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SUMMARY 

It is shown that Tukey's test of additivity is equivalent to the 

test of a regression coefficient in a model with a single covariate. 

The derivation given is general for the standard experimental designs, 

like complete and incomplete randomized block and Latin squares. 

Expressions for the covariate or concommitant variable are given. An 

example of a Latin square is shown. 

INTRODUCTION 

Tukey [1949] singled out one degree of freedom from the error sum 

of squares in a two-way classification to detect non-additivity between 

rows and colunms (treatments and blocks). He later, Tukey (1955], 

generalized the method to other classifications. Several books on statistical 

methods and linear hypothesis have been written and all follow the approach 

Tukey used to present his additivity test, some with emphasis on calculation 

procedures and others on the distribution properties. However, the author 

feels that there has been a degree of mystery on the source of not very 

simple expressions for non-additivity tests. 

This paper shows that Tukey's tests of additivity can be obtained from 

a usual analysis of covariance. This knowledge may be useful to applied 

statisticians who can investigate non-additivity in several experimental 

situations in a straightforward manner. 
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ANALYSIS OF COVARIANCE FOR ADDITIVITY TESTS 

A three-way classification ~ith n .. k observations per cell, where 
1.J 

niik = 0 or 1, will be used for procedures described here. Application 

to randomized complete and incomplete blocks, complete and incomplete 

Latin squares and other experimental designs will follow directly. 

Analysis of Covariance. 

Let us assume the following three-way classification model with 

dependent variable yijk' covariate xijk' and additive effects ai, Sj 

and yk, 

y .. k = µ, + a. + s . + yk + ex .. k + ei .k 
1.J 1. J 1.J J 

(1) 

where 9 is the regression coefficient. As stated above, the number of 

observations in cell ijk is one or zero. The error e: .• k 1.J 
is assumed 

normally and independently distributed with mean zero and variance cr2 • 

We are here interested in inferences about 9 for which, as it is 

well known, the analysis of covariance offers a systematic procedure. 

This technique basically makes the following transitory assumption about 

y .. k and 
1.J 

(2) 

(3) 

This means that both the dependent variable and the covariate are made 

equal to linear models with respective parameters and errors as shown in 

(2) and (3). Errors and are assumed uncorrelated random 

variables with means zero and constant variances. If least-squares method 

is applied to models (2) and (3) in turn, we obtain the respective b.l.u.e.'s, 

{best linear unbiased estimator), and we can write 

- 2 -



-

A 

x ""'+&'+a•+~· ijk = ~ i j k 

where are, for example, the b.l.u.e.'s of 0 ' ai, ai, respectively. 

The sums of squares for error in the analysis of covariance are 

equivalent to Eyy = E{yijk- yijk) 2 and Exx = E(xijk- xijk)2
• The sum 

of cross products for error is Exy = E(yijk- Yijk)(xijk- xijk). The 

b.l.u.e. for 8 in model (1) is then 9 = E /E • It is also known 
xy xx 

that the sums of squares for reduction in error due to the regression, 

denoted by R, is 

(E )2 
R = xy 

E 
xx 

It is also known that R/cr2 _and 

and follow x2 distributions with 

(4) 

(E - R)/cr2 are independently distributed 
yy 

1 and {f-1) degrees of freedom, 

respectively, where f is the number of degrees of freedom for error E • 
YY 

Under the hypothesis that 9 = 0 both distributions are central x2 and 

therefore we use the variance ratio 

F = R(f-1)/(E - R) yy 

as the criterium to test a= o. 

(5) 

The procedure described before is valid for model (1) if the errors 

follow the assumptions stated above and also the values of covariate xijk 

are known without error. They are still valid when x .. k is subject to 
1J 

an error normally distributed, which may be correlated with e .. k, error 
1J 

in (1) for the same subscripts, but all other correlations must be zero. 

See, for example, Scheffe (1959]. 
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Covariate in Additivity Test. 

