OPTIMAL SAMPLING SCHEMES FOR ESTIMATING SYSTEM RELIABILITY BY TESTING COMPONENTS--

 I: FIXED SAMPLE SIZES

 I: FIXED SAMPLE SIZES
 by
 Donald A. Berry
 Technical Report No. 173

April 1972

University of Minnesota
Minneapolis, Minnesota

1. Introduction.

The reliability of a system of r components connected in series is $p=p_{1} p_{2} \ldots p_{r}$, where $0<p_{i}<1$ for all i and p_{i} is the (unknown) probability that a component of type i functions properly. For many systems the most efficient estimate (perhaps the only estimate) of p can be obtained by testing the components individually. The usual assumption is that the components are each tested a fixed number of times giving point estimates or interval estimates of p (see Myrhe and Saunders (1971)for an example of the latter, and for further references). Hwang and Buehler (1971) explore an inverse sampling scheme, where each component is tested until it yields a fixed number of failures.

Such an assumption seems to be made separate from considerations of sampling costs (in terms of time and resources). The approach here will consider sampling costs explicitly. In particular, it will be assumed that the cost of testing n_{i} components of type i observing s_{i} successes, components which function properly, $i=1, \ldots, r$, is

$$
\begin{equation*}
c(J)=\sum_{i=1}^{r} c_{i} n_{i}, \tag{1.1}
\end{equation*}
$$

where J denotes the accumnlated data ($s_{1}, n_{1} ; \ldots ; s_{r}, n_{r}$) and each $c_{i}>0$. The number c_{i} can be thought of as the purchase price of a type i component which will be destroyed in testing--whether the component functions or not. Applications can be envisaged where the cost of sampling is proportional to the number of successes (or failures)--these will not be addressed here. The problem is to determine the (n_{1}, \ldots, n_{r}) which corresponds to smallest total cost among sampling schemes which have the same expected information value in estimating p.

The parameters p_{1}, \ldots, p_{r} are not known precisely but are themselves random variables. The Bernoulli trials associated with a sequence of successes and failures associated with component type i are therefore not independent, but are independent conditional on the unknown quantity P_{i}, so that the trials are exchangeable-see, for example, Feller(1966), Section VII 4 . At any stage of sampling the information about p is given by the accumulated data J, which can always be regarded as a probability distribution on the parameters P_{1}, \ldots, P_{r}. The J corresponding to no data is $J_{0}=(0,0 ; \ldots ; 0,0)$, the initial distribution. Throughout this paper the parameters p_{1}, \ldots, p_{r} are assumed to be initially, and therefore also henceforth, statistically independent. If the initial distribution were such that this assumption is violated then more information would be present in any subsequent J than otherwise, leading to a more efficient estimate of p.

The best sampling scheme will depend on J_{0} and the goodness of any scheme varies greatly with J_{0}. One cannot expect, therefore, to find a scheme that is good (or even reasonable) for all possible J_{0}. Several different kinds of distributions of the p_{i} will be examined here. Throughout this paper quadratic loss is assumed; specifically, the loss associated with an estimate \hat{p} is

$$
\begin{equation*}
L(p, \hat{p})=(p-\hat{p})^{2} \tag{1.2}
\end{equation*}
$$

At any stage of sampling the estimate of p which minimizes the Bayes risk is the expected value of p, the (unconditional) probability that the system functions properly:

$$
\begin{equation*}
\hat{p}=E(p \mid J)=E\left(p_{1} \mid J\right) \ldots E\left(p_{r} \mid J\right), \tag{1.3}
\end{equation*}
$$

in view of the independence of the p_{i}. The Bayes risk corresponding to $\hat{p}=E(p \mid J)$ is the variance of p :

$$
\begin{equation*}
\operatorname{var}(p \mid J)=E\left(p_{1}^{2} \mid J\right) \ldots E\left(p_{r}^{2} \mid J\right)-E^{2}\left(p_{1} \mid J\right) \ldots E^{2}\left(p_{r} \mid J\right) \tag{1.4}
\end{equation*}
$$

again in view of independence.
The problem is to determine an optimal sampling scheme, call it $\left(n_{1}^{0}, \ldots, n_{r}^{0}\right)$, where the n_{i}^{0} are values of n_{i} which minimize expected Bayes risk plus cost:

$$
\begin{equation*}
B\left(n_{1}, \ldots, n_{r}\right)=E_{0} \operatorname{var}(p \mid J)+\sum_{i=1}^{r} c_{i} n_{i} \tag{1.5}
\end{equation*}
$$

where expectation E_{O} refers to the initial distribution of the P_{i} and averages over the possible values of s_{i} for fixed n_{i}. A good sampling scheme will be driven by the following consideration: for each i, n_{i} should be relatively large if c_{i} is relatively small, but on the other hand it should be relatively small if, according to J_{0}, much is known about p_{i}. The problem is then properly regarded as a search for an appropriate balance of sampling costs and information. It is clear, for example, that an optimal scheme would sample from all r component types (provided the sampling costs are sufficiently small) since there is limited information about p available in any subset of the components (unless some of the p_{i} are known, a trivial case that has been excluded). To be specific, suppose that J is such that $n_{1}=0$ while $\min \left\{n_{2}, \ldots, n_{r}\right\} \rightarrow \infty$, then $\operatorname{var}(p \mid J) \rightarrow p_{2}^{2} \ldots p_{r}^{2} \operatorname{var}\left(p_{1} \mid J_{O}\right)>0$.

