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1. Introduction. 

In recent years a number of applications have been found for the 

Dirichlet distributions; another application is considered in this paper. 

A multinomial distribution with k cells is given with b cells 

(1 ~ b ~ k) having co1IDI10n cell probability p (0 < p ~ 1/b); these are 

called blue cells. Dual concepts of sparseness and crowdedness are 

introduced for these b blue cells based on a fixed number n of 

observations. The _(type 1) Dirichlet distribution is used to evaluate 

the probability laws, the cumulative distribution functions (c.d.f.'s), 

the moments, the joint probability law and the joint moments of the 

number S of sparse blue cells and the number C of crowded blue cells. 

The results are put in the form of moment generating functions at the 

end of Section 6. Applications of some of these results are considered in Sections 

7 and 8. Corresponding sequential or waiting-time problems will 

be treated in a separate paper. 

2. The Distribution of s. 

A sparse blue cell is one with at most u observations in it. A 

crowded blue cell is one·with at least v observations in it. Let 

Sb(u,n)= S denote the random number of sparse blue cells when there are 
,p 

b blue cells with common probability p, n observations, and u defines 

sparseness; similarly, let Cb(v,n)= C denote the random number of 
,p 

crowded blue cells with v defining crowdedness. We use the symbolism 

Max(j, n) ~ u (for integers u) to denote the event that the maximum 

frequency (based on n observations) in a specified set of j blue cells 

is at most u; similarly, Min(j, n) 2: v {for integers v) denotes the 

event that the minimum frequency {based on n observations) in a specified 

- 1 -



set of j blue cells is at least v. It has already been noted elsewhere 

(cf. e.g., [2] and [4]) that 

(2.1) P{Min(j, n) > vfp) = I(j)(v,n) 
- . p 

_ r(n+l) p p i. n jv j V 1 
- j f ... f (1- 2-, x) - TT x - dx, 

r (v}r{n+l-jv) 0 0 O'=l a · a==l a a 

where O ~ p ~ 1/b ~ 1/j, since j ~ b. A generalization of this form 

is in Section 6, equation (6.12). For j = 1 it is easily seen that 

I~l}{v,n} = Ip(v,n-v+l), where the latter is the usual incomplete beta 

function. 

It is clear that the P{S = slb, p, u, n) is the probability that 

in exactly s {out of b) cells the frequency (based on n observations) 

is at most u. Using the method of inclusion-exclusion, we obtain for 

O<s<b 

(2.2) 
s 

= (b) 'E (-l)y(s)P{Min(b-s+y, n) > u + lf p) 
s y -y=O 

P{S = slb, p, u, n} 

= (b) ~ (-l)y(s)I(b-s+y)(u+l, n),. 
s y=O y p . 

where I(O)(u+l, n) = 1 by definition for all u 2: O, p 2: 0 and n 2: o. 
p 

For the special case s = b and p = 1/b (so that k = b)~ it is 

clear that the value in (2.2) equals· zero when n > bu and that it equals 

one when n < u. In this case we are dealing with the probability that 

the maximum frequency in a homogeneous multinomial is at most u and this 

probability was tabulated by Steck [5]; thus the concept of sparse· blue 

cells is a direct generalization of the maximum frequency in a homogeneous 

multinomial. For p < 1/b we can assume that k = b + 1 and the value 

of k does not enter into any of the formulas in this paper. 
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Another use of the sparse concept is to generalize the so-called 

"empty-cell test." By considering the number of sparse cells as our 

statistic instead of the number of empty cells, we can improve the power 

of the test of homogeneity,(i.e., the test that all the cells have the 

same probability p) against certain alternatives. This application 

will be discussed in Section 7 below. 