Effects a,~' and y are additive in a three-way classification when 

(7) 

There are cases, however, in which the existence of non-additive effects 

is suspected. Model (7) may be extende?,d as follows 

y.jk = µ, + ai + S. + Yk + (~). · + (Of3).k + (f3y).k + e:. "k (B) 
1 J 1.J l. J l.J 

where the first-order interactions have been inserted. However, when the 

number of observations per cell is at most one the complete set of parameters 

involved in (8) can be nonestimable. There are many ways to circumvent 

this difficulty and one could think of more appropriate solutions suited 

to particular circumstances. Perhaps the simplest approach is taken by 

assuming that the non-additivity part is explained as follows 

where 8 is an unknown constant. However, model (9) has the great dis­

advantage of being non-linear with all inherent complications. To avoid 

this difficulty we modify model (9) by introducing a known or estimable 

covariate xijk instead of eijk = ait3j + aiyk + f3jyk. Covariate xijk 

must be highly correlated with eijk in order that the following model 

fulfills the objective of explaining non-additivity. In model (10) the 

importance of the non-additive part will be given by the magnitude of 8 

and the test of the hypothesis 9 = 0 will correspond to a test of 

additivity. 
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An intuitively suggested expression for xijk is the following 

(11) 

and 
,. 
y 's 

k are the b.l.u.e.'s of ai, ~j 

respectively in the additive model (7). 

and 

If xijk values are assumed known without error and eijk's in 

model (10) are normally and independently distributed, then the corresponding 

analysis of covariance provides a valid test for 0 = 0 conditional on 

the given set of xijk values. However, covariate xijk enjoys interesting 

properties under the hypothesis of complete additivity: i) the true value 

of xijk' eijk' is zero whatever values ai, ~j and yk might take, 

ii) E(xijk) = eijk = 0 for orthogonal designs, like complete block and 
,. ,. ,. ,. ,,. ,. 

Latin squares; iii) E(xijk) = eijk + Cov(ai, ~j) + Cov(a1 , yk) + Cov(~j' yk) 

= zero plus a constant bias not depending on ai, ~j and yk; and 
A ,. ,. 

iv) xijk' as a function of a., ~- and yk's, contains errors which are 
l. J 

independently distributed of the errors 
,.o 

in model ( 7) , which are eijk 

equal to errors eijk in model (10), under additivity. Furthermore, the 

sum of squares for regression R, given in (4), is invariant for any 

effects 
,. ,. 
a., ~., and 

l. J 

,. 
y 's 

k 

we could use a new covariate 

added to covariate xijk• This means that 

xijk = xijk +Ai+ Bj +Ck+ D and the 

corresponding R would be the same as for xijk• This result follows 

from the fact that the estimated residuals eijk in model (3) remain 

the same for and It is for all previous reasons that we 

can say that the variance ratio F given in (5) is an unconditional test 

of additivity,for the F ratio and the distributional properties of R 

and E - R are unaffected under the hypothesis e .. k = 0. The rationalization 
yy l.J 

developed here is in fact an extension of Scheffe's (1959], pages 132-133, 

proof of the distribution properties of Tukey's test for the two-way classification. 
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It was indicated in the previous paragraph that covariate xijk 

can be changed into expressions which contain any additive effects A
1

, 

Bj and Ck. Therefore, the covariate can take the following forms, without 

affecting the value R, 

(& + ~ + ,. )2 <,. )2. <,. b )2 z · jk = a · .., · Yk ' w · ·k = Y · ·k ' u · ·k = a Yi .k-1 1 J l.J 1] l.J J 
(12) 

where and b are arbitrary constants, and 

A A A A 

µ, ai, f3j and yk's are the b.l.u.e.'s of the respective parameters in 

the additive model (7). Formulas (11) and (12) of covariate lead to the 

same F value (5) to test additivity. The particular form to be chosen 

depends on circumstances. For a p-way classification form xijk is the 

most elaborate for it requires the calculation of p(p-1)/2 products for 

There are computer programs which provide the 
,. 
y. 'k 1J 

values 

and forms of can be preferred. Form can be suggested 

in order to avoid the large numbers that wijk can have in some cases. 

TUKEY'S TESTS OF ADDITIVITY 

It will be shown now that Tukey I s tests of additivity for the randomized 

complete blocks and Latin square designs are equivalent to the use of an 

analysis of covariance with a covariate in one of forms (11) or (12). 

First we will obtain a simpler form to the sum of squares R given in 

(4) for a three-way table such that the groups {a.), (f3.) and {yk) are 
l. J 

orthogonal. If the general form of the covariate is denoted by vijk' 

where v. 'k can take any of expressions (11) or (12), it is well known 
l.J 

that we can write 

,. 
+ + - 2v ,. ' ,. 

