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ABSTRACT 

A gambler seeks to maximize his probability of reaching a goal in 

a game where he is allowed at each stage to stake any amount of his current 

fortune. He wins each bet with a certain fixed probability w. Lester E. 

Dubins and Leonard J. Savage found optimal strategies for a gambler who 

knows w. Here strategies are found which are nearly optimal for all w 

and, therefore, also for a gambler with an unknown w. 



1. Introduction. 

In continuous red-and-black gambling problems the gambler can stake 

any amount s of his current fortune f, 0 < s < f. If he stakes s his 

fortune becomes f + s with probability w and f - s with probability 

w = 1 - w where O < w < 1. The gambler is allowed to gamble repeatedly. 

We consider a gambler whose objective is to reach fortune 1, so the utility 

of his strategy is the probability that he attains fortune 1 using that 

strategy. The problem, which has content only for O < f < 1, is to find 

a strategy which makes this probability as large as possible. 

In the more precise notation and terminology of Dubins and Savage (1965), 

red-and-black is,for fixed w, a gambling problem in which the set of 

fortunes, utility of a fortune, and available gambles are as follows: 

F = (0, -f-00); u{f) = 1 or O according as 

(w6{f+s) + w6{f-s}: 0 ~ s ~ f) for all 

the measure which assigns mass 1 to (f). 

f > 1 or O < f < 1; r (f) = w 

f e F. The symbol 6(f) denotes 

A strategy cr available at f in rw is a sequence cr
0

, cr1 , ••• where 

cr
0 

e rw(f) and, for each positive n and each finite sequence (f
1

, ••• , fn) 

of elements of 

is denoted by 

F, cr (f
1

, ••• , f) er (f ). The utility of a strategy cr n n w n 

u{cr) and U {f) = sup u{cr) where the supremum is taken over w 

all cr available at f in r. A strategy cr is e-optimal at f 
w in r 

w 

if u{cr) ~ Uw(f) - e for e ~ 0 and is optimal if it is 0-optimal. 

Specifying a gamble in r {f) is equivalent to specifying a stake, so that w 

a strategy can as well be defined in terms of stakes. This definition of 

strategy has the advantage that the same stakes are available at a fortune f 

for every value of w. 
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Consider first the case in which w is fixed with O < w < 1/2. 

Dubins and Savage (1965) show that in these subfair games it is optimal 

to play boldly by always staking min{f, £) for O < f < 1 where f = 1 - f. 

Denote the utility of the bold strategy starting from f by B (f) w for 

0 < w < 1. Some characteristics of B {f) and a description of other 
-W 

optimal strategies will be given in Section 3. 

Now consider the case in which 1/2 < w < 1. It follows from the 

general theory of proportional strategies in Chapter 10 of Dubins and Savage 

(1965), or from a simple direct argument based on the strong law of large 

numbers, that the strategy which always stakes af at fortune f for 

a> O is optimal for a sufficiently small depending on w, and the 

utility of such strategies is 1. However, none of these proportional 

strategies is simultaneously optimal for all w in{½, l]o 

Here we show that a strategy which always stakes f 2 at f is optimal 

for 1/2 < w < 1. This result serves as an aid in finding a strategy which 

is nearly optimal for values of w less than 1/2 and greater than 1/2 

simultaneously. Roughly, one such strategy is to stake f 2 for f near zero 

and to make nearly bold stakes elsewhereo Such a strategy is also nearly 

optimal when the gambler does not know the value of w but has a probability 

distribution on w. Thus, a gambler can ignore prior information about w without 

significant loss. A gambler cannot always ignore such information without 

loss in discrete red-and-black, a problem we briefly consider in which the goal 

is a positive integer and the fortunes and permitted stakes are also integers. 

2. Timid Play is optimal for ½< w ~ 1. 

The timid stake at f is defined by 

t{f) = f 2 if O ~ f < 1 

= 0 if f > 1. 
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The timid strategy at f in r is that strategy, available at 
w 

which always stakes t{f') whenever f' is the current fortune. 

Theorem 1. 

f in r ,· 
w 

If 1/2 < w < 1 and f > 0, then the timid strategy at f has utility 1 

and is, therefore, optimal. 

Proof: 

Let 1/2 < w < 1. Suppose f > 0, 0 < ct < 1. A gambler who has 

fortune f and stakes ctf will, at the next stage, have a fortune f 1 

which is (1-kt)f with probability w and (1-ct)f with probability w. 

