2} / c+\sigma_{e}^{2} / c\right]^{\frac{3}{2}}\left[\left(1-\rho_{A}\right)^{\frac{1}{2}} y_{i}+\rho_{A}^{\frac{1}{2}} y_{0}\right]+\mu, i=1,2, \ldots, r \tag{10}
\end{equation*}
\]

Now ordering the \(y_{i}\) induces the same ordering on the \(X_{i}\); hence we can write
\[
\begin{equation*}
x_{(i \cdot)}=\left[\sigma_{A}^{2}+\sigma_{B}^{2} / c+\sigma_{e}^{2} / c\right]^{\frac{1}{2}}\left[\left(1-\rho_{A}\right)^{\frac{3}{2}} y_{(i)}+\rho_{A}^{\frac{3}{2}} y_{0}\right]+\mu \tag{11}
\end{equation*}
\]

Taking expected values on both sides of (11) and writing \(S_{A}^{2}=\sigma_{A}^{2}+\sigma_{e}^{2} / \mathrm{c}\) gives
\[
\begin{equation*}
E\left(X_{(i \cdot)}\right)=\mu+S_{A} E\left(u_{(i \mid r)}\right) . \tag{12}
\end{equation*}
\]

A similar argument leads to
\[
\begin{equation*}
E\left(X_{(\cdot j)}\right)=\mu+S_{B} E\left(u_{(j \mid c)}\right) \tag{13}
\end{equation*}
\]
where \(S_{B}^{2}=\sigma_{B}^{2}+\sigma_{e}^{2} / r\). Substituting (12) and (13) into (9) proves equation (4).
For variances and covariances, noting that the four terms on the R.H.S.
of (3) are independent, we have, for some \(i^{\prime}, j^{\prime}, k^{\prime}\), and \(\ell^{\prime}\),
\[
\begin{align*}
\operatorname{Cov}\left(X_{(i j)}, X_{(k \ell)}\right)= & \operatorname{Cov}\left(X_{i^{\prime} j}, X_{k^{\prime} \ell}^{\prime}\right) \\
& +\left[\operatorname{Cov}\left(X_{(i \cdot)}, X_{(k \cdot)}\right)-\operatorname{Cov}\left(X_{i}, X_{k^{\prime}}\right)\right]  \tag{14}\\
& +\left[\operatorname{Cov}\left(X_{(\cdot j)}, X_{(\cdot \ell)}\right)-\operatorname{Cov}\left(X_{\cdot j}, X_{\cdot \ell^{\prime}}\right)\right]
\end{align*}
\]
since all other terms add to zero for all \(i, j, k\), \(\ell\). With the assistance of (10) and (11), and similar expressions for columns, (14) simplifies to become (5) through (8) in special cases, and the theorem is proved.

For the special case where \(r=c=10, \sigma_{A}^{2}=\sigma_{B}^{2}=\mu=0\), and \(\sigma_{e}^{2}=1\) (the null case), the expected values of the two-way order statistics and their standard deviations are given in Table 2.

\section*{Table 2 about here}

Properties of moments. For simplicity we shall discuss only the null case with \(r=c=n\), say, although the results will be qualitatively applicable to the more general case. For the null case, we find that \(E(X(n n))\)
reaches its maximum value of 1.05 at \(n=5\) and then slowly returns to zero at rate \(\sqrt{(\log n / n)}\) (recall that the expected value of the largest (one-way) order statistic grows large at rate \(\sqrt{\log n})\), Gumbel (1958)), implying that, for very large tables, the ordering has only minor effect (on means), as can be seen in Figure 1.

\section*{Figure 1}

Again setting \(r=c=n\), if we expand \(S . D .\left(X_{(i j)}\right)=\sqrt{\operatorname{Var}\left(X_{(i j)}\right)}\) in Taylor series, we get the approximation
\[
\begin{equation*}
\text { S.D. }\left(X_{(i j)}\right)=1-\frac{1}{n+1}+o\left(n^{-1}\right) \tag{15}
\end{equation*}
\]

In Figure 2 the largest and smallest standard deviation in an nxn table for \(n \leq 20\) is graphed as well as the approximation (15). The maximum fractional error due to using the approximation is approximately \(\frac{1}{n+1}\) or about \(9 \%\) for a \(10 \times 10\) table and \(2 \%\) for a \(50 \times 50\) table.

