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1. Introduction. 

The reliability of a system of r components connected in series 

is p = p1p2 ••• pr' where O < p1 < 1 for all i and is the 

(unknown) probability that a component of type i functions properly. 

For many systems the most efficient estimate (perhaps the only estimate) 

of p can be obtained by testing the components individually. The usual 

assumption is that the components are. each tested a fixed number of times 

giving point estimates or interval estimates of p (see Myrhe and Saunders 

(1971)for an example of the latter, and for further ~eferences). Hwang 

and Buehler (1971) explore an inverse sampling· scheme, where· each component 

is tested until it yields a fixed number of failures. 

Such an assumption seems to be made separate from considerations of 

sampling costs (in terms of time and resources). The approach here will 

consider sampling costs explicitly. In particular, it will be assumed 

that the cost of testing ni components of type i observing 

components which function properly, i = 1, ••• , r, is 

r 
(1.1) c{J) = ~ c.n. 

1. 1. 

s. 
1. 

successes, 

where J denotes the accullD.llated data {s 1 , n1; ••• ; sr' nr) and each 

c. > O. The number c. can be thought of as the purchase price of a 
1. 1. 

type i component which will be destroyed in testing--whether the component 

functions or not. Applications can be envisaged where the cost of sampling 

is proportional to the number of successes {or failures)--these will not 

be addressed here. The problem is to determine the {n1 , ••• , nr) which 

corresponds to smallest total cost among sampling schemes which have the 

same expected information value in estimating p. 
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The parameters p
1

, ••• , pr are not known precisely but are themselves 

random variables. The Bernoulli trials associated with a sequence of 

successes and failures associated with component type i are therefore 

not independent, but are independent conditional on the unknown quantity 

p., so that the trials are exchangeable--see, for example, Feller(1966), 
1. 

Section VII 4. At any stage of sampling the information about p is 

given by the accumulated data J, which can always be regarded as a 

probability distribution on the parameters p
1

, ••• , Pr· The J corresponding 

to no data is J0 = (0, O; ••• ; 0, 0), the initial distribution. Throughout 

this paper the parameters p1 , ••• , pr are assumed to be initially, and 

therefore also henceforth, statistically independent. If the initial 

distribution were such that this assumption is violated then more information 

would be present in any subsequent J than otherwise, leading to a more 

efficient estimate of p. 

The best sampling scheme will depend on J
0 

and the goodness of 

any scheme varies greatly with J
0

• One cannot expect, therefore, to find 

a scheme that is good (or even reasonable) for all possible J
0

• Several 

different kinds of distributions of the pi will be examined here. 

Throughout this paper quadratic loss is assumed; specifically, the 

loss associated with an estimate 
,. 
p is 

(1.2) L(p, p) = (p-p)2. 

At any stage of sampling the estimate of p which minimizes the Bayes 

risk is the expected value of p, the (unconditional) probability that 

the system functions properly: 

(1.3) 
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in view of the independence of the 

p = E(pjJ) is the variance of p: 

p .• 
l. 

The Bayes risk corresponding to 

(1.4) 

again in view of independence. 

The problem is to determine an optimal sampling scheme, call it 

(n~, ••• , n~), where the n~ are values of ni which minimize expected 

Bayes risk plus cost: 

r 
(1.5) B ( n1 , ••• , n ) = E O var ( p I J) + ~ c in i' 

r i=l 

where expectation E
0 

refers to the initial distribution of the pi and 

averages over the possible values of si for fixed n. • A good sampling 
1 

scheme will be driven by the following consideration: for each i, n. 
l. 

should be relatively large if c. 
1 

is relatively small, but on the other 

hand it should be relatively small if, according to J 0 , much is known 

about p .• The problem is then properly regarded as a search for an 
l. 

appropriate balance of sampling costs and information. It is clear, for 

example, that an optimal scheme would sample from all r component 

types (provided the sampling costs are sufficiently small) since there 

is limited information about p available in any subset of the components 

(unless some of the pi are known, a trivial case that has been excluded). 

To be specific, suppose that J is such that n1 = 0 while min{n
2

, ••• , nr} - oo, 

then var(plJ) ~ p~ ••• p: var(p1 1J0 ) > O. 

