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ABSTRACT

Let Yi" cees Yu be independent random variables with mean zero such
that IYi[ <i, i=1,..s, n, and let 91’"" en be real numbers satisfying
n

n .
E =1 se T(6)=I oY, andlec glx) = (o) Bexp[ -2x2].
1

Theorem,

For d> 0 an.d for all 91,0009 e [y

P[Itrn(e)i >a) <2 inf J‘w L__L q,(x)dx <10 2e) ;.r expls/2fe- S/g?)] .
Osu<y u (oz-u) o 0gs<a® 63(1-' 8/02)




1. Introduction.

Let U;,..., U be independent random variables with P{U,= 1} = P(U;= -1} = &,
i=1,..., n. Further, 41et 431 be the class of functions f: R - R such
that (i) f is sjmmetric‘and has a derivative f' and (ii) %-[f'(t+A)-f'(;t+A)]
is non-decreasing in t >0 for each A > 0. As in Eaton (1970), set

n n .
T (9) =% 9,U, where @.,..., §_are real numbers and ¥ §,2 = 1, With
n 1 i 1’ > "n 1 i
1
T ap——
n NE

Proposition 1.
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Ui’ we have

=M

For each £ ¢ 31,

(1.1)  e(r (o) < es(z,) < es(z,,;)

for n =-1’2’ooo.

Proof:

See Eaton (1970).

Proposition 2.

If £ ¢ 3& and if there exists a 5§ > 0 and a constant M such that
8|f(Tn)|1+6 <M for all n, then
(1.2) ef(T,) < ef(z)
where Z has a unit normal distribution,
Proof:

See Eaton (1970).

The purpose of this paper is to use (1.1) and (1.2) to obtain an upper
bound for P{ITn(e)| >a} for o>0. Consider an f ¢ J so that (1.2)

holds, and so that £ >0 and £(x) >1 if |x| > . It follows immediately,

using (1.1) and (1.2), that
(1.3) p{|T_(0)] > o} < e(T (0)) < ef(z)) < ef(z). .
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Now, to derive a probability bound, we would like to minimize the right hand
#ide of (1.3) for all functions f for which (1.3) is valid. However, the
‘class 31 is rather difficult to describe in a manner ﬁhich allows the
minimization of e£(z). The following lemma gives a useful sufficient condition
for a symmetric function £ to be in Gi.
Lemma 1. - ‘

Suppose f: R = R is symmetric, f£'''exists and £'''(x) 1is non-decreasing
for x> 0. Then. f ¢ 31.

For t >0 and A Z 0

£''7(t+pa) - £''7(-t+a) >0

80
E[E' M (t+n) - EP10(-tan)] . £1(E4A) + £10(-t4a) > £'1 (D) + £'1(-t4h).
Hence ‘
S [E(E! " (ern) 4 £ (-e4a))] > G [€°(e8) - £'(-en)]
Therefore
t[£'"(t+a) + £7'7(-t+A)] 'Zf'(HA) - £1(-t+h) .
But '
4 [f'(t+ﬁ) - f'(—t+A)] e[ (tA) + £ (-t4n)] - [E7(t+) - £'(=t4n)] o
dt t = : .

2
Thus f ¢ & and the proof is complete,

2, The Basic Inequality.

To obtain a probability inequality fér P{|Tn(9)| Z’a], fix o > O' and

let qy denote the class of functions £ which are symmetric énd satisfy

1 X 3
o £(x) = gg_g (x-u) dF(u) , x>0

£a) = 1 tg"'(o,.u)%;(u) -1
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Here, F 1is a non-decreasing function on [0, ) with F(0) = O and
F(+0) < 4o, Define (.)+ by (v);=v if v>0 and (v) =0 if
v<O. Then, £¢3 iff

. L e 5
£(x) =37 [ [(|x] - v),1aF(u) 5 x eR

*0

(2.2)
fla) =1

Proposition 3.

If f ¢ 3&, then

(2.3)  2llz_(6)] > o) < e£(z_(6)) < e£(z)

where Z is N(O, 1).

Proof:

Since f£'''(x) = F(x), va 0, £'''(x) is non-decreasing for x > O,
x
By Lemma 1, £ ¢ & . Further, £'(x) = 3 [ (x-u)2dF(x) >0 for x>0 so
0
£(x) is increasing for x > 0. Since £(a) =1, £(x) >1 if |x| > 0.

Combining the above and applying Prop. 1, we have

(2.4) {1 (0)| > o} < ef(T_(0)) < e£(z).
But, | .
(2.5)  elem)|® = |37 [ [z| - ), Par(@)]® < efgy Iz, | ()12

= =) 6 <y

for some constant M and for all n. By Prop. 2, 8f(Tn) < ef(z). This

completes the proof,

From the above proposition, we have

(2.6) P(|Tn(e)| > o) < inf ef(z).
fe:3cY
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Proposition k.