According to the way in which the problem has been formulated it is clear that its solution is identical with the solution for a system of components connected in parallel (where system reliability is
$\left.1-\left(1-p_{1}\right)\left(1-p_{2}\right) \ldots\left(1-p_{r}\right)\right)$; namely, the one in which the p_{i} are replaced with $1-p_{i}$.

The case where each of the p_{i} are initially uniform on $(0,1)$ and $r=2$ is considered in Section 2. The density for p_{i} is proportional to $p_{i} m_{i}$ and r is arbitrary in Section 3 , thereby generalizing Section 2 in several ways. Some readers may want to omit Section 2 and others may want to omit Section 3. Distributions specified for p rather than for the p_{i} are considered briefly in Section 4.

Part II of this paper will consider the problem sequentially, wherein the component type sampled at any stage depends on the history of components sampled and the results obtained. The approach of both Parts I and II follows modern Bayesian decision theory as espoused, for example, in Degroot (1970) or in Raiffa and Schlaifer (1961). 2. $\underline{r}=2, p_{1}$ and p_{2} Uniformly Distributed.

When there are two components and according to J_{0} the parameters P_{1} and P_{2} both have uniform densities in (0,1), the initial density of p is
(2.1) $\quad f(p)=-\ln p, p \in(0,1)$.

The initial ("no data") estimate of p is $E\left(p \mid J_{0}\right)=E_{0} p=1 / 4$, with Bayes risk $\operatorname{var}\left(\mathrm{p} \mid \mathrm{J}_{0}\right)=\operatorname{var}_{0} \mathrm{p}=7 / 144$. Obviously, if the sampling cost associated with either component is greater than $7 / 144$ then the optimal sample size for that component is zero. (Stronger statements are possible-analysis not in order here reveals that sampling is optimal if and only if c_{1} or c_{2} is less than or equal to 1/144.)

A word is necessary about the assumption that the P_{i} are initially uniform on (0,1). Such an initial distribution has been proposed by some
to represent "complete ignorance." That there cannot be a distribution which represents complete ignorance is easily seen by the following well-known argument. If one is completely ignorant about P_{1} and p_{2} then he is also completely ignorant about $p=p_{1} p_{2}$ as well. But these three parameters, regarded as random variables, cannot be subject to the same distribution (save the one-point distributions concentrated at 0 or 1 , neither of which can reasonably qualify). To accomplish a solution some assumption must be made and the one made above, while restrictive, is appealing on several grounds. It represents a certain amount of "openmindness" about the p_{i} (but not p); see Edwards et al. (1963) for a discussion of "openminded" distributions. But more importantly, it means that the joint density of p_{1} and p_{2} at any stage of sampling, which is specified by $J=\left(s_{1}, n_{1} ; s_{2}, n_{2}\right)$, can be written as the product of two beta densities; in particular, as proportional to

$$
\begin{equation*}
{ }_{p_{1}}^{s_{1}}\left(1-p_{1}\right)^{n_{1}-s}{ }_{p_{2}}^{s_{2}}\left(1-p_{2}\right)^{n_{2}^{-s}} \tag{2.2}
\end{equation*}
$$

The latter reason by itself does not dictate the uniform distribution,for the same is true (with modified exponents in (2.2)) if the p_{i} initially have arbitrary beta densities (see Degroot(1970),p. 160 for a discussion of the conjugate nature of the beta family in Bernoulli sampling).

Though redundant, it will be convenient in the case of two components to have the additional notation

$$
\begin{equation*}
k=c_{1} / c_{2} \tag{0.3}
\end{equation*}
$$

For reasons of symmetry, it is clear that $n_{1}^{0}=n_{2}^{0}$ if $k=1$. If the costs are unequal then it seems reasonable to expect that $n_{1}^{0}>n_{2}^{0}$ or $n_{2}^{0}>n_{1}^{0}$ according as $k<1$ or $k>1$. That this is the case will be
verified. Furthermore, it will be seen that n_{1}^{0} and n_{2}^{0} are approximately (i.e., asymptotically) related as follows:

$$
\frac{\mathbf{n}_{2}^{0}}{\mathbf{n}_{1}^{0}} \doteq \sqrt{\mathbf{k}}
$$

and approximations for the n_{i}^{0} will be obtained.
In view of the well-known relation:
(2.4) $\quad E_{O} \operatorname{var}(p \mid J)=\operatorname{var}_{0} p-\operatorname{var}_{0} E(p \mid J)=\frac{7}{144}-\operatorname{var}_{0} E(p \mid J)$,
where $J=\left(s_{1}, n_{1} ; s_{2}, n_{2}\right)$, $\operatorname{var}_{0} E(p \mid J)$ can be regarded as the expected worth of the information about p provided by n_{1} observations on component type 1 and n_{2} of observations on component type 2. The quantity $\operatorname{var}_{0} E(p \mid J)$ is an increasing function of n_{1} for all n_{2} and of n_{2} for all n_{1}. For, since

$$
\begin{equation*}
\operatorname{Pr}\left(s_{i} \mid J_{0}, n_{i}\right)=\frac{1}{n_{i}+1}, s_{i}=0,1, \ldots, n_{i} ; i=1,2 \tag{2.5}
\end{equation*}
$$