According to the way in which the problem has been formulated it is 

clear that its solution is identical with the solution for a system of 

components connected in parallel (where system reliability is 
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1 - (1-p1)(1-p2 ) ••• (1-pr)); namely, the one in which the pi are 

replaced with 1 - p .• 
l. 

and 

to 

.. 
The case where each of the pi are initially uniform on (0, 1) 

r = 2 
m. 

l. p. and 
1. 

is considered in Section 2. The density for pi is proportional 

r is arbitrary in Section 3, thereby generalizing Section 2 

in several ways. Some readers may want to omit Section 2 and others may 

want to omit Section 3. Distributions specified for p rather than for 

the are considered briefly in Section 4. 

Part II of this paper will consider the problem sequentially, wherein 

the component type sampled at any stage depends on the history of 

components sampled and the results obtained. The approach of both Parts 

I and II follows modern Bayesian decision theory as espoused, for 

example, in Degroot (1970) or in Raiffa and Schlaifer (1961). 

2. r = 2, p1 and p
2 

Uniformly Distributed. 

When there are two components and according to J
0 

the parameters 

and 

of p is 

(2.1) 

both have uniform densities in (0, 1), the initial density 

f(p) = -ln p, p e (o, 1). 

The initial ("no data") estimate of p is E(plJ
0

) = E
0

p = 1/4, with 

Bayes risk var(plJ0 ) = var
0 

p = 7/144. Obviously, if the sampling cost 

associated with either component is greater than 7/144 then the optimal 

sample size for that component is zero. (Stronger statenents are possible-­

analysis not in order here reveals that sampling is optimal if and only 

if or is less than or equal to 1/144.) 

A word is necessary about the assumption that the pi are initially 

uniform on (0, 1). Such an initial distribution has been proposed by some 
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to represent "complete ignorance~" That there cannot be a distribution 

which represents complete ignorance is easily seen by the following 

well-known argument. If one is completely ignorant about p
1 

and p
2 

then he is also completely ignorant about p = p1p
2 

as well. But these 

three parameters, regarded as random variables, cannot be subject to the 

same distribution (save the one-point distributions concentrated at 0 

or 1, neither of which can reasonably qualify). To accomplish a 

solution some assumption nu1st be made and the one made above,while 

restrictive, ia appealing on several grounds. It represents a certain 

amount of "openmindness" about the p. {but not 
1. 

p); see Edwards et al. 

(1963) for a discussion of "openminded" distributions. But more importantly, 

it means that the joint density of p1 
and at any stage of sampling, 

which is specified by J = {s
1

, n
1

; s
2

, n
2

), can be written as the product 

of two beta densities; in particular, as proportional to 

(2.2) 
sl nl-sl s2 n2-s2 

P1 (1-pl) P2 (1-p2) • 

The latter reason by itself does not dictate the uniform distribution,for 

the same is true {with modified exponents in (2.2)) if the pi initially 

have arbitrary beta densities {see Degroot{1970),p. 160 for a discussion 

of the conjugate nature of the beta family in Bernoulli sampling). 

Though redundant, it will be convenient in the case of two components 

to have the additional notation 

For reasons of symmetry, it is clear that if k = 1. If the 

costs are unequal then it seems reasonable to expect that 

0 0 n2 > n1 according as k < 1 or k > 1. That this is the case will be 
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verified. 0 0 Furthermore, it will be seen that n
1 

and n
2 

are approximately 

(i.e., asymptotically) related as follows: 

0 
n2 

~ 1k 75 "'~ 
nl 

and approximations for the n~ will be obtained. 
1. 

In view of the well-lcnown relation: 

(2.4) 

where J = (s 1, n1; s
2

, n2), var0E(p!J) can be regarded as the expected 

worth of the information about p provided by n
1 

observations on 

component type 1 and n2 of observations on component type 2. The 

quantity var
0
E(plJ) is an increasing function of nl for all n2 

and of n2 for all nl. For, since 

(2.5) Pr(s. jJ
0

, n.) 1 , s. = 0,1, ••• , i 1, 2 = ni+l n.; = 
l. 1. 1. l. 