For o> 0,
o . > X-Uu 3
(2.7) inf ef(z) =2 inf [ 3 o(x)dx,
fe&d o Osusy u (g-u)-
Proof:
For o > 0,
' (2.8) inf e£(z) = 2 tnf =p [ [ [(x-u), 13ar(u)p(x)dx
31 + :
fed, : fe'd'd 00

2 1;5 %, f w(u)dF (u)

: o

where F is non-decreasing, F(4w) < 4w, %rf (a-u)3dF(u) =1 and
) ° 0

w(a) = [ [x-u), Pglx)ix. Bur

. L [u(u)ar(s) > 2 tne [ -0) (“"de“> ng (8
(2.9) 2i;f§TJ; (u)ar(u) > 2 ;}»g (@u)3 3 ()—aogm(d—u)3

However, it is easy to see that one has equality in both of the inequalities
in (2.9) since a choice of F can be made which gives equality. Since

© ,
w(u) = [ (x-u)p(x)dx, (2.7) holds.

u

Theorem 1,

For o >0,
) 3 .
(2.0) el () 2a) <2 tne [ {ZUDgha, g
Osisey u (a-u)
Proof:

This follows immediately from (2,6) and Prop. L.
The explicit minimization of the right hand side of (2.10) has not been

accomplished., The following gives some upper bounds for this minimum.
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@ 3
(2.11)  H(a,u) = [ ("_'“_)3 olx)ax = [

u (q-u)

-]

« (o:-u)
_ o)
% u'(q-u)

Set u=a-§ for O<5
]
(2.12) H(a,u) = 52‘—1 <

6

< of

-]

0 (o-u)’ olraex

o~3(uZ=0?) g w3a~uX By
e-%(ue-de) gwx3e-xe-%(x2/u2)dx

80

e BS) 3w HxPuR)

(1-

S|

-2)

©o

e’ | | 3 -x_=%(x2/u?) a0 3 -x
Now, — is minimized by setting § = 3 and J‘ x“e e * dx <J‘ X~e
5 =

53
Thus, for o > J_3

(2.13) inf H(x, u) <g
Osu=<y {

Corollary 1.

For o[>,\/_,

3
(2.14) p(|T_(0)] >a} < 12¢

o3

o

~H9/e?)
(- )

e~3(9/0?)

27 o 3)2I

(1- ==

for all 91:0“’ en and n=1,2’¢ooo

o~3(9/e®)
———E is a decreasing function of o for

It is easy to show that

o >,/3 . Thus, we have

Corollarz 2e

(- =

1063 e 2(9/2p%)

For (YZQ'O> 3_, let K:K(do)=-?7—' Tvg-—)n' . Then

(2.15)  p{T_(8)| > ) <K

%

The estimates used to derive (2,1%) and (2.15) are quite crude. Some

numerical work indicates that for all o >,/2 , inf H(w, u) < =

6e3 o)
O<usy =27 «

However, a proof of this inequality has not yet been constructed.
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3. An Extension to Bounded Random Variables,

It was shown by the author (Eaton (1972)) that the inequality of
Theorem 1 was valid for any independent symmetric random variables Xl""’ Xn
such that |[x,]| <1, i=1,..., n and Tn(é) g% 0,%;» £6,% = 1. After the

| appearance of this result, W. Hoeffding informed the author that an alternative

argument could be used to establiéh the validity of Theorem 1 for indepéndent
random vériables Yl""’ Yﬁ such that eYi = 0, IYiI‘S 1 for i=1,..., n.
It is this elegant argument which is presented in this section,

As above, let Yl""’ Yﬁ be independent random variables with gYi =0
and lYil <1, i=1,..., n. The following lemma due to G. A. Hunt (1955) is
needed.

Lemma 2,

n
Suppose g: T [-1,1] - R where g is convex in each argument when
i=1
the remaining n - 1 arguments are held fixed. Then

(3°1) 8g(Y1’ "00’ Yn) _<_ Eg(Ul, LN ) Un). ‘
Now,let Bpseees B be real numbers such that 2912 =1 and set
n n
s,(8) ='z.; 6,Y, and T (o) =§ 6,U;. For u>0, define £ : R~ [0, ») by
3
(3.2) £,) = [(|=] -w),1° .

Theorem 2,

For each o > O,

w 3
(3.3) P{|s (0)] > o} <2 inf [ 13‘;“-% o (x)dx .
: Osusy u (o-u)

Proof:

For 0<u <:a, it is clear that

e£,(s ()
(@u)d
-6 -

(3.8 ptis ()] >} <



£ (x) _ n
since £ >0 md(wﬂ321 if x| > a. MthP””YQE&%%egQ

satisfies the assumption of Lemma 2. Thus Efu(Sn(e)) = 8fu(zeiYi) <

efu(zeiui) = 8fu(Tn(e)). Using Propositions 1 and 2 on f , we have’

(3.5)  e£,(s_(0)) < ef(7_()) < ef (T ) < &£ (2).
Combining (3.4) and (3.5) yields
eg (2)
(3.6) p{|s_(8)] > a} < —“—)5
. Q’-u

for O <u<qg, Thus,

et (2) - 3
(3.7) ‘P{|Sn(9)| >0} < inf 2 3 =2 inf I (_x'.‘i)?.cp(x)dx .
A Osu<y (o-u) O<u<y u a-u).

This completes the proof.

Corollary 3.

Corollaries 1 and 2 are valid with Tn(e) replaced by Sn(e).

Proof:

This is clear from the discussion in Section 2.
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