~ Vi .k = V • V • j. 
V ••k eijk = V ijk- vijk J 1 •. • •• 

,.o 9 ~ 
(13) 

9ijk = Yi .. + y •j. + y ••k • 2y eijk = Yijk- ijk • •• 
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It is clear that 

with equivalent expressions for ,. r 
e:ijk. From which we can write 

E(yijk- yijk)(vijk- Oijk) = E(yijk- 1ijk)vijk 

and expression (4) can be written as follows 

R = [E(y .. k- Yi .k)v .. k]2/I:(v .. k- .q .. k)2 1.J J 1.J 1.J l.J 
(14) 

where R can be called the sum of squares for non-additivity. The F 

test for additivity is given by (5). 

Randomized Complete Blocks. 

The model for that design is yij =µ+Ti + f3j + e1j. If we use 
A A 

form (11) for the covariate we have x .. = Tif3. and it is known that 
l.J J ,. ,. 

T = y - y and f3. = y .- y • Therefore x. = x . = x = 0 and 
i i• •• J •J •• 1.• •J •• 

using expression (13) we obtain iiJ.k = 0 and also E{y .. - y .. ){x .. ) = I:y .. x ..• 
l.J l.J l.J l.J lJ 

Therefore R becomes 

R = Ey .jx . ./Ex~ .. 1. l.J 1.J 
(15) 

Due to the fact that with covariate x .. the values x. = x . = 0, 
1.J 1.. • J 

the sums of squares in x and the sums of cross product xy for treatments 

and blocks will be zero. The analysis of covariance procedure is then 

simplified to the direct use of fornrula (15). 

Snedecor and Cochran [1969], page 333, describe Tukey's test as 

follows: i) 
A 

Obtain T. = yi - y l. • • • 

A 

and f3J. = y .- y ; ii) calculate •J •• 
A A 

w. = E y .. f,. ; iii) calculate N = Ew.T. 
1. j l.J J 1. 1. 

,. ,. 
• iv) obtain D = (I: T~)(E f3~); , . l. . J 

and finally iv) R = N2/D. We can see that 

A A A A 

N = E (E y .. f3 • )T . = E y .. T . f3 . = E 
i j 1.J J 1. i,j l.J 1. J i,j 
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1.J l.J 

1. J 

and D = E 
i,j 

,. ,. 
T~f3~ = E x~. 

l. l. l.J 



... 

... 

so that N2 /D is the value R given by (15). All this means that 

Snedecor and Cochran's procedure could be reduced as follows: i) Calculate 

covariate xij = (y1 .- Y •• )(y
0
j- Y •• ), ii) obtain N = Ey1jxij; iii) obtain 

D = ~fj; and iv) obtain R = N2 /D. 

Latin Square. 

Covariate x. "k in the Latin square does not lead to the simple case 
l.J 

found in the complete blocks design and an analysis of covariance is the 

easiest procedure. However, Sned~cor and Cochran [1969], pages 335-336, 

following Tukey's (1955], arrive at the test of additivity as follows: 

i) Obtain y. "k' ii) calculate deviates d.jk = y .. k- 9. "k' and adjust l.J l. l.J l.J 

them so that ~ dijk = ~ diJ"k = Ek dijk = 0; iii) obtain U. "k = a(y .. k- b), 
1 J l.J 1.J 

where a and b are appropriate constants, iv) work out an analysis of 

variance for a Latin square using Uijk as data and obtain Euu' sum of 

squares for error; v) calculate N = E u1 .k(y .. k- y .. k); and finally, 
J l.J l.J 

vi) determine the sum of squares for non-additivity equals N2 /E • uu 

We can see that if Uijk is assumed a covariate, of form uijk in 

(12), the expression N2 /E corresponds to (14). This implies that the uu 

procedure for a test of additivity can be simplified as follows: i) calculate 

covariate uijk; ii) work out an analysis of covariance; iii) test the 

regression coefficient as in (5). 

RANKING PROCEDURES 

Model (9) was given as a simplified conception to explain non-additivity. 