(2.6) 

(
s +1)2 

( s +1)2 
= EO n~+2 EO ~+2 

2n1+3 2n2+3 1 
= 6(n

1
+2) 6(n

2
+2~ - lb· 

The first difference (and the partial derivative as well) of the last 
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quantity with respect to both n
1 

and n
2 

is positive. Also, both 

second differences are negative, indicating that the increment in 

expected worth of information when ni is increased by 1 is greater for 

smaller values of 

Rewriting (1.5) for this case in view of (2.4) and (2.6), 

(2.7) 

7 
2n1+3 2n2+3 

= 14'4 - 6(n
1
+2) 6(n

2
+2) 

which is to be minimized. Regard n1 and n
2 

as nonnegative real variables 

rather than just integers. Taking the partial derivatives of B(n1 , n2 ) 

and equating them to zero yields the pair of equations: 
0 

1 2n2 + 3 
(2.8a) - 3b O O +cl= 0, 

(n1 + 2) 2 (n2 + 2) 

0 
1 2nl + 3 

( 2. 8b) - To O O + c
2 

= 0. 
3 (n2 + 2)2(nl + 2) 

It is clear from (2.8a) that for fixed 0 0 
n2, nl is the order of 1/Jc;_ 

and from {2.8b) that for fixed is the order of 1/Jc; ; in 

particular, n~ - oo as ci - O. In view of equations (2.8) the values 

0 0 
n2 and n1 can be obtained by solving the cubic equation: 

(2.9) 0)3 r;: 0 r;: k O k 
(n2 + 2(2-, k + l)(n2)2 + (4(k+~ k) - 18cl )n2 - 12cl = 0, 

for which there is exactly one positive root (provided c
1 

is sufficiently 

small--less than 1/72 suffices), 

0 
0 3 - 72c2 (n2 + 2) 2 

(2.10) n1 = ---=-0----
36c2(n2 + 2) 2

- 2 

and in view of (2.8b), 
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However, the solution of (2.9) is not trivially arrived at and is real 

rather than integer in any case. Furthermore, the generalization of 

(2.9) for the case considered in Section 3 is impossible to solve explicitly. 

A simple though very accurate approximation for n~ and n~ can 

be obtained from a single iteration in equations (2.8). Writing (2.8a) 

and (2.8b) as 

(2. lla} 
0 0 0 1 - 2(n2 + 2) + 36{n2 + 2)(n1 + 2)2 c1 = O, 

(2.llb) 
0 0 0 

1 - 2(n1 + 2) + 36(n1 + 2)(n2 + 2)2 c2 = O, 

and ignoring the constant 1 in each, yields, respectively, 

(2.12) 
1 0 + 2 ~ 

ni ~ , i = 1, 2, 

where the approximate equalities approach equalities as c1 , c
2 
~ O. Using 

this approximation of n~ + 2 in (2.lla) and of n~ + 2 in (2.llb) yields 

the better--particularly for small 0 i . n
1

--approx mations: 

(2.13a) 
0 . 2 - Jrnc2 

- 2 ' nl = 36c1 

(2.13b) 
0 . 2 - Jrnc1 - 2. n2 = 36c

2 

The following calculations illustrate the accuracy of approximations 

(2 .13). Table 2.1 gives these numbers for four examples--in each k = c
1

/c~ 
~ 

is 4. For each of these examples the function B(n
1

, n
2

) is given in 

Table 2.2 for the nine pairs (n1, n
2

) closest to the values given in 

Table 2.1. In each case n~ and n~ are seen to be the values obtained 

by rounding to the nearest integer in approximations (2.13). This is 

typical in view of the "smoothness" of B (especially for small 

c
2

) but, of course, cannot be guaranteed. 
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-- TABLE 2.1 
.. - ii 0 0 

cl c2 n
1 

(app.) n2(app.) 

4 X 10-3 10-3 l.6o 4.94 - 4 X 10-4 10-4 9.66 21.06 

- 4 X 10-5 10-5 35.14 72.03 

4 X 10-6 10-6 
115. 73 233.20 

-
TABLE 2.2: B(n1, n2) 

~ 
4 -3 -3 c1 = X 10 , c2 = 10 4 -4 4 -4 c1 = X 10 , c2 = x 10 .. 