(cf. (3.6)), it follows that

$$
\begin{align*}
\operatorname{var}_{0} E(p \mid J)= & \operatorname{var}_{0}\left(\frac{s_{1}+1}{n_{1}+2} \frac{s_{2}+1}{n_{2}+2}\right) \tag{2.6}\\
= & E_{0}\left(\frac{s_{1}+1}{n_{1}+2}\right)^{2} E_{0}\left(\frac{s_{2}+1}{n_{2}+2}\right)^{2}-E_{0}^{2}\left(\frac{s_{1}+1}{n_{1}+2}\right) E_{0}^{2}\left(\frac{s_{2}+1}{n_{2}+2}\right) \\
= & \frac{1}{n_{1}+1} \sum_{s_{1}=0}^{n_{1}}\left(\frac{s_{1}+1}{n_{1}+2}\right)^{2} \frac{1}{n_{2}+1} \sum_{s_{2}=0}^{\sum_{2}^{2}\left(\frac{s_{2}+1}{n_{2}+2}\right)^{2}-\left(\frac{1}{n_{1}+1} \sum_{s_{1}=0}^{n_{1}} \frac{s_{1}+1}{n_{1}+2}\right)^{2}} \\
& \bullet\left(\frac{1}{n_{2}+1} \sum_{s_{2}=0}^{n_{1}} \frac{s_{2}+1}{n_{2}+2}\right)^{2} \\
= & \frac{2 n_{1}+3}{6\left(n_{1}+2\right)} \frac{2 n_{2}+3}{6\left(n_{2}+2\right)}-\frac{1}{16} .
\end{align*}
$$

The first difference (and the partial derivative as well) of the last
quantity with respect to both n_{1} and n_{2} is positive. Also, both second differences are negative, indicating that the increment in expected worth of information when n_{i} is increased by 1 is greater for smaller values of n_{i}.

Rewriting (1.5) for this case in view of (2.4) and (2.6),

$$
\begin{align*}
B\left(n_{1}, n_{2}\right) & =E_{0} \operatorname{var}(p \mid J)+c_{1} n_{1}+c_{2} n_{2} \tag{2.7}\\
& =\frac{7}{144}-\frac{2 n_{1}+3}{6\left(n_{1}+2\right)} \frac{2 n_{2}+3}{6\left(n_{2}+2\right)}+\frac{1}{16}+c_{1} n_{1}+c_{2} n_{2} \\
& =\frac{1}{9}-\frac{1}{36} \frac{2 n_{1}+3}{n_{1}+2} \frac{2 n_{2}+3}{n_{2}+2}+c_{1} n_{1}+c_{2} n_{2}
\end{align*}
$$

which is to be minimized. Regard n_{1} and n_{2} as nonnegative real variables rather than just integers. Taking the partial derivatives of $B\left(n_{1}, n_{2}\right)$ and equating them to zero yields the pair of equations:

$$
\begin{equation*}
-\frac{1}{36} \frac{2 n_{2}^{0}+3}{\left(n_{1}^{0}+2\right)^{2}\left(n_{2}^{0}+2\right)}+c_{1}=0 \tag{2.8a}
\end{equation*}
$$

(2.8b) $\quad-\frac{1}{36} \frac{2 n_{1}^{0}+3}{\left(n_{2}^{0}+2\right)^{2}\left(n_{1}^{0}+2\right)}+c_{2}=0$.

It is clear from (2.8a) that for fixed n_{2}^{0}, n_{1}^{0} is the order of $1 / \sqrt{c_{1}}$, and from (2.8b) that for fixed n_{1}^{0}, n_{2}^{0} is the order of $1 / \sqrt{c_{2}}$; in particular, $n_{i}^{0} \rightarrow \infty$ as $c_{i} \rightarrow 0$. In view of equations (2.8) the values n_{2}^{0} and n_{1}^{0} can be obtained by solving the cubic equation:

$$
\begin{equation*}
\left(n_{2}^{0}\right)^{3}+2(2 \sqrt{k}+1)\left(n_{2}^{0}\right)^{2}+\left(4(k+\sqrt{k})-\frac{k}{18 c_{1}}\right) n_{2}^{0}-\frac{k}{12 c_{1}}=0 \tag{2.9}
\end{equation*}
$$

for which there is exactly one positive root (provided c_{1} is sufficiently small--less than $1 / 72$ suffices), and in view of (2.8 b),
(2.10) $\quad n_{1}^{0}=\frac{3-72 c_{2}\left(n_{2}^{0}+2\right)^{2}}{36 c_{2}\left(n_{2}^{0}+2\right)^{2}-2}$.

However, the solution of (2.9) is not trivially arrived at and is real rather than integer in any case. Furthermore, the generalization of (2.9) for the case considered in Section 3 is impossible to solve explicitly. A simple though very accurate approximation for n_{1}^{0} and n_{2}^{0} can be obtained from a single iteration in equations (2.8). Writing (2.8a) and (2.8b) as
(2.11a) $1-2\left(n_{2}^{0}+2\right)+36\left(n_{2}^{0}+2\right)\left(n_{1}^{0}+2\right)^{2} c_{1}=0$,
(2.11b) $1-2\left(n_{1}^{0}+2\right)+36\left(n_{1}^{0}+2\right)\left(n_{2}^{0}+2\right)^{2} c_{2}=0$,
and ignoring the constant 1 in each, yields, respectively,

$$
\begin{equation*}
n_{i}^{0}+2 \doteq \frac{1}{\sqrt{18 c_{i}}}, i=1,2 \tag{2.12}
\end{equation*}
$$

where the approximate equalities approach equalities as $c_{1}, c_{2} \rightarrow 0$. Using this approximation of $n_{2}^{0}+2$ in (2.11a) and of $n_{1}^{0}+2$ in (2.11b) yields the better--particularly for small n_{i}^{0}-approximations:
(2.13a) $\quad n_{1}^{0} \doteq \frac{2-\sqrt{18 c_{2}}}{36 c_{1}}-2$,
(2.13b) $\quad \mathbf{n}_{2}^{0} \doteq \frac{2-\sqrt{18 c_{1}}}{36 c_{2}}-2$.