\section*{Figure 2 about here}

Unlike the usual (one-way) order statistics, we see from (7), (8), and (9) that some of the covariances between the two-way order statistics will be negative, although all the covariances are small.

For further discussion of the moments, see Weisberg (1973).
\[
\text { 3. Linear estimation of } S \text { and } S_{B} \text {. Let } \theta^{\prime}=\left(\mu, S_{A}, S_{B}\right) \text { be a parameter }
\]
vector;
\[
X^{\prime}=\left(X_{11}, \ldots, X_{1 c}, X_{21}, \ldots, X_{2 c}, \ldots, X_{r c}\right)
\]
be the observation vector and
\[
A^{\prime}=\left(\begin{array}{ccccc}
1 & 1 & 1 \\
E\left(u_{(1 \mid r)}\right), \ldots, E\left(u_{(1 \mid r)}\right), E\left(u_{(2 \mid r)}\right), \ldots, E\left(u_{(2 \mid r)}\right), \ldots, E\left(u_{(r \mid r)}\right) \\
E\left(u_{(1 \mid c)}\right), \ldots, E\left(u_{(c \mid c)}\right), E\left(u_{(1 \mid c)}\right), \ldots, E\left(u_{(c \mid c)}\right), \ldots, E\left(u_{(c \mid c)}\right)
\end{array}\right)
\]
the design matrix. Then equation (4) can be rewritten
\[
\begin{equation*}
E(X)=A \theta . \tag{16}
\end{equation*}
\]

If the variance-covariance matrix of the \(X_{(i j)}\) is known (up to a constant \(S^{2}=\sigma_{A}^{2}+\sigma_{B}^{2}+\sigma_{e}^{2}\) ), then the generalized Gauss-Markov theorem would give the best linear unbiased estimate (BLUE, Lloyd, 1952) of \(\theta\) This is, writing \(s^{2} \sum\) for the covariance matrix,
\[
\begin{equation*}
\hat{\theta}=\left(A^{\prime} \Sigma^{-1} A\right)^{-1} A^{\prime} \Sigma^{-1} X \tag{17}
\end{equation*}
\]

In random effects models, assuming \(\Sigma\) known is equivalent to assuming that \(\sigma_{A}^{2}\) and \(\sigma_{B}^{2}\) are known.

To find 1inear estimates in the one-dimensional case, Gupta (1952)
considered the simplification of setting \(\Sigma=\) I. For the normal distribution the resulting estimates of \(\mu\) and \(\sigma\) are asymptotically maximum likelihood estimates (A1i and Chan (1964)) and hence are efficient. Even in small samples, the efficiency of Gupta's estimate relative to the BLUE is high (for \(n \leq 10\), the efficiency is \(\geq \mathbf{9 9 . 2 \%}\), Chernoff and Lieberman (1954)).

Analogously for the two dimensional case, we set \(\Sigma=I\) in (17). The resulting estimates are thus
\[
\begin{equation*}
\bar{\theta}=\left(A^{\prime} A\right)^{-1} A^{\prime} X . \tag{18}
\end{equation*}
\]

We call \(\widetilde{\theta}^{\prime}=\left(\tilde{\mu}, \widetilde{\mathrm{S}}_{\mathrm{A}}, \widetilde{\mathrm{S}}_{\mathrm{B}}\right)\) the simplified linear unbiased estimate (SLUE).
Since \(\sum E\left(u_{(i \mid r)}\right)=0, \bar{\theta}\) simplifies to
\[
\tilde{\theta}=\left(\begin{array}{c}
\widetilde{\mu}  \tag{19}\\
\widetilde{S}_{A} \\
\widetilde{S}_{B}
\end{array}\right)=\left(\begin{array}{c}
X_{0} \\
\sum \lambda_{i} \mid r_{(i \cdot)} \\
\sum \lambda_{j \mid c}{ }^{X}(\cdot j)
\end{array}\right)
\]
where
\[
\lambda_{j \mid c}=E\left(u_{(j \mid c)}\right) / \Sigma\left[E\left(u_{(j \mid c)}\right)\right]^{2} .
\]