~ 4 5 6 
1 

~II 20 21 22 
1 

- 1 .0342346 .0341323 .0343056 9 .0130610 .0130562 .0130601 

2 .0339907 .0338333 .0339653 10 .0130497 .0130444 .0130480 

- 3 .0354444 .0352540 .0353611 I .0130961 11 I .0131016 .0130993 

---- 4 -5 -5 c1 = X 10 , c2 = 10 4 -6 -6 c1 = x 10 , c2 = 10 

- ~ 71 72 73 
1 ~I 232 233 234 

--- -
34 .00436367 .00_436353 .00436366 115 .001403236 .001403230 .001403233 - 35 .00435225 .00435211 .00436223 116 .001403221 .001403215 .001403217 

36 .00436301 .00435386 .00435298 117 .001403268 .001403267 .001403269 - ,, 

~ 

-
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To find the expected worth of sampling the entries in Table 2.2 

can be compared with B(O, 0) = 7/144 ~ .o486111. Evidently the expected 

worth of sampling tends to 7/144 as the costs tend to zero; that is, 

0 0 
B(n1 , n2 ) tends to zero. In fact, using the asymptotic result (2.12) 

in (2.7), as c
1 

and C - 0 2 
keeping c

1
/c

2 
= k, 

(2.14) 
0 0 • 1 (2-3/2c;_)(2-3J 2c2 ) Jci + Jc;_ 

B{nl, n2) = 9 - 36 + ---
3/2 

.µ J2c-;_ 1 
= T (Jci + Jc;_) = 3 C 1 + -) ' 

Jk 
where terms which tend to zero at the same rate as c1 have been ignored. 

It can be noticed from Table 2.1 that the ratio of n~ 
0 

to nl 

is nearly constant at 2. That the limit of n~/n~ is 2 as the costs 

go to zero is easily seen from (2.12), or by dividing (2.8a) by (2.8b). 

The latter approach yields 

(2.15) 

As cl 

side of 

(2.16) 

cl 
0 0 

(2n2 + 3)(n2 + 3) 
-c2 0 0 

(2n1 + 3){n1 + 2) 

0 and C -+ 0 keeping c/c2 = k, n1 
and 

2 

(2.15) tends to 
0 0 2 

(n2/nl) • Therefore, 
0 

n2 cl 
= Jk c

1
, c

2 
.... O. - -+ - as 0 c2 nl 

0 
n - oo and the right 

2 

An easy corollary of this fact is that (2.16) holds as well if p
1 

and p
2 

initially have arbitrary distributions in the beta family. While, 

practically speaking, most initial distributions can reasonably be 

approximated by beta distributions for the purposes of this problem, certain 

special forms of initial information cannot. For example, if p
1 

is 
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0 
initially O or 1 with probability 1/2 each, then n

1 
= 0 for large 

values of c
1 

and n~ = 1 for small values of c
1 

(the cutoff point of 

c 1 , where both n~ = O and n~ = 1, depends on c
2 

and the initial 

information about p
2
), since one observation on component type 1 delivers 

complete information about 

General r, Density of 

Pl• 
m. 

1 pi Proportional to p .• __ .....:;. ______ ~1-

This section generalizes Section 2 in at least two ways. Firstly, 

there are now an arbitrary number of components. Secondly, the parameters 
m. 

pi are assumed to have densities proportional to pi1
, i = 1, ••• , r. Not 

only does this include the uniform assumption {m
1 

= m
2 

= 0) thus generalizing 

Section 2, but now the distributions of the pi are not necessarily 

identical. While, mathematically speaking, each of the m. 
1 

must be greater 

than -1, they will be large (the order of r) in most applications, for, 

taking the m. 
1 

small implies that the system is very unreliable. 

Assume the mi are small, say for definiteness m
1 

= ••• = mr = O, 

then each of the are initially uniform and the (initial) probability that 

the system functions is E
0

p = l/2)r. Furthermore, the Bayes risk, 

var
0

p = (1/3)r - (1/4)r, is small for r large, indicating that few components 

can be sampled and that, while the estimate of p may be affected by 

sampling, the initial notion that p is very likely small will not change. 

For most applications in which r components are connected in series each 

component is likely to function properly, giving the system reasonable 

reliability. Thus, while ••• = m = 0 r may have applications for 

parallel systems, such may not be the case for series systems if r is large. 