From (2.2) we can also get a fairly simple expression for the 

c.d.f. of s. Replacing s by t in (2.2) and summing t from 0 

to s, we obtain by straightforward algebra 

(2.3) 

s ( ) s-j 
= ~ (bj)I b-j {u+l, n) ~ (-l)a(b-j) 

j=O p amO Q' 

b S (-l)Q'(S) ( ) . 
= (b-s)( ) 1J b a Ipb-s-ta (u+l, n); 

s cr-0 -s+a 

for s = b the result is one. Thus we find that both the individual 

probabilities and the c.d.f. of S are expressible and easily computable 

through the (Type 1) Dirichlet functions, I~j)(v, n), for p ~ 1/b and n ;:'. jv, 

3. The Distribution of c. 

As a dual to the concept of sparseness, we now consider the concept 

of crowdedness; the results are quite similar and we omit the intermediate 

steps. It is clear that P{C = clb, p, v, n} is the probability that 

in exactly c {out of b) cells the frequency {based on n observations) 

is at least v. Using the method of inclusion-exclusion, we obtain for O ~ c ~ b 

(3.1) 
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For the special case c = b this reduces to I{b}{v, n) and for any 
p 

p ~ 1/b. its value is zero if n < bv. In this case we are dealing with 

the minimum frequency among b cells with connnon cell probability p in 

a multinomial distribution with b + 1 cells. Thus the type 1 Dirichlet 

integral is equal to this probability; this is only one but perhaps 

one of the more important uses of the Dirichlet distribution. 

For the c.d.f. of C we first note that for c > b the result is 

clearly unity. Hence for c < b 

(3.2) 
b b-t 

P{C < clb, P, ii, n) = 1 - 'E {!) 'E (-l)a{b-t)I{t+o'){v, n} 
t=c+l cr-0 a P 

b y-c-1 
= 1 - 'E Cb)1Cv>cv, n} 'E c-1)a{v) 

y=c+l Y P a=O a 

b 
= 1 - {b-c}{ } 

C 

b 
'E 

y=e+l 
(b-c-1)1 (y}(v, n) 
y..;c-1 P 

b-c-1 ( )a ( ) 
= 1 - (b-c){b} 'Eil (b-1-c)I c+li-a - {v,n} • 

c cr-0 c+ +o' a p 

If c = b - 1 then (3.2) reduces to 1 - I{b){v, n); this is correct p 

since the complement of this event states that all blue cells are crowded 

or that Min{b, n) ~ v, which was shown in Section 2 to have probability 

. I(b}{v, n}. 
p 

4. The Joint Probability Law of S and C. 

In this section we consider an inclusion-exclusion argument that operates 

simultaneously on the number S of sparse blue cells and the number C of 

crowded blue cells. It is not known whether this type of "2-dimensional" 

inclusion-exclusion operation has been used heretofore. We assume v > u + 1 

s > O, c > O, s + c < b ·and O < p < 1/b; we use. [ b] for the multinomial 
- - - - s,c 
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coefficient b!/s!c!{b-s-c)!. It should be pointed out that in the 

notation P{Max{s, n) ~ u, Min{c, n) 2: v} · there is only one set of n 

observations even though n is repeated twice. By inclusion-exclusion, 

we obtain for v > u + 1 

(4.1) b 
P{S = s, C = clb, p, u, v, n) = [ ]P(Max{s, n) ~ u, Min{c, n) 2: v) · s,c 

- [ lb ](s+l)P{Max{s+l, n} < u, Min{c, n} > v} 
s+ , C S - -

- [ b 
1

](c+l)P{Max(s, n) < u, Min{c+l, n) > v} 
s, c+ C - -

+ [ 
2
b ](s+2)P{Max{s+2, n) < u, Min{c, n) > v) 

S~ , C S - -

+ [ 
1 

b +l](s+l)(c+l)P{Max(s+l, n} < u, Min{c+l, n) 2: v} 
s+, C S C -

+ [
8

, :+2](c!2 )P{Max{s, n) ~ u, Min{c+2, n) 2: v) 

+ ••• + (-l)b-s-c[ bb ](b-s)P{Max(s, n) < u, Min{b-s, n) > v) 
S, •S C - -

= [ b ]{l _ (b-s-c){E + E) + ••• + (-l)b-s-c(b-s-c){E + E )b-s-c}F{s,c) 
s, C 1 s C b-s-c 8 C 

. b ] ( )b-s-c ( ) = [ 1-e F s, c s, C 

where F{s, c) = P{Max{s, n) _< u, Min{c,_ n) > v), E {resp., E) is the 
- S C 

finite difference operator that adds one to the s {resp., c) argument, 

and 0 = E + E • 
S C 

If v = u + 1 then C = b - S, E{SC) = E{S(b-S)), etc.; the one-

dimensional distribution of S {or c) gives all the moments. However 

the above discussion and the subsequent one both hold for v = u + 1 

and this case need not be treated separately. 