The coefficients \(\lambda_{j \mid c}\) are given for \(2 \leq r, c \leq 20\) in Table 3. Missing values can be filled in by the relations \(\lambda_{i \mid r}=-\lambda_{i+1-r \mid r}\) and, if \(r=2 m+1\), \(\lambda_{m+1 \mid r}=0\). The last column of Table 3 gives \(\sum\left[E\left(u_{(j \mid c)}\right)\right]^{2}\), which will be needed in Section 4.
4. Relation to analysis of variance. Since \(\widetilde{S}_{A}\) is a contrast among the (ordered) row means, it follows that
\[
\begin{equation*}
\widetilde{S S}_{A}=\frac{\widetilde{c S}_{A}^{2}}{\sum \lambda_{i \mid r}^{2}}=c\left(\sum[E(u(i \mid r))]^{2}\right) s_{A}^{2} \tag{20}
\end{equation*}
\]
is a sum of squares in the row space. It follows from Ali and Chan (1964) that \(S_{A}\) is asymptotically the maximum likelihood estimate of \(S_{A}\) (given normality), so that \(\widetilde{\mathrm{SS}}_{\mathrm{A}}\) has the same asymptotic distribution as the usual maximum likelihood estimator, \(S S_{A}=c \sum X_{(i \cdot)}^{2}-r c X^{2}\). . Hence, asymptotically, \(\widetilde{S S}_{A} \sim(r-1) S_{A}^{2} X_{r-1}^{2}\). Since \(\widetilde{S S}_{A}\) is independent of MS \(_{e}\), writing \(\widetilde{\mathrm{MS}}_{\mathrm{A}}=\widetilde{\mathrm{SS}}_{\mathrm{A}} /(\mathrm{r}-1)\),
\[
\begin{equation*}
\widetilde{\mathrm{F}}=\frac{\widetilde{\mathrm{MS}}_{\mathrm{A}}}{\mathrm{MS}_{\mathrm{e}}} \tag{21}
\end{equation*}
\]
is asymptotically distributed as \(F(r-1,(r-1)(c-1))\) and provides a test of \(\sigma_{A}^{2}=0\). Consideration of Scheffés (1959) S-method shows that \(\widetilde{F} \leq M S_{A} / M_{e}\) and hence the test \(\widetilde{F}\) is conservative. Here, \(M S{ }_{e}\) is the usual within-mean square estimate of \(\sigma^{2}\), and \(\mathrm{MS}_{A}\) is the rows mean square.

If the row effects are not normally distributed, then expectation of \(\widetilde{\mathrm{SS}_{\mathrm{A}}}\) will be reduced.

For testing the normality assumption in one dimension, Shapiro and Wilk (1965) considered the statistic
\[
\begin{equation*}
\mathrm{W}=\frac{\widetilde{\mathrm{SS}}}{\mathrm{~A}} \tag{22}
\end{equation*}
\]
except that their estimate of \(S_{A}\) was the BLUE rather than the SLUE used here. They have tabulated percentage points of the null distribution of \(W\) for \(3 \leq n \leq 50\) for \(p=.01, .02, .05, .10, .50, .90, .95, .98, .99\). The hypothesis of normality can be rejected if the observed value of \(W\) is less than the tabled critical value. Sampling experiments (Weisberg, 1973) indicate that the percentage points of the statistic given at (22) are well approximated by the values given by Shapiro and Wilk, often providing a slightly conservative test.

The statistic given at (22) was discussed by Shapiro and Francia (1972) for use in large samples (they call it \(\mathrm{W}^{\prime}\) ). They give percentage points for large samples.

After similar arguments are applied in the column space, the results can be summarized in the Analysis of Variance Table given as Table 5.

