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Summary. If a complete two-way table with one observation per celt 

is written so that the rows and columns are ordered, least to greatest for 

each, then the·entry in the ij-th cell of the reordered table is called the 

ij-th two-way order statistic. Under the random effects model, the moments 

of the two-way order statistics can be simply expressed in terms of the 

moments of ~he usual {one-way) order statistics. Using these relationships, 

linear unbiased estimates of row and column effects are obtained. Tests for 

normality among row effects and among column effects similar to the W test 

proposed by Shapiro and Wilk (1965) are also derived. 
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1. Two-way order statistics. Consider an rxc table with one observation 

per cell. The usual random effects model is as follows: 

X •• = µ + a. + b. + eij l.J l. J 
i = 1,2, •.• ,r; j = 1,z .•• ,c 

{a1J, £ b jj, { eij f, are independent, normally (1) 
distributed with zero means, and variances 

· b 2 2 d 2 i 1 given y crA' crB an cre respect ve y 

We shall assume this model throughout. 

A subscript replaced by a"·" denotes an average over that subscript. 

Thus, for example, X. =:EX . ./c is the i-th row mean. Let X(
1 
•• ) be the i-th 

1· • l.J 
J 

smallest row mean, i = 1,2, .•• ,r, and X(•j) be the j-th smallest column mean, 

j = 1,2, ••• , c. We shall call the observation in the row with the i-th 

smallest mean and in the column with the j-th smallest mean the ij-th two

way order statistics. Thus, when we 

reorder the rows and columns of the table according to means, least to 

greatest for each, then X(ij) is the observation in.the ij-th cell of the 

reordered table. For example, Table la gives a realization of a 5x5 table 

of unordered observations from OII with cri = cr; = µ, = 0 and cr; = 1 (this is the 

null~ of no row or column effects). Table lb gives the reordered table 

of the X(ij). Note the general orderliness of the table, with large values 

near the southeast corner and small values near the northwest corner. In 

this table, X(SS) is not the largest observation in the table. 

Table 1 about here 

Let M = x •• be the grand mean of the observations, R. = (X. - X ) be 
]. 1• •• 

the i-th (unordered) row effect, C. = (X . - X ) be the j-th (unordered) J • J •• 

column effect, and D .. = (X .. - X. - X . + X ) be the iJ0 -th residual. As l.J l.J 1.• ·J •• 

in analysis of variance, we have the identity 

X •• = M + R. + C. + D ••• 
l.J ]. J l.J 

(2) 



-

- 2 -

The four terms M, R., C., and D .. lie in orthogonal subspaces and are 
1 J 1J . 

independent (by normality). Let g be any function of R' = (R1 , ••• ,Rr) and 

h be any function of c' = (c1 , ••• Cc). Then M, g(R), h(C), and Dij are 

independent, and the distributions of Mand D .. are unchanged. Specifically, 
. 1J 

let g be the function that orders the Ri's: g(R) = (R(l), ••• ,R(r)) where 

R(i) = (X(i•) - x •• ), and let h order the Cj's: ·h(C) = {C(l)'···,c(c)) 

where C( ") = (X( ") - X ) • The D .. are independent and identically distributed J • J • • l.J 
and hence are uneffected by permutation of subscripts. Thus the ij-th two-way 
order statistic can be written 

x(ij) = M + R(i) + c(j) + D(ij) (3) 

where the four terms on the R.H.S. of (3) are independent, and D(ij) = 

X(ij) - X(r)- X~j)+ x •• is distributed as any of the unordered Dij" 

2. Moments of two-way order statistics. We can now prove the following 

theorem: 

Theorem. 2 2 2 
Let SA = a A + a e I c , 

2 2 2 s. = a + a Ir B B e 
2 2 2 2 

and S = a A + a B + a e • 

Then, writing u(iln) for the i-th order statistics from an independent normal 

sample of size n, we have 

Proof. Taking the expected value on both sides of (3) gives 

(9) 

The unordered row means are identically distributed with meanµ, variance 

2 2 2 2 
and connnon correlation p A = (cr/c) /(a A + aB/c + cr /c). 
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To find the expectations of the order statistics X(i•) we consider the 

variables y0 ,y1 ~···,Yr' each independent standard normal. We can then 

write, following Dunnett and Sobel (1955), 

2 2 2 lz lz .\ 
Xi·= [aA +aB/c +a/c] [(1 -pA) yi +pAy0] +µ,, i = 1,2, ••• ,r. 