The following calculations illustrate the accuracy of approximations (2.13). Table 2.1 gives these numbers for four examples-in each $k=c_{1} / c_{2}$ is 4. For each of these examples the function $B\left(n_{1}, n_{2}\right)$ is given in Table 2.2 for the nine pairs $\left(n_{1}, n_{2}\right)$ closest to the values given in Table 2.1. In each case n_{1}^{0} and n_{2}^{0} are seen to be the values obtained by rounding to the nearest integer in approximations (2.13). This is typical in view of the "smoothness" of B (especially for small c_{1} and c_{2}) but, of course, cannot be guaranteed.

TABLE 2.1			
c_{1}	c_{2}	n_{1}^{0} (app.)	n_{2}^{0} (app.)
4×10^{-3}	10^{-3}	1.60	4.94
4×10^{-4}	10^{-4}	9.66	21.06
4×10^{-5}	10^{-5}	35.14	72.03
4×10^{-6}	10^{-6}	115.73	233.20

TABLE 2.2: $\mathrm{B}\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$

$c_{1}=4 \times 10^{-3}, c_{2}=10^{-3}$			
n_{1}	4	5	6
1	.0342346	.0341323	.0343056
2	.0339907	.0338333	.0339653
3	.0354444	.0352540	.0353611

$c_{1}=4 \times 10^{-4}, c_{2}=4 \times 10^{-4}$						
$n_{1} n_{2}$	20	21	22			
9	.0130610	.0130562	.0130601			
10	.0130497	.0130444	.0130480			
11	$\\|$.0131016	.0130961	$. .0130993 \quad$		
:---:						

$c_{1}=4 \times 10^{-5}, c_{2}=10^{-5}$			
n_{1}	71	72	73
34	.00436367	.00436353	.00436366
35	.00435225	.00435211	.00436223
36	.00436301	.00435386	.00435298

$c_{1}=4 \times 10^{-6}, c_{2}=10^{-6}$			
n_{2}	232	233	234
115	.001403236	.001403230	.001403233
116	.001403221	.001403215	.001403217
117	.001403268	.001403267	.001403269

To find the expected worth of sampling the entries in Table 2.2 can be compared with $B(0,0)=7 / 144 \doteq .0486111$. Evidently the expected worth of sampling tends to $7 / 144$ as the costs tend to zero; that is, $B\left(n_{1}^{0}, n_{2}^{0}\right)$ tends to zero. In fact, using the asymptotic result (2.12) in (2.7), as c_{1} and $c_{2} \rightarrow 0$ keeping $c_{1} / c_{2}=k$,

$$
\begin{align*}
B\left(n_{1}^{0}, n_{2}^{0}\right) & \doteq \frac{1}{9}-\frac{\left(2-3 \sqrt{2 c_{1}}\right)\left(2-3 \sqrt{2 c_{2}}\right)}{36}+\frac{\sqrt{c_{1}}+\sqrt{c_{2}}}{3 \sqrt{2}} \tag{2.14}\\
& =\frac{\sqrt{2}}{3}\left(\sqrt{c_{1}}+\sqrt{c_{2}}\right)=\frac{\sqrt{2 c_{1}}}{3}\left(1+\frac{1}{\sqrt{k}}\right)
\end{align*}
$$

where terms which tend to zero at the same rate as c_{1} have been ignored.
It can be noticed from Table 2.1 that the ratio of n_{2}^{0} to n_{1}^{0} is nearly constant at 2. That the limit of n_{2}^{0} / n_{1}^{0} is 2 as the costs go to zero is easily seen from (2.12), or by dividing (2.8a) by (2.8b). The latter approach yields
(2.15) $\quad \frac{c_{1}}{c_{2}}=\frac{\left(2 n_{2}^{0}+3\right)\left(n_{2}^{0}+3\right)}{\left(2 n_{1}^{0}+3\right)\left(n_{1}^{0}+2\right)}$.

As c_{1} and $c_{2} \rightarrow 0$ keeping $c_{1} / c_{2}=k, n_{1}^{0}$ and $n_{2}^{0} \rightarrow \infty$ and the right side of (2.15) tends to $\left(n_{2}^{0} / n_{1}^{0}\right)^{2}$. Therefore,

$$
\begin{equation*}
\frac{\mathbf{n}_{2}^{0}}{\mathbf{n}_{1}^{0}} \rightarrow \frac{c_{1}}{c_{2}}=\sqrt{k} \text { as } c_{1}, c_{2} \rightarrow 0 \tag{2.16}
\end{equation*}
$$

An easy corollary of this fact is that (2.16) holds as well if p_{1} and P_{2} initially have arbitrary distributions in the beta family. While, practically speaking, most initial distributions can reasonably be approximated by beta distributions for the purposes of this problem, certain special forms of initial information cannot. For example, if P_{1} is
initially 0 or 1 with probability $1 / 2$ each, then $n_{1}=0$ for large values of c_{1} and $n_{1}=1$ for small values of c_{1} (the cutoff point of c_{1}, where both $n_{1}^{0}=0$ and $n_{1}^{0}=1$, depends on c_{2} and the initial information about p_{2}), since one observation on component type 1 delivers complete information about P_{1}.
3. General r, Density of p_{i} Proportional to $p_{i-}^{m_{i}}$.