Table 5. Analysis of Variance
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & d.f. & SS & MS & F & W \\
\hline Rows & r-1 & \(\mathrm{SS}_{\mathrm{A}}\) & \(\mathrm{MS}_{\mathrm{A}}\) & \(\mathrm{MS}_{\mathrm{A}} / \mathrm{MS}{ }_{e}\) & \\
\hline \(\widetilde{S}_{\text {A }}\) & & \(\widetilde{S S}\) & \(\widetilde{\mathrm{MS}}\) & \(\widetilde{M S}_{A} / \mathrm{MS}_{\mathrm{e}}\) & \\
\hline Lack of Fit & & SS \({ }_{\text {A }}-\widetilde{\mathrm{SS}}{ }_{\text {A }}\) & & & \(\widetilde{S S}_{A} / S_{\text {A }}\) \\
\hline Columns & c-1 & \(\mathrm{SS}_{B}\) & \(\mathrm{MS}_{\text {B }}\) & \(\mathrm{MS}_{B} / \mathrm{MS}\) & \\
\hline \(\widetilde{S}_{B}\) & & \(\widetilde{S S}_{B}\) & \[
\widetilde{\mathrm{MS}}{ }_{\mathrm{A}}
\] & \(\widetilde{M S}_{B} / \mathrm{MS}{ }_{e}\) & \\
\hline Lack of Fit & & \[
S_{B}-\widetilde{S S}_{B}
\] & & & \(\widetilde{S S}_{B} / S S S_{B}\) \\
\hline Residual & \((\mathrm{r}-1)(\mathrm{c}-1)\) & \(\mathrm{SS}_{\mathrm{e}}\) & \(\mathrm{MS}_{\mathrm{e}}\) & & \\
\hline
\end{tabular}
5. Example. As an example, a \(10 \times 10\) table was generated such that the row effects were independent and identically drawn from a normal distribution, mean \(0, \sigma_{A}^{2}=0.1\) (the actual numbers drawn had mean .061 and sample variance .115). The column effects were all set to zero, except in one column the effect was 0.953 , chosen so that the sample variance of the column effects would equal 0.1. Table entries were then generated by (row effect) + (column effect) + standard normal \((N(0,1))\) deviate. The resulting array is to be given in Table 6, in which the ordering according to row and column means has already been accomplished. Thus the cell entries are the two-way
order statistics. The ordered table appears to be relatively well behaved with larger values near the southeast corner and smaller values near the northwest corner of the table.

\section*{Tables 6 and 7 about here}

The Analysis of Variance for this data is given in Table 7. Either F test for rows \(\left(H: \sigma_{A}^{2}=0\right)\) is significant \((.025<p<.05)\), while the \(F\) test for columns is not significant. Furthermore, \(W\) for rows is not significant, while \(W\) for columns is significant (. \(025<\mathrm{p}<.05\) ). The significant
value of \(W\) leads to rejection of the random effects model for columns.

The conclusions to be drawn from the analysis are that \(\sigma_{A}^{2}\) is non-zero (it can be estimated in the usual way-me.f. Scheffé (1959) -oor, as a more conservative approach, by using \(\widetilde{M S}_{A}\) in place of \(M S_{A}\) ) and, while we have no reason to suspect that \(\sigma_{B}^{2}\) is non-zero, we reject the hypothesis of normality among the column means, so that there is some indication that not all the columns are the same.

Residual analysis. The usual residuals from the model are computed as
\[
\begin{equation*}
d_{(i j)}=X_{(i j)}-X_{(i \cdot)}-X_{(\cdot j)}+X_{\ldots} \tag{23}
\end{equation*}
\]

As an added benefit of computing \(\widetilde{S}_{A}\) and \(\widetilde{S}_{B}\), another set of residuals can be computed:
\[
\begin{equation*}
\widetilde{\mathrm{d}}_{(i j)}=\mathrm{X}_{(i j)}-\left[\tilde{\mu}+\widetilde{S}_{A} E\left(u_{(i \mid r)}\right)+\widetilde{S}_{B}^{\left.E\left(u_{(j \mid c)}\right)\right]}\right. \tag{24}
\end{equation*}
\]

The usual residuals add to zero in each row or column: \(\sum_{i} d_{(i j)}=\sum_{j} d_{(i j)}=0\), while the new residuals only add to zero over the whole table: \(\sum_{i j} \tilde{\mathrm{~d}}_{(i j)}=0\). Of course, \(\sum \widetilde{\mathrm{d}}_{(\mathrm{ij})}^{2} \geq \sum \mathrm{d}_{\mathrm{ij}}^{2}\); however, since the error is spread throughout the table in a different fashion, the new set of residuals may be useful in. finding failures of the model.
6. Acknowledgments. The author is indebted to Frederick Mosteller for his inspiration and assistance. John Tukey suggested the possibility of the theorem in Section 2. The author would also like to thank Christopher Bingham, Paul W. Holland, and Donald B. Rubin for helpful suggestions.

This work was supported by NSF Grant GS - 32327X to the Statistics Department, Harvard University..
7. References.

Ali, M. M. and Chan, L. K. (1964). On Gupta's estimates of the parameters of a normal distribution. Biometrika 51 498-501.

Chernoff, H. and Lieberman, G. J. (1954). Use of normal probability paper. J. Amer. Statist. Assoc. 49 778-785. Dunnett, C. W. and Sobel, M. (1955). Approximations to the probability integral and certain percentage points of a multivariate analogue of Student's t-distribution. Biometrika 42 258-260.
Gumbel, E. (1958). Statistics of Extremes. Columbia University Press, New York. Gupta, A. K. (1952). Estimation of the mean and standard deviation of a normal population from a censored sample. Biometrika 39 260-273. Lloyd, E. H. (1952). Least square estimation of location and scale parameters using order statistics. Biometrika 39 88-95.