To evaluate each of the terms above we need an expression for F(s, c) 

and again we utilize the Dirichlet distribution and its identities. Conditioning 

on the numbers a and ~ of observations in the s sparse and c crowded 

cells of F{s, c), respectively, we can then express F{s, c) as a product 
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of probabilities for homogeneous multinomials. For s = O the first 

inequality in F(s, c) is logically removed, for c = O the second 

inequality is logically removed and for sac= O the entire probability, 

F{s, c), is o~e. For s > 1 and c > 1 we obtain 

(4.2) F(s, c) = ~ [a,na](sp)a(cp)aP{Max(s, a)~ ul¾}P{Min(c, a)~ vi¾} 
a~,a~ 
a+a~ 
n 

= !) (n)(sp )a(l-sp )n-aP{Max(s, a) < ul!) 
a - s a=O 

n-a 
• ~ (n;a)(lcp )a (1 - ....9!.,_lC )n-a-aP{Min{c, a) > vi!) 

~ -sp -sp - c a=o . 

= ~ b (n, sp)P{Max{s, a)< ul.t}r(c) (v, n-a), 
a=O a - s p 

1-sp 

where ·b (n, sp) is the binomial probability element (n){sp)a(l-sp)n-a 
a · a 

and we have yet to show that the third line of (4.2) can be replaced by 

an I-fun~tion. To show the latter, we consider a multinomial with N 

observations and b + 1 cells, b of which have common probability p, 

and we expand with respect to the last cell. This gives us the identity 

(4.3) I(b)(v, N) = ! (~}fbp>1{1-bp)N-iiib/l (v, i), 
p i=O 

which was used in the last step of (4.2) with b, p, and N replaced by 

c, p/(1-sp) and n-a, respectively. The middle factor in the last line 

of (4.2) is equal to (2.2) with b = s, n replaced by a, and p = 1/s, 

i.e., for a> u 

(4.4) P{Max{s, a) < ul.!J 
- s 

which does not depend on p; for a< u the result is clearly equal to one. 

The final result in (4.2) is a polynomial in p of degree n. The expression 

(4.4) is the c.d.£.· of the maximum fr~quency in a homogeneous multinomial 
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with a observations and, as noted before, was tabulated by Steck [5]. 

It is also the probability that all s cells are sparse and hence is 

zero for a> us and is equal to one for a< u. 

(4.5) 

An important special case arises when s = c = 0 and (4.1) then becomes 

P(S = C = olb, P, u,-v, n) = {1 - (~)e + ••• + (-l)beb)F(s, c)I 
s=e=O 

= ( 1-0) bF ( s , c) I 
s::e=O 

where e = E + E is the same operator as in (4.1). Although no further 
S C 

simplification arises in (4.5), this does appear to be a good method of 

calculating the probability that all frequencies in a homogeneous llDlltinomial 

are strictly between u and v. In addition, (4.1) is used in Section 6 below. 

5. Moments of C and S. 

It has been previously pointed out in an unpublished technical report 

by Sobel [3] that the factorial moments of C can all be simply expressed 

in terms of the type 1 Dirichlet function; this result is generalized in 

Section 6. Another (rather complicated} exact expression for factorial 

moments is given by Barton and David [1]. It would be desirable to include 

some of these expressions here (without derivation} because of their 

relevance to this paper. 

