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SUMMARY 

Set concepts are introduced to derive general expressions for an 

experimental linear model and their related effects, sums of squares, 

components of variance, etc. Procedures are also described to system­

atize derivation of the coefficients, called K*s, involved in the 

expectations, variances and covariances of both the uncorrected sums 

of squares, U 's, and of linear functions of these U 's. The use of z z 

set ideas proved useful to arrive at simple expression for some K's 

in particular cases. The random model is only discussed. 

1. Introduction. 

Components of variance have been discussed profusely in the literature 

evidencing both the theoretical implications and practical uses to which 

they lead to. Searle [1971) gives an excellent presentation of our 

status of knowledge in this matter and his paper's references well 

exceed a hundred in number. 

Elementary algebra of sets are here introduced to represent a 

linear experimental model in a concise and general manner, which covers 

the nested, crossed classification and combinations of these two situations 

in an unbalanced case. Furthermore, the sums of squares and sums of 

cross products, and other features arising in an analysis of variance 

attain generalized expressions, from which interesting particular cases 

can be discovered without much difficulty. 

The attainment of algebraic formulas for the general case of the 

variances of components of variance have been proved practically intractable. 

Searle [1971) gives reference to those formulas available in the literature 

for particular experimental situations. Hartley [1967] deviated from 
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previous efforts to search for mathematical formulas and devised his 

"synthesis" method primarily geared t9 obtain numerical values of the 

coefficients found in the expectations, variances and covariances of 

quadratic forms. Rao (1968) extended the synthesis procedure. However, 

Hartley's method becomes prohibitive as the number of levels and factors 

increase. 

This paper introduces a method to obtain the expectations, variances 

and covariances of the uncorrected sums of squares found in the appropriate 

analysis of variance of a random model in consideration. The writer 

proceeds to deal with the expectations, variances and covariances of linear 

functions of the uncorrected sums of squares. The method proposed involves 

the construction of matrices called N(w,slz) and the Hadamard products 

between pairs of those matrices. This procedure can be generalized to 

the mixed model without difficulty, but estimation of the components of 

variance is not as simply attained as in the random model case. 

2. Notation and Concepts. 

The purpose of this Section is to describe briefly the mathematical 

concepts and notation used here which are not common in the statistical 

literature on linear models. 

2.1 Sets. 

A set is a collection of objects having some common characteristic. 

Those objects are called elements. Sets are generally designated by 

capital letters and their elements by small letters. If the element x 

belongs to the set A we write x e A. When x is not an element of A 

then x t A. The elements of a set are written within braces, for 

example, A= (-1, O, 2) means that the set A is composed of the elements 
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-1, 0 and 2. An empty or null set is represented by ~, and it is a 

set with no elements. Two sets A and B are equal, A= B, if and only 

if every element of A is an element of B and every element of B is 

an element of A. The set A is a subset of B, written Ac B, if every 

element of A is also an element of B. 

The union of sets A and B, denoted AU B is a new set whose 

elements x are such that x is in A or x in B or in both. This 

statement is written as follows: 

AU B = {xix e A and/or x e B}. 

The intersection of sets A and B, written An B is the new set 

of elements common to both A and B: 

An B = {xix e A and x e B}. 

A and B are called disjoint if they do not have an element in common, 

that is A n B = ~. 

The difference of sets A and B or relative complement of B 

in A is also written B' and is defined as follows: 

A - B = B' = {xix e A but x ~ B) . 
From definition B n B' = ~ and BUB'= A. 

If A is a finite set of m elements then the new set whose clements 

are all the subsets of A is known as the power set of A, and denoted 

by P(A). The set P(A) has 2m elements. For example, if A= (a, b, c) 

then P(A) has 23 = 8 elements, and P(A) = (~, (a}, (b), (c}, (a,b), 

(a,c), {b,c), A). 
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2.2 Hadamard product. 

If A= (a1j) and B = (b1j) are each matrices of the same order 

n x p, then their Hadamard product, written A*B, is a new matrix 

C = {cij) of the same order n x p and such that cij = aij x b1j. In 

other words the Hadamard product of two matrices A and B is only 

defined when both matrices are of the same order and the new product elements 

are obtained by simple elementwise multiplication. Several properties 

of this product arise from its definition: 

i) Multiplication is commutative: 

A*B = B*A. 

ii) If a and b are scalars 

(aA)*{bB) = ab{A*B). 

iii) If A is square, I the identity, then 

A*I = D{aii), 

where D{a
11

) denotes a diagonal matrix whose elements are a
11

• 

iv) The distributive property holds 

(A+B)*C = A*C + B*C • 

v) More generally if there are two linear functions of matrices 

where all the A. 'sand B. 1s are matrices of the same order n x p, 
1. J 

and the a. 's 
1. 

and b 's 
j 

are scalars, then L
1 

matrices both of order n x p, and 

Ll* L2 = ~ a 1b .Ai* B. • 
. j J J 1., 

are also 

(1) 

Uses of the Hadamard product in statistics is reviewed by Styan [1968]. 