On the other hand if the m1 are large, and say m
1 

= ••• = mr = ar, 

then the probability the system functions properly is E
0

p = c::!)r which 

- 11 -



.. 

is between -1/a d a+ 1 e an 
2 a+ 

for all r. Also, because -2/a var0p > e 

for all r can always be improved {i.e., made smaller) by sampling, such 

sampling will not be discouraged by the fact that there are many components. 

According to the above assumptions concerning pi, the initial density 

of -ln p. is exponential with expectation {m. + 1)-1 • The density of 
1. 1. 

p can take different forms, depending on the equalities among the mi, 

the simplest form occurs when m1 = ... = mr = m (since then 

has a ganuna density), to wit: 

-ln p = r(-ln p.) 
1. 

(3.1) (m+l)r m r-1 
f(p) = (r-l)! p (-ln p) , p e (o, 1). 

For arbitrary m.' 
1. 

the initial estimate of 

r mi+ 1 
( ') 0) EOp = lT .J. ·- m.+ 2 ' i=l 1. 

with Bayes risk 

r m.+ 1 
(3.3) var

0
p = lT 1 

- E
0
2 p. 

i=l mi+ 3 

Also, for arbitrary 

(3.4) E(p.lJ)= 
1. 

si+ m1+ 1 

n.+ m.+ 2 
1. 1. 

, i 

••• ; s , n ), 
r r 

= 1, ••• , r, 

and therefore for fixed n1,•••, n ' r 

(3.5) 

In view of the fact that 

(3.6) 
1. s. 1. 1. 

p is 

n. )= Eo(ni)P~i(l-p. ti-si 
1 (n) 1 s .+m. n. -s. . s 1. 1. 1. 1. = (m.+ 1) 1 pi (1-p1) dpi 

1. Si 0 

n.!(s.- mi)! 
1. 1. 

= (m.+l) 
1. 
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for all i (generalizing (2.5)), it follows that for ni fixed, 

(3.7) (

s .+ m.+ 1) m.+ 1 
E i i =-1.-

0 n.+ m.+ 2 m.+ 2 
1. 1. l. 

(3.8) (
s .+ m.+ 1)

2 

E i i = 
0 n.+ m.+ 2 

l. 1. 

(m
1
+1)[n.{m.+2) + (m.+l)(m

1
+3)] 

1. 1. 1. 

(m.+2)(m.+3)(ni+ m.+ 2) 
1. l. 1. 

Therefore, in view of (2.4) and generalizing (2.7), 

r 
(3.9) B(n1, ... , nr) = var0p - var0E(p

1

IJ) + i~l c 1ni 

r m.+ 1 r {m.+l)[n.{m.+2) + (m.+l)(m.+3)] r 
-- TT 

1 
- TT 

1 1 1 1 1 
+ );en m

1
.+ 3 i=l {m.+2){m.+3)(n.+ m.+ 2) .J • • ' i=l l. l. 1. 1. i=l l. 1. 

Taking the derivatives with respect to then. in (3.9) and equating them 
l. 

to zero yields the system of equations: 

(3.10) 
m.+ 1 m.+ 1 

l. 
- o TT o 

{m.+2){m.+3){n.+ m.+ 2)2 jfi (mj+3){n.+ m.+ 2) 
1 l. l. 1. J J 

0 (m.+l)(m.+3) 
[ J J ] 0 n. + ---~2~- +c.= , 

J m.+ i 
J 

for i = 1, ••• , r. The solution of (3.10) involves finding roots of a 

polynomial of degree r + 1 and of r - 1 polynomials of degree r. 

Analogous to the techniques of Section 2, however, approximate n~ 
1. 

can 

be obtained from (3.10) and improved in one iteration. For convenience, let 

r r m.+ 1 
(3.11) y = E

0 
rr p. 2 = rr 1 

• 
i=l 1 i=l mi+ 3 

Since for each i, 

(3.12) 
0 {m.+ l){m.+ 3) 

n. + _1. __ __,,_1. __ 

1. m.+ 2 
1 • 0 

= n. + m. + 2 , 
1. 1. 

1. 

equations (3.10) become (approximately) 

( 1.13) 
y 
0 

{m.+ 2)(n. + m.+ 2) 2 
+ c. ~ O, i = 1, ••• , r, 

1. 

1 1. 1. 