Let E{C[m]) denote the mth factorial moment· of C, let 

b[m]= b(b-1) ••• (b-m+l) and let M denote the largest integer contained 

in n/m. For O < m < M and n > mv the result is 

(5.1) 

where the second factor does not depend on b, the integer v defines 

crowdedness,and n is the number of observations. As a corollary we 

obtain the first moment and variance of c. For m = 1, n > v and 

p ~ 1/b, we have 
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(5.2) E(C) = bI(l){v, n) = bl (v, n-v+l), 
p p 

where the last symbol is the standard beta function notation. For m = 2, 

n > 2v and p ~ 1/b, we have 

(5.3) E{C(C-1)) = b(b-l)I(2)(v, n), p 

(5.4) a 2 {c} = b{b~l)I(2)(v, n) + bI{l)(v, n) - {bIP(l)(v, n)) 2 • 
p p 

For the special case v = 1 and u = 0 this gives for the number C of 

occupied cells and the number S of empty cells 

(5.5) E{C) = b(l-qn) = b - E{S) 

(5.6) a 2 (C) = b(b-l)[l-2qn + (q-p)n] + b(l-qn) - b2 (1-qn)"2 

= bqn(l-bqn) + b(b-l)(q-p)n = a2(s); 

these also give the correct answer for n = 0 and n = 1, e.g., the 

conunon a2 = 0 for n = 0 and a 2 = bp{l-bp) for n = 1. 

The factorial moments of S can be obtained in two different ways, 

both of which are useful and make use of I-functions. One uses the idea 

that b - S is the number of crowded cells if crowdedness is defined by 

having a frequency ~ u 7 1. Hence from (5.1) 

(5.7) 

Another method is to use the 1binomial theorem for factorial powers', namely 

the identity for any b, c 

(5.8) 

[This identity is easily proved by induction; we omit the proof.] Putting 

C for c and then S for b - C, we illDllediately obtain from (5.8) with 

the help of (5.1) the result 
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In (5.9) we used the fact that if v = u + 1 then b - C = S 

identically, but we note that this was not need in (5.7). 

For 

(5.10) 

Some special cases of these results are included for completeness. 

m = 1, p = 1 - q ~ 1/b and n ~ u + 1, we have from (5.7) or (5.9) 

E(S) = b[l - l(l)(u+l, n)] = b[l - I (u+l, n-u)] = bl (n-u; u+l}; p p q 

for n ~ u all cells are sparse and hence E(S) = O. For m = 2, p ~ 1/b 

and n ~>2(1+u), we have 

(5.11) E(S(S-1)) = b[ 2][1 - 21(l)(u+l, n) + I(2)(u+l, n)]. 
p p 

The variance of S is identical with the result in (5.4) for o2 (c) if 

we replace v by u + 1. The results, after integration, are generally 

found to hoid also for n < 2(u+l). Results for u • 0 are given in 

(5.5) and (5.6). 

A more explicit expression for E(S(S-1)) for n > u + 1 > 0 and 

(only) for p = 1/b given by David and Barton [1 - page 279] is in 

our notation 

(5.12) 
( ) 2u n-aM-U 

E(S(S-1)) =b-l E {n)(b-2)n-a E (~), 
bn-1 _--.r'\ a . J 

u--v J=a-u 

where the terms are zero for a> min{n, u+ n/2). For n ~ u, the result 

is b[2] since S = b identically. This can also be used to derive an 

explicit expression for E(C(C-1)) but the result is even more complicated 

and we omit it. 

6. Joint Moments of S and c. 

Joint moments of S and C can also be conveniently expressed in 

terms of I-functions. We consider joint factorial moments in the two forms 
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for nonnegative integers g and h;· special results are then obtained 

for E{SC). Our main results in (6.6) and (6.10) hold for v > u + 1 

and also for v = u + 1. For v = u + 1 (and also for g = 0) the second 

form in (6.1) reduces to E(C[~+hl), which was treated in [3]; for h = 0 

the result is in (5.7). 

From (4.1) for g 2: 0 and h > 0 

(6.2) 
b-s-c d d +d b 

P{S = s, C = c) = 1J {-1) ·'E(8 +a)(cd -a)[ . ..a ] F{s+a, c+d-a), 
dcaO am0 a -a s;.o,, c~-a 

where F{s, c) is given by (4.2). Summing on s and c (s 2: 1, c ~ 1, 

s+c ~ b-d), we obtain for the first form in (6.1) 

(6.3) ] b-g-h b-d-g b-d-c d [ ] 
E.(S~g]C[h ) = ~ (-l)d ~ ~ 1J s g c[h](s:){ci:a) 

c::O c=h s =g a=O 

b 
• [ 8 +0', c+d-a]F(s+o-, c+d-a). 