He also discusses its application in multivariate analysis. He does not 
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refer to property (v) above and deals mostly with properties of rank 

and positive definiteness of Hadamard products. 

We also denote by JnxP a matrix of order n X p whose elements 

are all ones. 1 p represents a row vector of p elements, every one 

equal to one. If A= (a1j) is a matrix n X p the summation of all 

its elements will be written EA, that is 

I:A = I: 
i,j 

a .. = tr(AJ ) • 
l.J pxn 

(2) 

3. The Model. 

Let F = {a, a, •.. , 0) be the factor set with the m elements 

a, a, ..• , 8. Let I = { i ,' j, ••• , q) be the index set of m subscripts 

i, j, ••• , q. In order to have a unique correspondence between the elements 

of F and those of I a one-to-one function f: F ~ I is defined 

such that each element of F has a distinct image in I, as follows, 

f(a) = i, f(e) = j, ••• , f(a) = q. 

Let us now define the power set of F as follows, 

P(F) = {F(w)jw = 1,2, ••• , 2m). 

Therefore F(w) is a subset of F and these subsets are numbered in a 

certain fashion. Consider the same function f defined above but extended 

as to be an associated set function, that is, f[F(w)J = (f(x)lx e F(w)} = I(w). 

This means that to each subset of factors F(w) there corresponds a unique 

subset of subscripts I{w). There will be 2m subsets F(w) and 2m 

subsets I(w), among which the null subset ~ and the complete sets F 

and I are included in P(F) and P(I) respectively. 

We assume that factor a is tested at L{a) levels, that is, 

i = 1,2, ••• , L{a); that factor a is tested at L(S) levels, or j = 1,2, •.• , L(S). 
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In general, the subscript subset I(w) will go from 1,2, ••• up to L(w). 

This means that L(w) represents the summation of subscripts contained 

in I(w). L then represents the summation over all subscripts in the 

set I. L is then equal to the total number of factor combinations. 

Y.. is the observation corresponding to the combination of 
iJ •• • q,r 

the m factors a, S, ••• , 8 at levels i,j, ••• , q respectively on 

experimental unit ij ••• qr. There are n .. 
1J ••• q 

replications for the 

testing of combination of the m said factors at levels i, j, ••• , q. 

We may write Y . = Y and n = n where I is the index 
iJ ••• q,r I,r ij ••• q I 

set referred to above. However, to identify more clearly particular 

combinations of levels of the factors we will write Y(I,A),r as the 

observation when the subscripts in I attain the combination X of levels. 

In similar manner, n(I,A) 

X of levels in I. 

is the number of observations for the combination 

With the above preambles we can write an experimental linear model 

as follows: 

f 

y(I,A),r = !;
1 

F(w)I(w,X) + e(I,A),r • (3) 

F(w)I(w,X) is the effect, main effect or interaction,of factor{s) 

involved in subset F(w) at levels A of subscripts in I(w). The 

summation sign extends over all or some of the possible m 2 subsets F{w), 

depending upon the assumptions made by the experimenter. In general, 

w = 1,2, ••• , f, where f ~ 2m, for some effects might be considered null. 

We also use the convention that for w = 1 the subsets F(l) = I(l) = ~' 

the null subset, and F(l)I(l,X) =µ,the overall mean in model (3). Finally, 

is the error term, whose characteristics will be discussed below. 
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4. Nested, Crossed and Combined Classifications. 

Model (3) is a general expression that includes the nested and 

crossed classifications as well as combinations of those two types as 

particular cases. To deal with a given model it is only necessary to 

establish proper equivalence between the model effects and the required 

F(w)'s. Examples will be given to clarify this assertion. 

4.1 Nested classification. 

For the nested or hierarchical model, say with 3 stages: 

we require a set F with 3 factors, F = (a, 13, y) and I= {i, j, k). 