Now ordering they. induces 
1 

2 . 2 
X(i•) = [crA + crB/c 

the same ordering on the X. ; henc~ we can write 
·1· 

2 lz lz lz 
+ a/c] [(1 - pA) y(i) + pAyO] + µ,. 

(10) 

(11) 

2 2 2 
Taking expected values on both sides of (11) and writing SA= aA + cre/c gives 

E(X(i•)) = µ, + SAE(u(ilr)). (12) 

A similar argument leads to 

(13) 

2 2 2 where SB= crB + cre/r. Substituting (12) and (13) into (9) proves equation (4). 

For variances and covariances, noting that the four terms on the R.H.S. 

of ( 3) are independent, we have , for some i 1 
, j 1

, k 1 
, and t' , 

Cov(X(ij)'X(ld)) = Cov(XiJ'~~ 

+ [Cov(X(i•)'X(k•)) - Cov(Xi•.,X~.)] 

+ [Cov(X(• j) ,X(•.t)) - Cov(X. j',X.i]. 

(14) 

since all other terms add to zero for all i, j, k, .t. With the assistance of 

(10) and (11), and similar expressions for columns, (14) simplifies to become 

(5) through (8) in special cases, and the theorem is proved. 

2 2 2 
For the special case where r = c = 10, crA = crB = µ, = O, and cre = 1 (the 

null case), the expected values of the two-way order statistics and their 

standard deviations are given in Table 2. 

Table 2 about here 

Properties of moments. For simplicity we shall discuss only.the null 

case with r = c = n, say, although the results will be qualitatively 

applicable to the more general case. For the null case, we find that E(X(nn)) 
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re.aches its maximum value of 1. 05 at n = 5 and then slowly returns to zero 

at rateJ(log n/n) (recall that the expected value of the largest (one-way) 

order statistic grows large at ra~eJlog n), Gumbel (1958)), implying _that, 

for very large tables, the ordering has only minor effect {on means), as can 

be seen in Figure 1 •. 

Figure 1 

Again setting r = c = n, if we expa.nd S.D.(X(ij)) =Jvar(X(ij)) in 

Taylor series, we get the approximation 

- _L + o(n-1 ) S.D.(X(ij)) = 1 n+l . (15) 

In Figure 2 the largest and smallest standard deviation in an nxn table for 

n < 20 is graphed as well as the approximation (15). The maximum fractional 

error due to using the approximation is approximately 

a l0xl0 table and 2% for a 50x50 table. 

Figure 2 about here 

1 
n+l or about 9% for 

Unlike the usual (one-way) order statistics, we see from (7), (8), and 

(9) that some of the covariances between the two-way order statistics will 

be negative, although all the covariances are small. 

For further discussion of the moments, see Weisberg (1973). 

3. Linear estimation of SA and SB. Let 9' = (µ,SA,SB) be a parameter 

vector; 

X' = (Xll' ••• ,Xlc'X21'"••,X2c'·••,Xrc) 

be the observation vector and 

A'= 

the design matrix. Then equation (4) can be rewritten 

E(X) = AS. (16) 
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if the variance-covariance matrix of the X(ij) is known (up to a constant 

s2= a! + a; +a;), then the generalized Gauss-Ma_rkov theorem would give 

the.best linear unbiased estimate (BLUE, Lloyd, 1952) of a, This is,writing. 

S~ for the covariance matrix, 

(17) 

In random effects models, assuming E known is equivalent to assuming that 

2 2 
aA and aB are known. 

To find linear estimates in the one-dimensional case, Gupta (1952) 

considered the simplification of setting E = I. For the normal distribution 

the resulting estimates of µ, and a are asymptotically maximum likelihood estimates 

(Ali and Chan (1964)) and hence are efficient. Even in small samples, the 

efficiency of Gupta's estimate reiative to the BLUE is high (for n-s; 10, 

the efficiency is '.2::, 99.2%, Chernoff and Lieberman (1954)). 

Analogously for the two dimensional case, we set E = I in (17). The 

resulting estimates are thus 

9 = (A'A)-1A'X. (18) 

We call e' = ( µ,SA,SB) the simplified linear unbiased estimate (SLUE). 

Since 6 E(u(il r)) = 0, 9 simplifies to 

( !: ) = ( 9= (19) 

where 

A jl c = E(u(jj c))/ L)[E(u(jl c))]2. 

The coefficients Ajjc are given for 2 -s; r, c -s; 20 in Table 3. Missing values 

can be filled in·by·the relations A ·j = -A ·+i I and, if r = 2m+l, 
1. r 1. -r r 

Am+ljr = 0. The last column of Table 3 gives 2::[E(u(jlc))J
2

, which will be 

needed in Section 4. 