Let y = s + a and z + c + d - a; then (6.3) reduces to 

(6.4) 

Using the hypergeometric identity and the well-known identity 

(6.5) 

the result for (6.4) reduces to zero for y > g and z > h since 

y + z - 1 < b. For y = g and z > h we set a = 0 to get a non-zero 

term in (6.4) and use the same identity (6.5) to obtain zero again; 

similarly for z = h and y > g. Finally for . y = g and z = h we 

obtain the simple result that 

(6.6) 
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here F(g, h) is the probability that a specified subset of g cells 

are all sparse and another disjoint specified subset of h cells are 

all crowded. The latter interpretation assumes that g + h ~ b; if 

this is not the case then both sides of (6.6) are clearly zero. Since 

F(O, 0) was noted in Section 4 to be equal to 1, the case g = h = O 

in (6.6) ~hows that the probabilities (4.1) sum to one. 

(6.7) 

(6.8) 

For the second form in (6.1) we use (5.8) and (6.6) to write 

E{C[h](b-h-S)(g]) = f; (-l)Q'(8)(b-h-a)[g-a]E{S[Q']c[h]) 
Q' a=O 

= f (-lf (8 )(b-h-a) [g-a]b[a+h]F (a, h) 
a=O 0/ 

= b[g+h] fJ (-l)a(g)F(a, h) •. 
a=O Q' 

As a generalization of (2.1), we define the I-function 

r(n+l) 
1;~)((t)a' (v)~, n) = r°'(t)t(v)r(n+l-at-~v) 

Q' t 1 a v-ldx p p O'-$ )n-Q't-~V Tf X - dxi Tf XO'+j a+j, J J ( 1 - ~ xi i-1 i j=l • ••• i-1 -
00 0 -

where (t)a and (v)a stand for t, ••• , t repeated a times and v, ••• , v 

repeated a times respectively. By Lennna 2.2 of [2] this represents the 

probability that a specified set of a blue cells have frequency 2: t and 

another disjoint specified set of a blue cells have frequency~ v, when 

there are n observations in all, and all the blue cells have connnon probability 

p, with p ~ 1/(Q'-f{j). 

Using an inclusion-exclusion argument on the first argument of F(a, h) 

in (6.7) we obtain 

(6.9) F(a, h) = · 'E ( -1) Y (Q'}I ( y+h) (( u+ 1) , ( v )h, n) • 
y=<J y p y 
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Substituting this in (6.7) and sutmning through on a, we obtain our second 

main result 

(6.10) E{C[h](b-h-S)[g]} = b[g-ih] t r~Y-ih)((u+l)y.(v)h,n)(~) t (-lf""'Y(!:~} 
ycO Ol='( 

= b[g+h]I(g+h)((u+l), (v)h, n), 
p g 

since the Bummation· on a in (6.10) is one for g = y .and 

zero otherwise. 

(6.11) 

From (6.6), (6.10) with g = h = 1 and (5.1) we can write 

E{SC} = b[ 2]F(l,l) = b[2][I(l)(v,n) - I( 2)(u+l, v, n).]. 
p p 

For u = 0 and any v ~ 1 we get further simplification here; by 

straightforward integration we easily obtain 

(6.12) E{SCJU=O, v> 1) = b[2lqt1y_(l1)(v,n) = b[2]qtly_ / (v,n-v+l) • 
. - pq _pq 

For example, if b = 3, p = 1/b = 1/3, u = 0 and v = 2 then for 

any n >.2 the result is by (6.12) 

(6.13) E{sclu=<>, v=2} = 6(~)n1112(2, n-1) = 2(2:-~-l) , 
3 

This result {which also holds for n = O, 1, and 2) can also be obtained 

'ab initio1 by considering the 3 cases for which SC+ 0 or by computing 

F(l, 1) and using (6.6). 