This section generalizes Section 2 in at least two ways. Firstly, there are now an arbitrary number of components. Secondly, the parameters P_{i} are assumed to have densities proportional to $p_{i}{ }_{i}, i=1, \ldots, r$. Not only does this include the uniform assumption $\left(m_{1}=m_{2}=0\right)$ thus generalizing Section 2 , but now the distributions of the p_{i} are not necessarily identical. While, mathematically speaking, each of the m_{i} must be greater than -1 , they will be large (the order of r) in most applications, for, taking the m_{i} small implies that the system is very unreliable.

Assume the m_{i} are small, say for definiteness $m_{1}=\ldots=m_{r}=0$, then each of the P_{i} are initially uniform and the (initial) probability that the system functions is $\left.E_{o} p=1 / 2\right)^{r}$. Furthermore, the Bayes risk, $\operatorname{var}_{0} P=(1 / 3)^{r}-(1 / 4)^{r}$, is small for r large, indicating that few components can be sampled and that, while the estimate of p may be affected by sampling, the initial notion that p is very likely small will not change. For most applications in which r components are connected in series each component is likely to function properly, giving the system reasonable reliability. Thus, while $m_{1}=\ldots=m_{r}=0$ may have applications for parallel systems, such may not be the case for series systems if r is large. On the other hand if the m_{i} are large, and say $m_{1}=\ldots=m_{r}=\alpha r$, then the probability the system functions properly is $E_{0} p=\left(\frac{\alpha r+1}{\alpha r+2}\right)^{r}$ which
is between $e^{-1 / \alpha}$ and $\frac{\alpha+1}{\alpha+2}$ for all r. Also, because $\operatorname{var}_{0} p>e^{-2 / \alpha}$ for all r can always be improved (i.e., made smaller) by sampling, such sampling will not be discouraged by the fact that there are many components.

According to the above assumptions concerning p_{i}, the initial density of $-\ln p_{i}$ is exponential with expectation $\left(m_{i}+1\right)^{-1}$. The density of p can take different forms, depending on the equalities among the m_{i}, the simplest form occurs when $m_{1}=\ldots=m_{r}=m$ (since then $-\ln p=\Sigma\left(-\ln p_{i}\right)$ has a gamma density), to wit:

$$
\begin{equation*}
f(p)=\frac{(m+1)^{r}}{(r-1)!} p^{m}(-\ln p)^{r-1}, p \in(0,1) \tag{3.1}
\end{equation*}
$$

For arbitrary m_{i}, the initial estimate of p is

$$
\begin{equation*}
E_{0} p=\prod_{i=1}^{r} \frac{m_{i}+1}{m_{i}+2}, \tag{3.2}
\end{equation*}
$$

with Bayes risk

$$
\begin{equation*}
\operatorname{var}_{0} p=\prod_{i=1}^{r} \frac{m_{i}+1}{m_{i}+3}-E_{0}^{2} p \tag{3.3}
\end{equation*}
$$

Also, for arbitrary $J=\left(s_{1}, n_{1} ; \ldots ; s_{r}, n_{r}\right)$,

$$
\begin{equation*}
E\left(p_{i} \mid J\right)=\frac{s_{i}+m_{i}+1}{n_{i}+m_{i}+2}, i=1, \ldots, r, \tag{3.4}
\end{equation*}
$$

and therefore for fixed n_{1}, \ldots, n_{r},

$$
\begin{equation*}
\operatorname{var}_{O} E(p \mid J)=\prod_{i=1}^{r} E_{O}\left(\frac{s_{i}+m_{i}+1}{n_{i}+m_{i}+2}\right)^{2}-\prod_{i=1}^{r} E_{0}^{2}\left(\frac{s_{i}+m_{i}+1}{n_{i}+m_{i}+2}\right) . \tag{3.5}
\end{equation*}
$$

In view of the fact that

$$
\begin{align*}
\operatorname{Pr}\left(s_{i} \mid J_{0}, n_{i}\right) & =E_{0}\binom{n_{i}}{s_{i}} p_{i}^{s}\left(1-p_{i}\right)^{n_{i}-s_{i}} \tag{3.6}\\
& =\left(m_{i}+1\right)\binom{n_{i}}{s_{i}} \int_{0}^{1} p_{i} p_{i}+m_{i}\left(1-p_{i}\right)^{n_{i}-s_{i}} d_{p_{i}} \\
& =\left(m_{i}+1\right) \frac{n_{i}!\left(s_{i}-m_{i}\right)!}{s_{i}!\left(n_{i}+m_{i}+1\right)!},
\end{align*}
$$

for all i (generalizing (2.5)), it follows that for n_{i} fixed,

$$
\begin{align*}
& E_{0}\left(\frac{s_{i}+m_{i}+1}{n_{i}+m_{i}+2}\right)=\frac{m_{i}+1}{m_{i}+2} \tag{3.7}\\
& E_{0}\left(\frac{s_{i}+m_{i}+1}{n_{i}+m_{i}+2}\right)^{2}=\frac{\left(m_{i}+1\right)\left[n_{i}\left(m_{i}+2\right)+\left(m_{i}+1\right)\left(m_{i}+3\right)\right]}{\left(m_{i}+2\right)\left(m_{i}+3\right)\left(n_{i}+m_{i}+2\right)}
\end{align*}
$$