Table 3 about here 



... 

- 6 -

4. Relation to analysis of variance. Since SA is a contrast among 

the (ordered) row means, it follows that 

-2 
cSA 

SSA= (20)" 

is a sum of squares in the row space. It follows from Ali and Chan (1964) 

that SA is asymptotically the maximum likelihood estimate of SA (given 

normality), so that SSA has the same asymptotic distribution as the usual 

2 2 
·maximum likelihood estimator, SSA= c 6 X(i·) - rcx.. Hence, 

- 22 -asymptotically, SSA rv (r-l)SAXr-l· Since SSA is independent of MSe' writing 

MBA= SSA/(r-1), 

MSA 
F=MS 

e 
(21) 

is asymptotieally distributed as F(r-1, (r-l)(c-l)) and provides a test of 

a:_= O. Consideration of Scheff,'s (1959) s-~ethod shows that F~ MSA/MS
8 

and 

hence the test F is conservative. Here, MS is the usual within-mean square 
estimate of cr2 , and MSA is the rows mean sqtiare. _ 

If the row effects are not normally distributed, then expectation of SSA 

will be reduced. For testing the normality assumption in one 

dimension, Shapiro and Wilk (1965) considered the statistic 

SSA 
SSA 

w = (22) 

except that their estimate of SA was the BLUE rather than the SLUE used here. 

They have tabulated percentage points of the null distribution of W for 

3 ~ n~ 50 for p = .Ol,.02,.05,.10,.50,.90,.95,.98,.99. The hypothesis of 

normality can be rejected if the observed value of Wis less than the tabled 

critical value. Sampling experiments {Weisberg, 1973) indicate that the percentage 

points of the statistic given at (22) are well approximated by the values given 

by Shapiro and Wilk, often providing a slightly conservative test. 

The statistic given at (22) was discussed by Shapiro and Francia (1972) for use 

in large samples {they call it w'). They give percentage points for large samples. 

Table 4 about here 
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After similar arguments- ar~ applied in the column space, the results 

can be sunnnarized- in the Analysis of Variance Table given as Table 5. 

Table 5. Analysis of Variance 

Source d. f. ss MS F w 
Rows r-1 SSA MSA MSA/MSe 

SA SSA MSA M3A/MSe 
Lack of Fit SSA-SSA SSA/SSA 

Columns c-1 SSB MSB MS8/MSe 

SB SSB MSA MSB/MSe 
Lack of Fit SSB-SSB SSB/SSB 

Residual (r-1) (c.:l) ss MS 
e e 

5. Example. As an example, a lOxlO table was generated such that· the 

row effects were independent and identically drawn from a normal distribution, 

2 mean 0, crA = 0.1 (the actuai nwnbers drawn had mean .061 and sample variance 

.115). The column effects were all set to zero, except in one column the 

effect was 0.953, chosen so that the sample variance of the column effects 

would equal 0.1. Table entries were then generated by (row effect)+ (column 

effect)+ standard normal {N{0,1)) deviate. The resulting array is to be 

given in Table 6, in which the ordering according to row and column means 

has already been accomplished. Thus the cell entries are the two-way 

order statistics. The ordered table appears to be relatively well behaved 

with larger values near the southeast corner and smaller values near the 

northwest corner of the table. 

Tables 6 and 7 about here 

The Analysis of Variance for this data is given in Table 7. Either 

F test for rows (H:· a! = 0) is significant (. 025 < p < . 05), while the F test 

for columns is not significant. Furthermore, W for rows is not significant, 

while W for columns is significant (.025 < p < .05). The significant 
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value of W leads to rejection of the random effects model for columns.· 

2 · The conclusions to be drawn from the analysis are that · ·a A is non--zero 

(it can b·e estimated in the usual way--c.f. Scheff~ (1959):--or, as _a more 

conservative approach, by using MSA in 

2 
place of MSA) and, while we have no reason to suspect that aB is non-zero; 

we·reject the hypothesis of normality among the column means, so that there is 

some indication that not all the colt.nnns are the same. 

Residual analysis. The usual residuals from the model are computed-as 

(23) 

As an added benefit of computing SA and SB, another set of residuals can be 

computed: 

(24) 

The usual residuals add to zero in each row or column: ~ d(ij) = ~ d(ij) = 0, 
L J 

while ·the new residuals only add ·to z~ro over the whole table: ~ d(ij) · = O. · 

"" -2 "" 2 · l.J Of course, L..J d(ij) ~ L..J dij; however, since the error is spread throughout 

the table in a different fashion, the new set of residuals may be useful in. 

finding failures of the model. 
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Table 1. 