Another way of combining these moment results is to write them in the 

form of decreasing factorial moment generating functions (d f mg£). For 

C from (3.1) we easily obtain 

(6.14) 
b b-c ( ) 

E{(l+t,C) = 'E (b)(l+t)c 'E (-l)a(b-c)I c+a (v,n) 
c=O c cr-0 a P 

= ~ (-1)13r(l3)(v,n)(~) ! (-l)c((3)(l+t)c 
p ~ C ~=O c=O . 

= ~ (b)t~1<a>cv,n). 
a=o a P 
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The dfmgf that gives rise to the moments in the second form in (6.1) is 
t tg th 

(6.15) E{(.1 + _g_ ,C (l+t l-S) = .'E .J. ;:i' E{C[h](b-S-h)(g]) 
l+tl 1 g,h g. h. 

and hence by our result in (6.10) we must have 

(6.16) 
tg th 

E{(l+t +t )c(l+t )b-s-c) =. 'E 1 2 b(g+h]I(g+h)((u+l) (v)h, n). 
1 2 1 g,h g! ii! p g' 

7. An Application to the Empty-Cell Test. 

In this section we illustrate the changes in power if we replace the 

empty-cell test {ECT) by the sparse-cell test (SCT); both of these tests 

are facili~ated by the use of a table of the type 1 Dirichlet distribution. 

The changes can take place in both directions, depending on the alternative 

being considered. 

Suppose we have a multinomial with (say) k = b = 10 cells and n = 40 

observations; we wish to test the hypothesis H0: p1 = p2 =···= p10 = 1/10. 

One alternative of interest is H1: p1 = p2 =···= p9 = p < 1/10 and 

p10 = 1 - 9P; another alternative of interest is H2: p1 = p2 =···= p9 = 1/9. 

and p
10 

= O. We shall not attempt to get the best sparse-cell test but 

merely use u = 1 to define sparseness, as opposed to the empty-cell test 

where we have to use u = O; in this latter case S becomes the number 

of empty cells. 

For the empty-cell test we use (2.2) and (2.3) to find the smallest· 

integer s0 such that 

(7.1) P{S ~ s011q, 1/10, o, 4o) 2: P * 

* * for preassigned P ; we will use P = .95. From an unpublished table of 

the Dirichlet distribution we obt4in 
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(7.2) 
P{S = 0) = 1i}~b(1, 40) = .8581 

. (9) (10) 
P{S ~ 1) = 10 Il/lO(l, 40) - 9 Il/lO (1, 40) = .99'-1-2. 

In order to attain a test size of exactly .05 we reject H0 if S > 2 

and also with probability p0 when S = l; then p0 is found by setting 

(7.3) p0(.9941 - .8581) + (1 - .9941) a .05_ 

and we easily find that p0 = .324. To write the power of this test against 

H1 we let s
9 

denote the value of S when b = 9 as in. H
1 

and use 

f{lQ) to denote the frequency in the tenth cell. Then 

(7.4) Pl= Power(ECT vs. H1) = P{s
9 
~ 2) + .324 P{s9 = 1, f(lO) > 0) 

+ P{S = 1, £(10) = 0) + .324 P{S = O, f(lO) = 0). 

The last two terms are less than (9/20)40 < 10-12 and do not affect our 

calculations. Using (2.2) we obtain 

(7.-5) Pl= 1 - P{S = Ol9, 1/20, O, 40) - .676 P{S er 119, 1/20, O, 40) 

= 1 - 1fJ~(1,4o) - (.676)9[1f1l0c1,4o) - 1fJl0c1,40)J = .458o. 

For the corresponding sparse-cell test we take u = 1· and again use 

. (2.2) and (2.3), obtaining for H0 
P{S = 0) = 1f}~b(2, 40) = .3858 

(7.6) P{S ~ 1) = 10 1i;Io<2,4o) - 91f}~bc2,4o) = .8296 

P{S ~ 2} = 45Imo<2,4o) - ao1mo<2,4o) + 361U~b<2,4o) = .98oo • 

Hence we reject H0 if S ~ 3 and also with probability p~ if S = 2; 

it is easily seen that p~ = .200. The power calculation against H1 _is 

(7.7) Pi = Power(SCT vs. H1) =-~P{S~ 3) + .2P{S
9
= 2, f(lO) > 1) 