Scheffé, H. (1959). The Analysis of Variance. Wiley, New York. Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52 591-611. Shapiro, S. S. and Francia, R. S. (1972). Approximate analysis of variance test for normality. J. Amer. Statist. Assoc. 67 215-216. Weisberg, S. (1973). Two-way order statistic with applications to linear statistical analysis. Unpublished thesis, Department of Statistics, Harvard University.

Table 1.

\section*{ØRIGINAL DATA}
RQW
gRDERED DATA

RøW
MEANS
\[
\begin{array}{rrrrrrr} 
& -1.27 & -1.54 & .11 & 1.13 & 1.01 & -.11 \\
& -1.17 & .37 & -.98 & 1.28 & -.02 & -.10 \\
& -.09 & .79 & .36 & -.44 & -.26 & .07 \\
& -.02 & .75 & .48 & -.12 & 2.12 & .64 \\
& 1.58 & -1.07 & 2.11 & .47 & .54 & .72 \\
\text { GOLUMN } & & & & & & \\
\text { MEANS } & -.19 & -.14 & .42 & .46 & .68 &
\end{array}
\]
CØLUMN

Table 2. Expected values and standard deviations of two-way order statistics for a \(10 \times 10\) null table.
Row
means

Table 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{COEFFICIENTS FgR SIMPLIFIED LINEAR UNBIASED ESTIMATES OF} \\
\hline r, c & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 - & 9 & 10 & (i|r) & \\
\hline 2 & . 8862 & & & & & & & & & & . 6366 & \\
\hline 3 & . 5908 & & & & & & & & & & 1.4324 & \\
\hline 4 & . 4484 & .1294 & & & & & & & & & 2.2956 & \\
\hline 5 & . 3640 & . 1549 & & & & & & & & & 3.1950 & \\
\hline 6 & . 3078 & . 1559 & . 0490 & & & & & & & & 4.1166 & \\
\hline 7 & . 2676 & . 1499 & . 0698 & & & & & & & & 5.0528 & \\
\hline 8 & . 2373 & . 1420 & . 0788 & . 0254 & & & & & & & 5.9995 & \\
\hline 9 & . 2136 & . 1341 & . 0823 & . 0395 & & & & & & & 6.9539 & \\
\hline 10 & . 1944 & . 1265 & . 0829 & . 0475 & . 0155 & & & & & & 7.9143 & \\
\hline 11 & . 1787 & .1196 & . 0821 & . 0520 & . 0253 & & & & & & 8.8793 & \(\stackrel{\sim}{N}\) \\
\hline 12 & . 1654 & . 1133 & . 0805 & . 0545 & .0317 & . 0104 & & & & & 9.8481 & , \\
\hline 13 & . 1542 & . 1076 & . 0785 & . 0557 & . 0359 & . 0176 & & & & & 10.8200 & \\
\hline 14 & . 1444 & . 1024 & . 0764 & . 0561 & . 0386 & . 0227 & . 0075 & & & & 11.7945 & \\
\hline 15 & . 1359 & . 0977 & . 0742 & . 0560 & . 0404 & . 0263 & . 0129 & & & & 12.7712 & \\
\hline 16 & . 1284 & . 0934 & . 0720 & . 0555 & . 0415 & . 0288 & . 0170 & . 0056 & & & 13.7497 & \\
\hline 17 & . 1218 & . 0895 & . 0699 & . 0548 & . 0421 & . 0306 & . 0200 & . 0099 & & & 14.7299 & \\
\hline 18 & . 1158 & . 0860 & . 0678 & . 0540 & . 0423 & . 0319 & . 0223 & . 0132 & . 0044 & & 15.7114 & \\
\hline 19 & . 1105 & . 0827 & . 0659 & . 0531 & . 0423 & . 0328 & . 0241 & . 0158 & . 0078 & & 1.6 .6942 & \\
\hline 20 & . 1056 & . 0796 & . 0640 & . 0521 & . 0422 & . 0334 & . 0254 & . 0178 & . 0106 & . 0035 & 17.6782 & \\
\hline
\end{tabular}