Therefore, in view of (2.4) and generalizing (2.7),

$$
\begin{align*}
B\left(n_{1}, \ldots, n_{r}\right) & =\operatorname{var}_{0} p-\operatorname{var}_{0} E(p \mid J)+\sum_{i=1}^{r} c_{i} n_{i} \tag{3.9}\\
& =\prod_{i=1}^{r} \frac{m_{i}+1}{m_{i}+3}-\prod_{i=1}^{r} \frac{\left(m_{i}+1\right)\left[n_{i}\left(m_{i}+2\right)+\left(m_{i}+1\right)\left(m_{i}+3\right)\right]}{\left(m_{i}+2\right)\left(m_{i}+3\right)\left(n_{i}+m_{i}+2\right)}+\sum_{i=1}^{r} c_{i} n_{i} .
\end{align*}
$$

Taking the derivatives with respect to the n_{i} in (3.9) and equating them to zero yields the system of equations:

$$
\begin{equation*}
-\frac{m_{i}+1}{\left(m_{i}+2\right)\left(m_{i}+3\right)\left(n_{i}^{0}+m_{i}+2\right)^{2}} \prod_{j \neq i} \frac{m_{j}+1}{\left(m_{j}+3\right)\left(n_{j}^{0}+m_{j}+2\right)}\left[n_{j}^{0}+\frac{\left(m_{j}+1\right)\left(m_{j}+3\right)}{m_{j}+2}\right]+c_{i}=0 \tag{3.10}
\end{equation*}
$$

for $i=1, \ldots, r$. The solution of (3.10) involves finding roots of a polynomial of degree $r+1$ and of $r-1$ polynomials of degree r. Analogous to the techniques of Section 2 , however, approximate n_{i}^{0} can be obtained from (3.10) and improved in one iteration. For convenience, let

$$
\begin{equation*}
\gamma=E_{0} \prod_{i=1}^{r} p_{i}^{2}=\prod_{i=1}^{r} \frac{m_{i}+1}{m_{i}+3} \tag{3.11}
\end{equation*}
$$

Since for each i,

$$
\begin{equation*}
n_{i}^{0}+\frac{\left(m_{i}+1\right)\left(m_{i}+3\right)}{m_{i}+2}=n_{i}^{0}+m_{i}+2-\frac{1}{m_{i}+2} \doteq n_{i}^{0}+m_{i}+2 \tag{3.12}
\end{equation*}
$$

equations (3.10) become (approximately)

$$
\begin{equation*}
-\frac{\gamma}{\left(m_{i}+2\right)\left(n_{i}^{0}+m_{i}+2\right)^{2}}+c_{i} \doteq 0, i=1, \ldots, r \tag{3.13}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
n_{i}^{0}+m_{i}+2 \doteq \sqrt{\frac{\gamma}{c_{i}\left(m_{i}+2\right)}} \quad, i=1, \ldots, r \tag{3.14}
\end{equation*}
$$

which are exact in the limit as $\max c_{i} \rightarrow 0$. Using these approximations for n_{j}^{0} in (3.10) for $j \neq i$ yields the improvements:

$$
\begin{equation*}
n_{i}^{0} \doteq\left[\frac{m_{i}+1}{c_{i}\left(m_{i}+2\right)\left(m_{i}+3\right)} \quad \prod_{j \neq i} \frac{m_{j}+1}{m_{j}+3}\left(1-\sqrt{\frac{c_{j}}{\gamma\left(m_{j}+2\right)}}\right)\right]^{\frac{1}{2}}-\left(m_{i}+2\right), i=1, \ldots, r . \tag{3.15}
\end{equation*}
$$

Before turning to special cases and examples, it should be noted from (3.14) that the n_{i}^{O} get large without bound as the costs tend to zero, and in the limit,

$$
\begin{equation*}
\left(n_{1}^{0}, \ldots, n_{r}^{0}\right) \propto\left(\frac{1}{\sqrt{c_{1}\left(m_{1}+2\right)}}, \ldots, \frac{1}{\sqrt{c_{r}\left(m_{r}+2\right)}}\right) \tag{3.16}
\end{equation*}
$$

As has been seen in the special case of Section 2 , and will be seen in upcoming examples, the asymptotic relation (3.16) is accurate for moderate as well as small values of the c_{i}. According to (3.16), among components with similar sampling costs a component is sampled less if it is deemed to be more reliable. Of course, this statement is tied to assumptions of this section, according to which a component deemed reliable (by making the corresponding m_{i} large) also has a small variance associated with p_{i}, thus necessitating fewer observations on that component. As in Section 2 (cf. (2.14)), $B\left(n_{1}^{0}, \ldots, n_{r}^{0}\right) \rightarrow 0$ as $\max c_{i} \rightarrow 0$ so that sampling, even considering the costs involved, reduces the expected losses to zero in the limit. Furthermore, in view of (3.14), (3.9) becomes (approximately)

$$
\begin{align*}
& B\left(n_{1}^{0}, \ldots, n_{r}^{0}\right) \doteq \gamma-\gamma \prod_{i=1}^{r}\left(1-\sqrt{\frac{c_{i}}{\gamma\left(m_{i}+2\right)}}\right)+\sum_{i=1}^{r} c_{i} \sqrt{\frac{\gamma}{c_{i}\left(m_{i}+2\right)}} \tag{3.17}\\
& \doteq \doteq \gamma-\gamma+\gamma \sum_{i=1}^{r} \sqrt{\frac{c_{i}}{\gamma\left(m_{i}+2\right)}}+\sum_{i=1}^{r} \sqrt{\frac{\gamma c_{i}}{m_{i}+2}} \\
&=2 \sqrt{\gamma} \sum_{i=1}^{r} \frac{\sqrt{c_{i}}}{\sqrt{m_{i}+2}} \\
&-14-
\end{align*}
$$