+ P{S = 2, f(l~) ~ l} + .2P{S = 1, f(lO) ~ 1). 
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As in the previous case we can omit the last two terms; an additional reason 

here is that they can only improve our result. Using (2.2) and· (2.3) we obtain 

(T.8) Pi= 1 - P{S ~ 119, 1/20, 1, 40) - .8P{s ~ 219, 1/20, 1, 40) 

= 1 - [9Ii1~0(2,4o) - 8Ii1~0(2,4o)J 

-(.8)36[1fJ~0(2,4o) - 21f1fu<2,40) + 1f7~0(2,4o)] = .8372. 

Thus the sparse-cell with u = 1 already gives a better power against H1; 

calculations for u > 2 have not been carried out. 

It should also be pointed out that under the alternative H
2 

{or 

others like it with b 1 < b cells having co11Dll0n probability 1/b' and 

b - b 1 cells with probability zero) the empty-cell test is preferable, 

i.e., u = O gives a better power _against H2 than u:::: 1; it suffices 

to consider the case u = 1. The power calculations against H2 for 

the empty-cell test are 

(7.9) P2 = Power(ECT vs. H2) = P{S 2: 21H2) + .324 P{S = 1IH2) 

= 1 - P{S = elH2) - .676 P{S = llH2) 

=·1 - .676 P(S = Ol9, 1/9, 0, 40} m 1 - .676 riJi(l, 40) 

= .3777. 

For the sparse-cell test we again use (2.2) and obtain for the power against 

P~ = Power{SCT vs. H2) = P{S 2: 3IH2) + .2 P{S = 21H2) 

= 1 - P{S ~ llH2) - .8 P{S = 2IH2) 

= 1 - P{S = Ol9, 1/9, 1, 40) - .8 P{S = 119, 1/9, 1, 49) 

= 1 - rm(l, 40) - (.8)9[1m(1, 40) - rm(l, 40)] 

= .0171. 
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Thus for the extreme alternatives like H
2 

the empty-cell test is much 

better than the sparse-cell test with u = 1 but for alternatives that 

leave some probability in the odd cells (like H
1

) the sparse-cell test 

with some u ~ 1 has much better power. 

8. An Application to Clustering. 

Another application shows that the concepts of sparseness and crowdedness 

are related to the notion of clustering. Since we use 'cluster' for a 

set of cells in close proximity, we define the term 'crowded cluster' for 

a set of closely-grouped crowded cells (with crowded cell being defined 

in terms of v as above). Suppose we have a square T of size t x t 

(t an integer) marked off into unit cells, so that t 2 is our original 

total k. For a fixed positive integer d ~ t we call any d x d square 

a cluster ,of cells), so that there are D = (t-d+1)2 clusters in all. 

A cluster is called crowded if each of the d2 (= k', say) cells in the 

cluster is crowded. For some purposes we may also want to impose the 

additional condition that the cells bordering a crowded cluster are not 

crowded but for our problem this condition does not affect the result and 

can be omitted. Our problem is to compute the probability of having at 

least one crowded cluster (among the D) if all the k = t 2 cells have 

c01ID1l0n probability p ~ 1/k and n is the total number of observations taken. 

This problem was suggested by a model dealing with the formation of 

tumors (cancer cells) in animal tissue. Here the tm.1ltinomial cell corresponds 

to the biological cell. The observation is a radiation 1hit 1 and a crowded 

cell is one in which the number of hits is above some threshold value. If 

too many cells in close proximity are crowded then the chances of forming 

a cancerous tumor at that location are very high. The cells in close 

· proximity are our cell clusters and a crowded cluster is the origin of 
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the cancerous tumor. One interesting quantity for this application is 

the probability of at least one crowded cluster, since one crowded cluster 

is sufficient to start the formation of the cancerous tumor. 