Table 4. Critical values for Shapiro and Wilk's W.*
\begin{tabular}{rrrrr} 
& \multicolumn{4}{c}{ Level } \\
r, \(\mathbf{c}\) & 0.01 & 0.02 & 0.05 & 0.10 \\
3 & 0.753 & 0.756 & 0.767 & 0.789 \\
4 & .687 & .707 & .748 & .792 \\
5 & .686 & .715 & .762 & .806 \\
6 & .713 & .743 & .788 & .826 \\
7 & .730 & .760 & .803 & .838 \\
8 & .749 & .778 & .818 & .851 \\
9 & .764 & .791 & .829 & .859 \\
10 & .781 & .806 & .842 & .869 \\
11 & .792 & .817 & .850 & .876 \\
12 & .805 & .828 & .859 & .883 \\
13 & .814 & .837 & .866 & .889 \\
14 & .825 & .846 & .874 & .895 \\
15 & .835 & .855 & .881 & .901 \\
16 & .844 & .863 & .887 & .906 \\
17 & .851 & .869 & .892 & .910 \\
18 & .858 & .874 & .897 & .914 \\
19 & .863 & .879 & .901 & .917 \\
20 & .868 & .884 & .905 & .920
\end{tabular}
*Abstracted from a larger table in Shapiro and Wilk(1965). - I

Table 6. Artificial data set arranged to give the two-way order statistics.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & -1.66 & -1.40 & . 03 & -. 38 & -1.06 & -. 70 & . 86 & -2.95 & -1.83 & 1.54 & Column means -. 75 \\
\hline & . 17 & . 12 & -2.19 & \(=1.01\) & . 30 & -. 38 & -2.74 & -. 21 & -1.28 & . 50 & -. 67 \\
\hline & -. 24 & . 11 & -. 57 & -1.05 & -1.24 & -. 73 & -. 02 & -. 52 & 1.32 & . 70 & -. 22 \\
\hline & -. 13 & -. 86 & -2.12 & -. 46 & -1.45 & -. 34 & . 52 & 1.89 & -1.11 & 2.20 & -. 19 \\
\hline & . 20 & -1.16 & 1.68 & -. 49 & -. 57 & . 55 & 1.09 & . 49 & -. 35 & -. 93 & . 05 \\
\hline & . 01 & . 17 & -. 60 & -. 05 & -. 24 & . 75 & . 28 & . 48 & 1.12 & . 23 & . 21 \\
\hline & -2.32 & 1.05 & . 73 & -1.98 & 2.08 & 1.12 & -. 48 & 1.00 & . 85 & . 93 & . 30 \\
\hline & . 21 & -. 15 & 1.38 & 1.70 & -. 65 & -. 81 & . 68 & -. 53 & . 53 & 2.61 & . 50 \\
\hline & -. 38 & -. 35 & -. 92 & 1.92 & 2.04 & . 53 & . 98 & 1.37 & 1.00 & -. 54 & . 57 \\
\hline & . 77 & . 29 & . 56 & . 60 & . 36 & . 16 & -. 71 & . 09 & 3.51 & 2.31 & . 79 \\
\hline Row means & -. 34 & -. 22 & -. 20 & -. 12 & -. 04 & . 01 & . 05 & . 11 & . 38 & . 96 & \\
\hline
\end{tabular}

\section*{Table 7. Analysis of Variance for the data in Table 6.}

\section*{Analysis of Variance}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & d.f. & SS & MS & F & W \\
\hline Rows & 9 & 24.076 & 2.675 & 2.16 & \\
\hline \(\mathrm{S}_{\mathrm{A}}\) & & 23.342 & 2.594 & 2.10 & \\
\hline Lack of Fit & & . 734 & & & . 970 \\
\hline Columns & 9 & 12.545 & 1.394 & 1.13 & \\
\hline \(\mathrm{S}_{\text {B }}\) & & 10.336 & 1.148 & . 93 & \\
\hline Lack of Fit & & 2.209 & & & . 824 \\
\hline Residual & 81 & 100.165 & 1.237 & & \\
\hline
\end{tabular}

\section*{SLUE Effects}
\[
\begin{aligned}
\text { Mean } & =.0580 \\
\widetilde{S}_{A} & =.5431 \\
\widetilde{S}_{B} & =.3614
\end{aligned}
\]


Figüre 1. Largest expected value from an \(n \times n\) standard normal table.


Figure 2. Largest and smallest standard deviation from an \(n \times n\) normal table along with the approximation \(1-\frac{1}{n+1}\).```