- 13 -



and therefore, 

(3.14) n~ + mi+ 2 ;,. /c.{m\ 2) V 1. 1. 

i=l, ••• , r, 

which are exact in the limit as max c. ~ O. Using these approximations 
l. 

for 0 n. 
J 

in (3.10) for j + i yields the improvements: 

(3.15) 0 • [ mi+ 1 
ni = c. (m.+ 2)(m.+ 3) 

1. 1. 1. 

- (m.+2),i=l, ••• ,r. 
l. 

Before turning to special cases and examples, it should be noted from 

0 (3.14) that the n. get large without bound as the costs tend to zero, 
]. 

and in 

(3.16) ' ... ' -J-c-(m_l _+_2_) ) • 
r r 

As has been seen in the special case of Section 2,and will be seen in 

upcoming examples, the asymptotic relation {3.16) is accurate for moderate 

as well as small values of the c .• According to (3.16), among components 
1. 

with similar sampling costs a component is sampled less if it is deemed 

to be more reliable. Of course, this statement is tied to assumptions of 

this section, according to which a component deemed reliable (by making 

the corresponding m. large) also has a small variance associated with 
1. 

pi' thus necessitating fewer observations on that component. 

As in Section 2 (cf. max c. ~ 0 so 
1. 

that sampling, even considering the costs involved, reduces the expected 

losses to zero in the limit. Furthermore, in view of (3.14), (3.9) becomes 

(approximately) 

(3.17) ( o no) 
B nl' • • •' r 
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The Case m.. = ••• = m = O. -.L------r--
As previously pointed out, this case corresponds to the one considered 

in Section 2 if r = 2 and seems unrealistic for most series systems if 

r is large, though it may have applications for parallel systems. The 

principal reason for considering this case here is to illustrate further 

its unrealistic nature and to demonstrate a danger arising from the blind 

use of a Bayesian approach. To this end fix and and let 

max{c
3

, ••• , er}~ o. According to (3.15), 

(3.18a) 
0 • 1 r/2 J2:3rc2 

nl = (-) 3E>c1 
- 2, 

3 

2- J 2 •3rc
1 

(3.l8b) 
0 . 1 r/2 

n2 (-) 36c2 
- 2, 

3 

and 
0 

n3,•••, giving effectively complete information about 

Since the initial distributions of and p
2

, the only effectively 

unknown parameters, coincide with those of Section 2 where r = 2, one 

may expect that the optimal sample sizes should be the same as in Section 2. 

In fact, since the estimates of p given J = (s
1

, n1 ; •.. ; sr' nr) is 

(
s 1+1 s2+1) (s1+1 s2+1) 
n

1
+2 n

2
+2 P

3 
••• Pr rather than --2- ---1 and the corresponding Bayes 

nl+ n2+ 
risks are different, the optimal sample sizes when there are two components 

p • 
r 

are approximately 3r/2 - 1 times as large as when there are r components. 

This is illustrated for r = 3 (and positive but small c
3

) for four examples 

in Table 3.1. When compared with Table 2.1 it will be seen that the values 

of 0 0 n1 and n2 given there are about 

Incidentally, in each example the true 

/3 times those of Table 3.1. 
0 

n1 has been verified to be the 

values in Table 3.1 rounded to the nearest integer. In the first, for 

0 0 0 
example, (n1 , n2 , n

3
) = {o, 2, 5). 
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TABLE 3.1 
II 
II 0 0 0 

cl c2 CJ II n1 (app) n2 (app) n3 (app) II 
!! 

4Xl0-J 10-3 10-3/4 
II 
II - .04 1.66 5.09 II 
II 

4X10-4 10-4 10-4/4 
II 
II 4.62 10.98 23.71 II 
II 

4X10-5 10-5 -5 If 
10 /4 Ji 19.33 40.41 82.56 

4Xl0-6 10-6 -6 II 
10 /4 !! 65.85 133.46 268.67 

The Case ~-=-·-·-·-=_m_.r = ar. 

. ( ar+l)r. -1/a In this case the probability that the system functions is -- = e ar+2 

and y = (ar+l)r ~ e-2 /3<:t (where the approximations assume r large). 
ar+3 

According to (3.15), 

(3,19) n~ ~ [ci {~+2) j~i (1 -v\c~+2)) ]½ - (ar+2), i = 1, ... , r. 