Thus, the expected value of the logarithm of his resultant fortune is 

E log f 1 = g(ct) + log f, 

where g(ct) = w log (l+c:t) + w log (1-ct). Since _g(O) = 0 and g'(O) > O 

there is an ct(w) in (0, 1) such that g(ct) > 0 for O <ct~ c:t(w). 

Therefore; if a gambler has fortune f with O < f ~ ct{w) and makes 

the timid stake at f, then E log f 1 > log f. 

Consider now the sequence of fortunes f, f 1 , f
2

, ••• of a gambler 

who starts with f and plays timidly. Suppose O < f < ct{w) and set 

X = log f, and, for n = 1,2, •• o, 

X = log f if f 1 < ct{w), i = 1, ••• , n, 
n n 

= log 1< if f 1 < ct{w), i = 1, ••• , k-1 and \ ::: ct{w) for some k ~ n. 

The argument above shows that.the process X, x1 , x2 , ••• is a submartingale. 

Since the process is also bounded above by log {ct{w) + ct{w) 2 ), it converges 

almost surely to a random variable Y such that EY::: X (Theorem VII.4.ls, 

p. 324 in Doob (1953).). But convergence of the X to a finite number n 

less than log ct(w) is clearly impossible and convergence to -oo can only 

occur with probability zero since otherwise EY = -oo. Hence, Y ~ log ct(w) 
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almost surely. In other words, a timid gambler who reaches a fortune 

less than a(w) will, with probability one, attain a fortune larger than 

a(w) at some future stageo Whenever his current fortune is larger than 

a(w), his fortune will become 1 before becoming less than a(w) after k 

or more plays with probability at least wk, where k is finite and chosen 

so that, starting from O:'(w), k consecutive wins enable a timid gambler 

to reach 1. Since his fortune will be greater than a(w) an unlimited 

number of times with probability 1 it follows that a timid gambler with 

positive initial fortune will eventually reach fortune 1 with probability 1. D 

There are, of course, many other strategies which are optimal for 

all w in (1/2, l]. For example, consider a strategy which stakes 

fl+5 with 6 > 0 whenever the current fortune is f. A trivial modification 

of the proof of Theorem 1 shows that such a strategy is optimal in superfair 

red-and-black. Roughly speaking, any strategy will do which makes stakes 

near zero small enough to ensure that the log f process is expectation n 

increasing for f near zero and stakes away from zero large enough 
n 

(but never the entire fortune) to guarantee that the f process does not 
n 

remain forever in (0, 1) with positive probabilityo We have not been able 

to characterize those strategies which are optimal for all w in (1/2, 1], 

at least not in any satisfactory way. 

3. 6-bold strategies are e-optimal for all w. 

Let O < 6 < 1/2 and consider the family of strategies which always 

stake b
0
(f) at f where 

f2 if 0 < f ~ 6, 

b6(f) 
f-6 if 6 < f < (1+6)/2, 

= 
f if (1+0)/2~ f < 1, 

0 if f> 1. 
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The 6-bold strategy at f in rw is that strategy available at f in r 
w 

which stakes b
0
(f 1

) whenever. f 1 is the current fortune. Playing 6-boldly 

means playing timidly for f e (0, 6] and boldly for f e (6, 1), but as 

--, though the fortune is f - 6 instead of f. 

-

Theorem 2. 

For every e > 0, there is a 6(e) > O such that for all 6 e (0, 6(e)), 

w e[O, 1], and f e F, the 6-bold strategy is e-optimal at f 

Proof: 

in r. 
w 

If w e {O) U (1/2, l], then 6-bold play is optimal at every f e F 

for all 6 e (o, 1/2). This is clear if w is 0 or 1, so suppose 

1/2 < w < 1. By Theorem 1 a 6-bold gambler whose initial fortune is in {o, 5) 

will attain a fortune at least as large as 6 with probability 1. A 6-bold 

gambler whose initial fortune is in [6, 1) will attain fortune 1 after at 

-k most k + 1 plays with probability at least ww, where k is a positive 

integer such that a 6-bold gambler starting from 6 reaches 1 after k 

consecutive wins. Therefore the fortune of a 6-bold gambler reaches 1 

with probability 1 for 1/2 < w < 1. 