The Case $m_{1}=\ldots=m_{r}=0$.
As previously pointed out, this case corresponds to the one considered in Section 2 if $r=2$ and seems unrealistic for most series systems if r is large, though it may have applications for parallel systems. The principal reason for considering this case here is to illustrate further its unrealistic nature and to demonstrate a danger arising from the blind use of a Bayesian approach. To this end fix c_{1} and c_{2} and let $\max \left\{c_{3}, \ldots, c_{r}\right\} \rightarrow 0$. According to (3.15),
(3.18a) $\quad n_{1}^{0} \doteq\left(\frac{1}{3}\right)^{r / 2-1} \sqrt{\frac{2-\sqrt{2 \cdot 3^{r} c_{2}}}{36 c_{1}}}-2$,
(3.18b) $\quad n_{2}^{0} \doteq\left(\frac{1}{3}\right)^{r / 2-1} \sqrt{\frac{2-\sqrt{2 \cdot 3^{r} c_{1}}}{36 c_{2}}}-2$,
and $n_{3}^{0}, \ldots, n_{r}^{0} \rightarrow \infty$ giving effectively complete information about p_{3}, \ldots, p_{r}. Since the initial distributions of p_{1} and p_{2}, the only effectively unknown parameters, coincide with those of Section 2 where $r=2$, one may expect that the optimal sample sizes should be the same as in Section 2. In fact, since the estimates of p given $J=\left(s_{1}, n_{1} ; \ldots ; s_{r}, n_{r}\right)$ is $\left(\begin{array}{ll}\frac{s_{1}+1}{n_{1}+2} & \frac{s_{2}+1}{n_{2}+2}\end{array}\right) p_{3} \ldots p_{r}$ rather than $\left(\frac{s_{1}+1}{n_{1}+2} \frac{s_{2}+1}{n_{2}+1}\right)$ and the corresponding Bayes risks are different, the optimal sample sizes when there are two components are approximately $3^{r / 2-1}$ times as large as when there are r components. This is illustrated for $r=3$ (and positive but small c_{3}) for four examples in Table 3.1. When compared with Table 2.1 it will be seen that the values of n_{1}^{0} and n_{2}^{0} given there are about $\sqrt{3}$ times those of Table 3.1. Incidentally, in each example the true n_{i}^{0} has been verified to be the values in Table 3.1 rounded to the nearest integer. In the first, for example, $\left(n_{1}^{0}, n_{2}^{0}, n_{3}^{0}\right)=(0,2,5)$.

TABLE 3.1

c_{1}	c_{2}	c_{3}	$n_{1}^{0}(\mathrm{app})$	$n_{2}^{0}(\mathrm{app})$	$\mathrm{n}_{3}^{0}(\mathrm{app})$
4×10^{-3}	10^{-3}	$10^{-3} / 4$	-.04	1.66	5.09
4×10^{-4}	10^{-4}	$10^{-4} / 4$	4.62	10.98	23.71
4×10^{-5}	10^{-5}	$10^{-5} / 4$	19.33	40.41	82.56
4×10^{-6}	10^{-6}	$10^{-6} / 4$	65.85	133.46	268.67

The Case $m_{1}=\ldots=m_{r}=\alpha r$.

In this case the probability that the system functions is $\left(\frac{\alpha r+1}{\alpha \mathrm{r}+2}\right)^{r} \doteq \mathrm{e}^{-1 / \alpha}$ and $\gamma=\left(\frac{\alpha r+1}{\alpha r+3}\right)^{r} \doteq e^{-2 / 3 \alpha}$ (where the approximations assume r large). According to (3.15),

$$
\begin{equation*}
n_{i}^{0} \doteq\left[\frac{\gamma}{c_{i}(\alpha r+2)} \prod_{j \neq i}\left(1-\sqrt{\frac{c_{i}}{\gamma(\alpha r+2)}}\right)\right]^{\frac{1}{2}}-(\alpha r+2), i=1, \ldots, r \tag{3.19}
\end{equation*}
$$

For $r=3$ and $\alpha=2$ these approximations are given for four examples in Table 3.2. In view of (3.16) the ($n_{1}^{0}, n_{2}^{0}, n_{3}^{0}$) in this table are approximately proportional to the corresponding numbers in Table 3.1. However, the numbers are smaller since in this case much more information is present in J_{O}, i.e., before sampling--it is as though the information $m_{1}=m_{2}=m_{3}=0$ has been modified by 6 successes in 6 observations on of the three component types.