0RIGINAL DATA 

R0W 
MEANS 

.79 -.26 .36 -.44 -.09 .01 
-1.07 .54 2.11 .47 1.s8 .72 

.75 2.12 .48 - • 12 -.02 .64 
-1.54 1.01 • 1 1 1 • 13 -1.27 - •. 11 

.37 -.02 .;..98 1.28 -1 .17 - • 10 
C0LUMN 

MEANS -.14 .68 .42 .46 -.19 

0RDERED DATA 

R0W 
MEANS 

-1.27 -1.54 • 1 1 1. 13 1.01 -.11 
-1.11 .37 -.98 1.28 -.02 - • 10 
-.09 .79 .36 -.44 -.26 .01 
-.02 .75 .48 -. 12 2 .12 .64 
1.ss -1 .07 2.11 .47 .54 .72 

lal C0LUMN 
MEANS -.19 -.14 .42 .46 .68 

._, 



I [ ( ( 

~ 

( 

··-
[ [ ( [ [ I [ [ 

Table 2. Expected values and standard deviations of 
two-way order statistics for a lOxlO null table. 

-.9732 -.8033 --5941 -.6054 -.5254 -.4478 -.3678 -.2791 
.9321 .9251 .9230 .9221 .9217 .9217 .9221 .9230 

-.8033 -.6333 -.5241 -.4354 --3554 --2779 -.1979 -.1092 
.9251 -9181 • 9,159 .9150 .9146 .9146 .9150 .9159 

-.6941 --5241 ~-4149 -.3263 -.2463 -.1687 --0887 0 
.9230 .9159 -9138 .9128 .9125 .9125 .9128 .9138 

-.6054 -.4354 --3263 -.2376 -.1576 -.oaoo 0 -0887 
.9221 -9150 .9128 • 91 19 .9115 • 9 115 • 9 119 .9128 

-.5254 --3554 -.2463 -.1576 -.0776 0 .osoo .1687 
.9217 .9146 .9125 • 9115 • 9112 • 9112 • 9115 .9125 

-.4478 --2779 --1687 -.0800 0 -0776 • 1576 .2463 
.9217 -9146 .9125 • 9115 • 9112 • 91 I 2 • 91 15 .9125 

-.3678 -.1979 -.0887 () .osoo .1576 .2376 .3263 
.9221 -9150 .9128 • 9119 • 9115 • 9115 • 91 19 .9128 

- • 27 9 1 - • 1 0. 9 2 0 .0887 .1687 .2463 .32-53 .4149 
.9230 .9159 .9138 .9128 .9125 .9125 .9128 .9}38 

- • 1699 0 • 1092 .1979 .2779 .3554 .4354 .5241 
~ • 925 1 .9181 -9159 .9150 .9}46 .9146 .9150 .9159 

0 • 1699 .2791 .3678 .4478 .5251-4 .6054 .6941 
.9321 .9251 .9230 .9221 .9217 .9217 .9221 .9230 

.. 
Co 1 umn - 1 • 5 3:8 8.~;. 1 • O O I 4 - • ·S 5 5 1 - • 3 7 5 6 - .I 2 27 -1227 .375,5 .6561 

means .S86R .463?. .L!IP.3 • 397 L! .3887 .3887 .3974 .4183 

I [ [ [ [ 

Row 
means 

-.1699 0 -1.5388 
• 92'51 .9321· .5868 

0 -1699 -1.0014 
-9181 .9251 .4632 

-1092 .2791 --6561 
.9159 .9230 .4183 

.1979 .3678 --3756 

.9150 .9221 .3974 

.2779 -4478 - • 1227 
-9146 -9217 -3887 t-' 

t-' 

I 
.3554 -5254 .1227 
-9146 -9217 -3887 

.4354 .6054 .3756 
-9150 .9221 .3974 

.5241 .6941 .6561 
-9159 .9230 -4183 

-6333 .8033 1.0014 
e9lf31 .9251 .4632 

.8033 .9732 1.5388 
• 9 25 1 .9321 ~5868 

1.0014 1-5388 
.4632 .5868 
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Table 3. 