Now fix e > 0 and consider we (o, 1/2). For all· f, U (f) = B (f) w w 

which is continuous and increasing on [O, l]. Also, Bw{f) < Bw 1{f) 

for w < w' and f e (0, 1). It follows from formula 5.2.1 of Dubins 

._ and Savage (1965) that B (3/4) = w + ww, which tends to Oas w ~ O. w 

Choose w
0 

< 1/2 such that, for OS w S w
0

, Bw(3/4) < e. For w S w
0 

and f < 3/4, B (f) < e and every strategy is e-optimal at f. For 
- w 

w S w
0 

and f > 3/4 the 6-bold strategy at f with O < 6 < 1/2 makes 

the same stakes as an optimal strategy {namely, the bold strategy) at fortunes 

greater than 3/4 and continues with an e-optimal strategy if the gambler's 

fortune ever becomes less than 3/4. It follows that, for O < 6 < 1/2 and 

0 < w S w0 , the 6-bold strategies are e-optimal for all f. 
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The case we (w0 , 1/2] remains to be considered. For f e (6, 1), 

the probability that the fortune of a &-bold gambler starting from f 

reaches 1 before 6 is Bw(i:~) and so the utility of the 6-bold strategy 

at f is larger than Bw(f-6). Suppose k and n are nonnegative integers 

with k < 2n and 

Use first the fact that Bw(f) is increasing in f for each w and 

then formula 5.2.2 of Dubins and Savage (1965) to get 

B (f) - B (f-6) < B ((k+1)2-n) - B (k2-n)· = ;;awn-a, 
w w - w w 

where a is the number of l's in the binary expansion of k2-n. It follows 

that 

B {f) - B {f-6) < [max(l-w0 , l/2)]n. 
w w -

Let n be large enough to guarantee that the right side is less than e 

and let 6(e) = min{e, 2-n). It follows that, for 6 < 6(e), we (w0 , 1/2], 

and f e(6, 1), 6-bold play is e-optimal. 

The conclusion holds trivially for f e (0, 6]. For such an f, 

if 6 < 6(e)· and w < 1/2, then B (f) < B ( 6) < B1 ( 6) = 6 < e. D 
- w - W - 2 

As was the case with the timid strategy in the previous section, the 

&-bold strategies are not uniquely e-optimal for all f and w. The argument 

used to prove Theorem 2 can be modified to show that any family of strategies 

which makes timid or similar stakes near zero, bold stakes near 1, and 

sufficiently close to bold stakes (but never the entire fortune) elsewhere 

has the desired property. For example, a strategy which stakes min{f1+6, f) 

for 6 > 0 whenever the current fortune is f is e-optimal for all w if 

6 is sufficiently small. 
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.... 

Another sort of nonuniqueness arises from the fact that bold play 

is not uniquely optimal in subfair red-and-black. Suppose n is a positive 

-n -n integer and k is a nonnegative integer with k2 < f < (k+1)2 • If 

w < 1/2, then according to Dubins and Savage (1965, Section 5.4) an optimal 

strategy at f is to play boldly to scale on the interval (k2-n, (k+1)2-n) 

followed by some optimal continuation after reaching either endpoint. 

Likewise, an e-optimal strategy for all w is to play 6(e/2)-boldly 

to scale on such an interval followed by some continuation which is e/2-

optimal for all w. 

4. Red-and-black w.ith a probability distribution on w. 

Suppose w is not known precisely, but is a random variable whose 

distribution is a probability measure TT on (0, 1]. The outcome of 

each gamble may now affect future stakes for two reasons: the gambler's 

fortune f changes and his information regarding w changes. The object 

is to reach 1 as before. 

Consider the following gambling problem. The set of fortunes is 

G = {(f, TT): f e F, TT e p), where P can be taken to be the collection of 

countably additive probabilities defined on the Borel subsets of [O, l] 

or the collection of finitely additive probabilities defined on all subsets 

of [O, 1]. The gambler's utility for {f, TT) e G is u(f, TT)= u(f) 

which is again O or 1 according as f < 1 or f > 1. For TT e P, 

let ETT = J wdTT{w) and ETT = J wdTT{w} in a slight departure from standard 

notation, and define Tfw' ~ € P by 

'fTw(B) = i J wd11(w} if En + O, 
TT B 

= n(B) if En= o, 

TTL (B) = l J wd,r(w) if Err + O, 
ETT B 

= n(B) if En= o, 

for appropriate sets B. TTw and ~ reflect information present about 
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w after observing a win and loss, respectively. The convention that 

ww = TT when Err= 0 and TTL= TT when ETT = 1 is somewhat arbitrary, 

but of little importance since win and loss, respectively, are events 

of probability zero. To stake s at {f, rr) is to use the gamble 

g(s, f, TT)= (En)o(f+s, fTw) + (Err)6(f-s, ~) and the available gambles 

are defined by r(f, n) = {g(s, f, TT}: O < s Sf). Let U be the utility 

of the house r. That is, U(f, rr) is the supremum over all strategies 

a available at (f, rr) in r of the a-probability that 1 is reached. 