TABLE 3.2

| c_{1} | c_{2} | c_{3} | $n_{1}^{0}(a p p)$ | $n_{2}^{0}(\mathrm{app})$ | n_{3}^{0} (app) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4×10^{-3} | 10^{-3} | $10^{-3} / 4$ | -4.21 | -0.49 | 6.96 |
| 4×10^{-4} | 10^{-4} | $10^{-4} / 4$ | 4.08 | 16.10 | 40.13 |
| 4×10^{-5} | 10^{-5} | $10^{-5} / 4$ | 30.30 | 68.53 | 145.01 |
| 4×10^{-6} | 10^{-6} | $10^{-6} / 4$ | 113.21 | 234.36 | 476.66 |

4. Distributions on p.

If the initial information is in the form of a distribution specified for p, but not for the individual p_{i}, then this can be modified by making observations on the system, but the character of the information is such that there is no value in observing which components failed. There could be value in making observations on individual components, however, under assumptions about the way in which the components contribute to the system. For example, under the (rather strong) assumption that the p_{i} are independent and identically distributed these distributions can be found (in theory if not in practice), thus specifying J_{0}, and the earlier sections apply. If this assumption is made and, for example, $r=2$ and the density of p is given by (2.1) then Section 2 applies. However, for arbitrary density of p can lead to practical difficulties as this brief section is designed to suggest.

Seemingly the simplest distribution is p uniform on (0,1).
Incidentally, this treats series and parallel systems equally. Assuming the p_{i} are independent and identically distributed, it can be seen that $-\ln p_{i}$ has a gamma density with expectation and variance r^{-1}. Therefore the density of P_{i} is
(4.1) $\quad(-\ln x)^{1 / r-1} / \Gamma\left(\frac{1}{\mathrm{r}}\right), \quad x \in(0,1)$.
$E_{0} p_{i}$ and $E_{o} p_{i}{ }^{2}$ are easily found from (4.1), or from symmetry, to be $(1 / 2)^{1 / r}$ and $(1 / 3)^{1 / r}$. However, the probability of s_{i} successes in n_{i} observations on component type i is not easily found. After some calculation,

$$
\operatorname{Pr}\left(s_{i} \mid J_{0}, n_{i}\right)=E_{0}\left({ }_{s_{i}}^{n_{i}}\right) p_{i}^{s_{i}}\left(1-p_{i}\right)^{n_{i} s_{i}}=\left({\underset{s}{i}}_{n_{i}}\right)^{n_{i}-s_{i}} \sum_{h=0}^{n_{i}-s_{i}}\left(\begin{array}{c}
h \tag{4.2}
\end{array}\right)(-1)^{h}\left(h+s_{i}+1\right)^{-1 / r},
$$

which cannot be further reduced though it can be approximated by

$$
\left(s_{i}^{n_{i}}\right) \frac{d^{n_{i}-s_{i}}}{d s_{i}^{n_{i}-s_{i}}}\left(s_{i}+1\right)^{-1 / r}=\left(\begin{array}{l}
n_{i}
\end{array}\right)\left(s_{i}+1\right)^{-\left(\frac{1}{r}+n_{i}-s_{i}\right)} \Gamma\left(\frac{1}{r}+n_{i}-s_{i}\right) / \Gamma\left(\frac{1}{r}\right) .
$$

Evidently, the mathematics become complicated even using approximate methods.

Two approaches readily suggest themselves. One is to perform all calculations numerically. The second is to approximate the density of p with one more tractible. For example, the uniform density on p can be fitted reasonably well (the first two moments exactly) by a density of the form (3.1) by setting

$$
\begin{equation*}
m=\left(3^{-\frac{1}{r}+1}-2^{-\frac{1}{r}+1}\right) /\left(2^{-\frac{1}{r}}-3^{-\frac{1}{r}}\right) \tag{4.4}
\end{equation*}
$$

This problem is solved in Section 3.
5. Comments.

While this paper has been concerned with estimating the reliability of systems of independent components connected in series or in parallel, there are obvious extensions for more general systems. The purpose of this paper is not to exhaust the possibilities but to illustrate an approach, one which can be fruitfully used in estimating reliabilities. The main selling point of a Bayesian decision theoretic approach is that empirical information is handled in a unified way--accumulating data affects current knowledge according to Bayes' theorem, and the value of data or prospective data can be assessed on that basis. The problem considered here is one for which accumulating data on the reliability of individual components affects the state of knowledge about the parameter of interest, the reliability of the system, in a very interesting way.

It is for this reason that a sequential treatment of the data collection problem--the subject of Part II of this paper--is so appealing.

Acknowledgment.
My interest in this problem was stimulated by a seminar presented by Professor Robert J. Buehler.

REFERENCES

Degroot, M. (1970). Optimal Statistical Decisions. McGraw-Hill, New York.
Edwards, W., Lindman, H., and Savage, L. J. (1963). Bayesian Statistical Inference for Psychological Research. Psychological Review 70 193-242.

Feller, W. (1966). An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York.

Hwang, D.-S., and Buehler, R. J. (1971). Confidence Intervals for Some Functions of Several Bernoulli Parameters with Reliability Applications. Technical Report No. 161, School of Statistics, University of Minnesota. Myhre, J. M. and Saunders, S. C. (1971). Approximate Confidence Intervals for Complex Systems with Exponential Component Lives. Ann. Math. Statist. 42 343-348.

Raiffa, H. and Schlaifer, R. (1961). Applied Statistical Decision Theory. Graduate School of Business Administration, Harvard University, Boston, Massachusetts.