It was stated that the term e. "k =a.~.+ a.yk + ~-Yk could be substituted 
l.J 1 J 1. J 

by a known covariate highly correlated. Covariate xijk given by (11) 

was suggested. Approximate results can then be obtained by using ranks 

instead of the estimated means The covariate would be 
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where 
,.. 

is the rank corresponding to a. in the group of 
]. 

We can also use any of the forms (12) expressed in ranks. 

Professor O. Kempthorne, after reading a preliminary version of 

(16) 

this paper, referred the author to Giesbrecht [1967] who used the ranking 

procedure to test non-additivity in the two-way classification. He used 

linear, second, third, etc., degree orthogonal polynomials to obtain 

different measures of non-additivity. Tests of additivity will be in 

general less sensitive with the use of ranks and the calculations required 

are basically the same. The only case of simplification arises in the 

randomized block design when using as ranks the corresponding orthogonal 

polynomial terms; the covariate is given directly by xij = ra(i)r~(j) 

and we apply (15) to test additivity. 

EXAMPLE 

It was shown that for a randomized complete blocks design the use 
,.. ,.. 

of covariate x .. = T.~. simplifies the analysis of covariance considerably 
l.J l. J 

and the sum of squares for non-additivity becomes R = !: y .. x .. /!: x~ . , 
l.J l.J 1.J 

which can be calculated directly. Such simple procedure is not maintained 

for the Latin square with covariate xijk in (11) or the equivalent 

forms (12). 

The example chosen has been taken from Snedecor and Cochran [1969] 

and our objective is to show that their lengthy procedure to test additivity 

in a Latin square can be simplified and reduced to the wellknown analysis 

of covariance technique with the same results. Table 1 shows the Latin 

square data with 5 treatments A, B, C, D and E. The upper numbers 

correspond to the dependent variable and the lower ones to values 
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of covariate uijk' as given by the authors referred to. They define 

u .. k = lOOO{y .. k- y )2 which is equivalent to the form u
1
. jk in ( 12). 1J 1J ••• 

Their procedure required the calculation of all yijk's for they needed 

the values dijk = yijk- yijk• Actually, we can see that 

A 

where and Tk are the estimates of the true effects of row pi' 

column vj and treatment T., respectively. The last expression for 
J 

u .. k in (17) 1IBkes the calculation of covariate values easier. 
1J 

Table 2 shows the analysis of covariance for y and u .. k's. 
ijk 1J 

It also contains the value for the sums of squares obtained by Snedecor 

and Cochran [1969]. The very small difference found is due entirely to 

accuracy in calculations. 

Pair 

1 

2 

3 

4 

5 

y j . - . 
Treat 
y. •k 

TABLE 1 

Latin Square 5 X 5. Y. "k = log of numbers of 
1J 

responses by pairs of monkeys under five stimuli. 

Week 

1 2 3 4 5 

B 1.99 
D 

2.25 C 
2.18 A 2.18 

E 
2.51 

37 3 0 17 92 

D 
2.00 

B 
1.85 A 1.79 E 

2.14 
C 2.31 

70 Bo 132 4 0 

C 2.17 A 
2.10 

E 
2.34 B 

2.20 
D 

2.40 

7 18 18 1 66 

E 
2.41 C 2.47 

B 
2.44 

D 
2.53 

~ 
2.44 

58 61 23 97 71 

A 1.85 
E 

2.32 
D 

2.21 
C 

2.05 
B 2.25 

125 1 2 3 0 

2.084 2.198 2.192 2.220 2.382 

A B C D E 

2.072 2.146 2.236 2.278 2.344 
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Yi .. 

2.222 

2.018 

2.242 

2.458 

2.136 

y • •• = 
2.215 

(17) 



TABLE 2 

Analysis of Covariance and Test of Additivity 

Source D.F. Ey2 Euy Eu2 

Total 24 1.0576 -37-92 42740 

Rows 4 .5243 12.45 6984 

Columns 4 .2294- - 7.05 3658 

Treatments 4 .2313 -23.o4 9765 

Error 12 .0726 -20.28 22333 

Non-additivity 1 .0184 = (-20.28) 2 /22333 = R 

Remainder 11 .0542 

F = .0l84xll/.0542 = 3.73 

In Snedecor and Cochran [1969], page 336, R = .0186, F = 3.76 
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