The 6-bold strategy at (f, TT) in r is that strategy available at (f, TT) 

in r which stakes b
0
{f') whenever the current fortune is (f 1 , n'). 

The next result is a natural consequence of Theorem 2. 

Theorem 3. 

For e > O, there is a 6(e) > 0 such that, for all 6 e (o, 6(e)) 

and all {f, TT) e G, the 6-bold strategy at (f, TT) is e-optimal. Furthermore, 

for all 

Proof: 

(f, TT) e G, U{f, TT)= JU (f)dn(w) = TT(w > 1/2) + J B (f)drr(w). 
W ...,..1 TA 

W:::.2 

For (f, TT) e G, let Q(f, TT)= J Uw(f)dTT(w). Then Q?: u since 

Uw?: u for all w. Also, for O ~ s ~ f, 

g(s, f, TT)Q = (En)Q(f+s, Tfw) + (ETT)Q(f-s, TTi,) 

= J [wuw(f+s) + w uw(f-s)]dTT(w) ~J uw(f)drr(w), 

since Uw is excessive for rw. Therefore, g(s, f, n)Q S Q(f, TT). 

Thus Q is excessive for r and, by Theorem 2.12.1 of Dubins and Savage 

(1965), Q?: U. (A different proof of this is based on the obvious fact 

that the gambler can do at least as well knowing the value of w as he 

can without such knowledge.) 
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Let e ~ 0 and 6(e) be as in Theorem 2. Suppose O < 6 < 6(e) 

and let cr, cr be the 6-bold strategies available at f, {f, TT) in 
w 

rw' r, respectively. Then U{f, TT) 2: u{cr) = J u{crw)dTT{w)?: f (uw(f)-e)dTT{w) = 

Q(f, rr) - e. D 

It is interesting that the 6-bold gambler does essentially as well 

as he could expect to do while ignoring his distribution TT and the results 

of the gambles. Another e-optimal strategy {at least in the countably 

additive case) is to stake O until the distribution of w assigns 

probability at least 1 - e to the set [O, 1/2) or (1/2, 1] and play 

timidly or boldly thereafter. This strategy is less appealing since it 

seems less likely to be helpful in an analysis of a problem in which there 

is a mininnim positive stake, as is the case in the problem considered next. 

5. Discrete red-and-black. 

Let n be a positive integer, F = {0,1, ••• , n), and O ~ w ~ 1. If 

£ is 0 or n, define r (£) = (6{f)); if 
w f = 1,2, ••• , n-1, define 

r (f) = {w6(f+s) + w6{f-s): B = 1, ••• , n-f). Set u{n) = 1 and u{f) = 0 w 

for f = O, ••• , n-1. This defines a discrete red~and-black gambling problem 

• analogous to the continuous one considered in previous sections; now the 

goal is f = n. For a fixed value of w, optimal strategies are known. 

If O:::: w:::: 1/2, then one optimal strategy is to play boldly by always 

staking the largest available amount; this result is an easy consequence 

of the corresponding one for continuous red-and-black. If 1/2 ~ w ~ 1, 

then the timid strategy which always makes the least possible stake is 

optimal. This is easily proved using Theorem 2.12.1 of Dubins and Savage 

(1965) and the formula for the utility of timid play given in Section XIV.2 

of Feller (1957). If 1/2 < w < 1, timid play is uniquely optimal. 
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Unlike the continuous case, there need not exist strategies which are 

e-optimal for all w. For example, if n = 2m > 2, then the uniquely optimal 

stake at f = m is m for we (0, 1/2) and is 1 for we (1/2, 1). 

{Here an optimal {e-optimal) stake at f is one which is the first stake 

in_some optimal (e-optimal) strategy at f.) Since there are only a finite 

number of available stakes, none of them is e-optimal for all w when e 

is sufficiently small. 

Another feature of the problem which differs from the continuous case 

is that the gambler cannot safely ignore information about w. A striking 

illustration of this is that if n = 8 {chosen as the smallest interesting 

power of 2), it is optimal for any fixed value of w to stake 1 at the 

fortune f = 5 {and uniquely optimal for we (1/2, 1)), but, as computer 

• calculations indicate, 1 is not an optimal stake when w has the prior 

distribution which gives probability 1/2 to each of the values 1/4 and· 

3/4 (3 is the optimal.stake) •. 

The discrete problem with a probability distribution on w can, of 

course, be formulated as a gambling problem by analogy with the continuous 

problem in Section 4. It is possible to get information about this discrete 

problem from the continuous one when n is large, but interesting, exact 

results about optimal strategies seem difficult to obtain. 
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