For r = 3 and a= 2 these approximations are given for four 

examples in Table 3.2. In view of (3.16) the (n~, n~, n~) in this table 

are approximately proportional to the corresponding numbers in Table 3.1. 

However, the numbers are smaller since in this case much more information 

is present in J
0

, i.e., before sampling--it is as though the information 

m1 = m = m = 0 has been modified by 6 successes in 6 observations on 
2 3 

of the three component types. 

TABLE 3.2 .. 

ii 0 0 0 II 
cl c2 CJ II n1 (app) n2(app) n

3 
(app) 

4Xl0-J 10-3 10-3 /4 
IJ 
II -4.21 -0.49 6.96 II 
II 

4X10-4 10-4 10-4/4 
II 
II 4.08 16.10 40.13 II 
II 

4Xl0-S 10-s 10-5/4 
II 
II 30.30 68.53 145.01 II 
II 

4Xl0-6 10-6 10-6/4 
II 
II 113. 21 234.36 476.66 II 

- 16 -
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4. Distributions on p. 

If the initial information is in the form of a distribution specified 

for p, but not for the individual p., then this can be modified by 
]. 

making observations on the system, but the character of the information 

is such that there is no value in observing which components failed. There 

could be value in making observations on individual components, however, 

under assumptions about the way in which the components contribute to 

the system. For example, under the (rather strong) assumption that the 

pi are independent and identically distributed these distributions 

can be found (in theory if not in practice), thus specifying J0 , and 

the earlier sections apply. If this assumption is made and, for example, 

r = 2 and the density of p is given by (2.1) then Section 2 applies. 

However, for arbitrary density of p can lead to practical difficulties 

as this brief section is designed to suggest. 

Seemingly the simplest distribution is p uniform on (0, 1). 

Incidentally, this treats series and parallel systems equally. Assuming 

the 

that 

are independent and identically distributed, it can be seen 

-ln p. has a gamma density with expectation and variance 
]. 

Therefore the density of pi is 

(4.1) (-ln x)l/r - 1/r(!), X € (0, 1). 
r 

-1 
r 

EOpi and 

(1/2}1/r 

E
0
pi2 are easily found from (4.1), or from symmetry, to be 

and (1/3) 1/r. However, the probability of s. successes in 
1. ; 

observations on component type i is not easily found. After some 

calculation, 

n. 
1. 

(4.2) 
n. s. n.s. 

Pr(s
1
.IJ0 , n.) = E0 ( 

1
)p. 1 (1-p.) 

1 1 

]. s. ]. ]. 

n.-s. 

= ti) 1.E 
1 

t:f8h i)(-l)h(h+s .+1)-l/r, 
s i h::O ]. ]. 

- 17 -



-.. 

which cannot be further reduced though it can be approximated by 

(4.3) 

Evidently, the 

methods. 

n -s (1 ) i i / n. - - +n. -s. 
d (s.+1)-l r= ( 1 )(s.+1) r 1. 

1 r(! + n.- sl..)/r(-r1). 
n. -s . l. s . 1. r i 

d 
1. l. :L 

s. 
1. 

mathematics become complicated even using approximate 

Two approaches readily suggest themselves. One is to perform all 

calculations numerically. The second is to approximate the density of 

p with one more tractible. For example, the uniform density on p can 

be fitted reasonably well (the first two moments exactly) by a density 

This problem is solved in Section 3. 

5. Conunents • 

While this paper has been concerned with estimating the reliability 

of systems of independent components connected in series or in parallel, 

there are obvious extensions for more general systems. The purpose of 

this paper is not to exhaust the possibilities but to illustrate an 

approach, one which can be fruitfully used in estimating reliabilities. 

The main selling point of a Bayesian decision theoretic approach is that 

empirical information is handled in a unified way--accumulating data 

affects current knowledge according to Bayes' theorem, and the value of 

data or prospective data can be assessed on that basis. The problem 

considered here is one for which accumulating data on the reliability of 

individual components affects the state of knowledge about the parameter 

of interest, the reliability of the system, in a very interesting way. 

- 18 -
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It is for this reason that a sequential treatment of the data collection 

problem--the subject of Part II of this paper--is so appealing. 
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