To get the answer, A, to this we apply inclusion-exclusion methods 

to the individual clusters L1, L
2

, ••• , ~ and let the respective b-values 

(all equal to_ d2 in our application) be denoted by b
1

, b
2

, ••• , bD. If 

th th we let P(b1 , bj) denote the probability that the i and j cluster 

are both crowded, then by (3.1) 

{8.1) P(b1 , bj) = P{L1 U Lj} = 1!iWl(v, n) 

where L1 U Lj denotes the union of Li and Lj and 11 u JI is the 

total number of unit cells in this union. By inclusion-exclusion 

(8.2) 
D D-1 

A= ,:P{bi) - .~ P(b1 , bj) + ••• + (-1) P(b1 , b2 , . .• , bD) 
i=l 1.<j 

and we need to know the frequency of the various overlaps if we select 

(say, 2) smaller squares from the larger square. These can be computed 

for certain pairs {t, d) and the formula (8.2) then simplt°fies somewhat 

further. For exaq,le if t = 4 and d = 2 then D = 9, and we obtain 

after a careful geometric analysis 

(8.3) 
D (4) 
~P(b.) = 9 I {v, n), 

. 1 1. p 
l.= 

(8.4) ~ P (b . b . ) = 121 ( 6) (v n) + 81 ( 7) {v n) + 161 ( 8) {v n) 
. • 1.' J p· ' p ' p ' ' 1.<J-

{8.5) ~ P(b b b) = 221<8){v n) + 161(9){v n) + 34I(lQ){v n) 
. . i' j' a p ' P ' P ' 1.,J,ct 

+ 4l(ll)(v n) + 8I(l2)(v n) 
p ' p ' J, 

- 17 -



i 

I ij 
ti 
l• 

I 
~ 

i
i 
j 

~ r? 
ij 
!'; 

tt 
~ 
~ ~-~4 
~ 
•j 

f,~ 
[~,; 
~ : 
r~1 

~ 
f· 
~ .. 
f-..; 
( 

. -

t~ . 
[!.;. 
[···; 
~-)_ 

•• 

(8.6) ~ P(b b. b b ) = 4I(9}(v n) + 321(lO){v n) + 32I(ll)(v n) i' J, et' f3 p , p , . p , 
1,j,et,a . 

+ 371;12>cv, n) + 121;13)(v, n) + 8r?4)(v, n} + I~
16)(v, n), 

(8.7) ) (11) (12) ~ P(b
1

, bj, b , bQ, b = 161 (v, n) + 371 (v, n) 
i,j,a,a,y Ci I"" y p . .. p 

+ 361;13)(v, n) + 28I;i4)(v, n) + 4r~15)(v, n) + 51;16)(v, n), 

(8.8) ( } (12) (13) (14) 
I:P bi, b1 , ••• , bi.. = 4I (v, n) + 241 (v, n) + 341 (v, n) 

1 2 o p p p 

+ 121<15)(v n) + 101<16)(v n) p , p , , 

(8.9) ( ) (14)( ) (15) (16) EP b1 , bi, ••• , bi = 141 v, n + 121 (v, n) + 101 (v, n), 
1 2 7 P p P 

(8~10) ( (15) (16) . 
EI> bi, bi, ••• , b. ) = 41 (v, n) + 5I (v, n), 

1 2 73 p p 

(8.11) (16) 
P{b1, ••• , b

9
) = Ip (v, n). 

Using (8.2) to combine these, we obtain the answer A as a linear combination of 

eight .. I-functions, all with the same arguments p, v, n and only the 

superscript varying, namely 

(8.12) A= 91C4){v, n) - 121<6){v, n) - 81(7)(v, n) + 61(8)(v, n) + 12t(9)(v, n) 
p p p p p 

_. 2.Ip ( l O) ( v , n) - 12 I ( 1l ) ( v , n ) + 4 I . ( 12 )c v , n) • 
p p 

Note that the sum of the coefficients in equation (8.2) is {~)(i = 1,2, ••• , 9) 

and hence it should be one in (8.12); this is a partial check on (8.12). 

If we had defined a crowded cluster to mean that it has at least one 

crowded cell, then the result is much simpler. The probability of at least 

one crowded cluster is then equal to the probability of at least one crowded 
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cell in T and this is simply the complement of (2.2) with s = b = 16 

and u + 1 = v. 
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