C0EFFICIENTS F0R SIMPLIFIED LINEAR UNBIASED ESTIMATES 0F 
SA AND SB F0R r AND c LESS THAN 0R EQUAL T0 20 

I: E(u(ijr))2 
r,c 1 2 3 4 5 6 7 8 . 9 10 

2 .8862 . -6366 
3 e5908 1·4324 
4 .4484 .1294 2·2956 
s .3640 .1 51, 9 3 • 1950 
6 .3078 .1559 .0490 4·1166 
7 .2676 • 1499 .0698 s.052s 
8 .2373 • 1420 .0788 .0254 5.9995 
9 .2136 .1341 .0823 .0395 6-9539 

10 .1944 • 1265 .0829 .0475 .0155 7.9143 
11 .1787 .1196 .0821 .os20 .0253 s.s193 t-' 

N 

12 e 1654 .1133 .0805 .0545 .0317 .0104 .9 e8481 
13 • 1542 • 1076 .0785 .0557 .0359 .0176 10.s200 . 
14 .1444 .1024 110764 .0561 .0386 .0221 .0075 . I. I .7945 
15 .1359 .0977 .0742 .0560 .0404 .0263 .0129 · 12.1112 
16 .1284 .0934 .0120 .osss .0415 .02s·s .0110 .0056 l 3 .7497 
17 .1218 .0895 .0699 .0548 .0421 .0306 .0200 .0099 14.7299 
18 .11ss .0860 .0678 .0540 .0423 .0319 .0223 .0132 .OOl&ll 15.7114 
19 • 1105 .0827 .0659 .0531 .0423 .0328 .0241 .0158 .0078 1.6 .6942 
20 • 1056 .0796 .0640 .os21 .0422 .0334 .0254 .0178 .0106 .0035 17.6782 

N0TE: ALL ENTRIES HAVE A SUPPRESSED MINUS SIGN 
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Table 4. Critical values for Shapiro 
and Wilk' s W. * 

~ 

Level 
r,c 0.01 0.02 0.05 0.10 

~-
3 0.753 0.756 0.767 o. 789 

4 .687 .707 .748 • 792 
klllll 

5 .686 • 715 .762 .806 

6 • 713 .743 .788 .826 - 7 .730 .760 .803 .838 

8 • 749 • 778 .818 .851 

~ 9 .764 .791 .829 .859 

10 .781 .806 .842 .869 

- 11 .792 .817 .850 .. 876 

12 . 805 .828 .859 .883 

13 .814 .837 .866 .889 - 14 .825 .846 .874 .895 

15 .835 .855 .881 .901 ._,, 
16 .844 .863 .887 .906 

17 .851 .869 .892 .910 

~ 18 .858 • 874 .897 .914 

19 .863 .879 .901 .917 

lat 20 .868 .884 .905 .920 

*Abstracted from a larger table in 

-' 
Shapiro and Wilk(1965). 

~ 

-
... 

~ 

-
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-1.66 -1.40 .03 

.17 .12 -2.19 

-.24 .11 -.57 

-.13 -.86 -2.12 

.20 -1.16 1.68 

.01 .17 -.60 

-2.32 1.05 .73 

.21 -.15 1.38 

-.38 -.35 -.92 

• 77 • 29 .56 

Row 
means -.34 -.22 -.20 

l. 1. l [ .f l 

Table 6. Artificial data set arranged to give 
the two-way ?rder statistics. 

-.38 -1.06 -.70 .86 -2.95 

~1.01 .30 -.38 -2.74 -.21 

-1.05 -1.24 -.73 -.02 -.52 

-.46 -1.45 -.34. .52 1.89 

-.49 -.57 .55 1.09 .49 
-.05 -.24 .75 .28 .48 

-1.98 2.08 1.12 -.48 1.00 

1.70 -.65 -.81 .68 -.53 

1.92 2.04 .53 .98 1.37 

.60 .36 .16 -. 71 .09 

-.12 -.04 .01 .05 .11 

l. I -I 

Column 
means 

-1.83 1.54 -.75 

-1.28 .so -.67 

1.32 .70 -.22 

-1.11 2.20 -.19 

-.35 -.93 .05 

1.12 .23 .21 

• 85 .93 .30 

.53 2.61 .50 I..& 
~ 

1.00 -.54 .57 

3.51 2.31 .79 

.38 .96 · 
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Table 7. Analysis of Variance for 
· the data ·in Table 6. 

Source 

Rows 

SA 
Lack of Fit 

Columns 

SB 
Lack of Fit 

Residual 

SLUE Effects 

Mean= .0580 -SA = .5431 

S = .3614 
B 

Analysis of Variance 

d. f. ss MS 

9 24.076 2.675 

23.342 2.594 

.734 

9 12.545 1.394 

10.336 1.148 

2.209 

81 100.165 1.237 

-1.. JL 
2.16 

2.10 

.970 

1.13 

.93 

.824 
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