The sets F(w), their respective I{w) and their equivalent correspondence 

to the above model are shown as follows: 

w 1 2 3 4 

F(w) ~ a a,a a,13,Y 
I{w) ~ i i,j i,j,k 

Equivalence µ, Ai Bij cijk 

4.2 Crossed classification. 

• Let us suppose the model 

The sets F{w), I(w) and their equivalence will be 

w 1 2 3 4 5 6 

F{w) ~ a 13 y a,13 a,y 

I(w) ~ i j k i,j i,k 

Equivalence IJ, Ai B. ck ABij ACik J 

The subsets {a, y) and {a, 13, y) are not required in this case. 
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- 4.3 Nested and crossed classification. 

Let us consider the following model 

yijkr =µ,+Ai + Bij +ck+ (AC)ik + (BC)ijk + eijkr. 

Here we require an F = (a, a, y) and I= (i, j, k). The subsets 

F(w), I(w) and their equivalence to the above model are as follows: 

w 1 2 3 4 5 6 

F(w) ~ a a,~ y a,y a,13 ,y 

I(w) ~ i i,j k i,k i, j ,k 

Equivalence µ, Ai B .• ck ACik BCijk 1.J 

It can be seen that we have eliminated the effect 13., used the 
J 

interaction as the nested effect Bij' and the interaction 

(aay)ijk as the effect (BC)ijk• 

5. Sums of Squares. 

In order to obtain a general expression for a sum of squares in an 

analysis of variance it is convenient to designate I'{w) as the subset 

in I which is the complement to the subset I(w). We can then write 

l(w) n I '(w) = .~ I(w) U I'(w) = I . 

The subscript set I at levels 1 will be written 

which means that combination 1 of levels in I is equivalent to 

combination x1 of levels in l(w) and levels A2 in I'(w). 

Similarly we define L'(w) as the sunnnation of all subscripts 

contained in I'(w), or 

L 1 
( w) = ~ I 1 

( w, 12 ) and L( w) + L' ( w) = L • 
12 
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A general expression for U which denotes the uncorrected sum z 

of squares corresponding to the source of variation of component F(z), 

where z is any of the possible w values, z = 1,2, ••• , f will be now 

obtained. We can write 

y -Y ) '( ) (I,1),r - I(z,11 ,I z,12 ,r and 

and we denote, following general nomenclature, 

y( ) = ~ y( ) = y ( ) ' ( ) • I,A • r I,A ,r I z,11 ,I z,12 

where the last two sunmations extends over all L'(z) combinations 12 

of levels in subscripts contained in I'(z). Also 

y = ••• E( ) YI ( z, Al) • • , 
11eI z 

n= 

so Y is the grand total over all observations and n is the total ••• 
number of observations. 

The uncorrected sums of squares 
y2 
I(z,1 ) .. 

u = ~ 1 
z x

1
eI(z) 1\(z,1

1
)• 

for F(~), denoted by U, is z 

(4) 

valid expressions for z = 1,2, ••• , f. In particular, for z = 1, I(z) = ~ 

and I'(z) = I, u1 corresponds to the correction factor: 

U =Y2 /n 1 ••• 
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We also call Ut the uncorrected sum of squares for total: 

The corrected sum of squares for all sources F(z), z = 2,3, ••• , f, 

total and error are linear functions, of the (f+l) expressions (4) and 

(5), which will depend on model (3). 

6. Expectations of Sums of Squares. 

6.1 The random model. 

Model (1) is random when all effects F(w)I(w,l)' for w = 2,3, ••• , f, 

and are random variables. Furthermore, we assume that these 

f random variables are uncorrelated within themselves and that any of 

(2f) f the pairs o different random variables are uncorrelated for any 

coordination of subscripts. These random variables have means equal to 

zero and their variances are 

V[e(I,l),r] = a2
, for all A and 

It is convenient to adopt the convention 

(6) 

(7) 

We will now discuss the estimation of the components of variance (6) 

first and then the variances and covariances of such estimates. 

6.2 Expectations of uncorrected sums of squares, U 's. 
z 

Define n{w, tlz, 1) as the number of F(w)I{w,!) contained in 

Y ( ) • By F{w) ( ) we mean the effect F{w) when its respective I z,A •• I w,t 
subscript index I{w) takes up the particular combination of levels !. 

The possible values of £ are 1,2, ••• , L(w). For a given I(z, 1) the 
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number n(w,!lz,\) can be zero for some r. It is not difficult to 

see that 

n{w,tlz,l) = ~{z,l)U I{w,!}• (8) 

where the subscript I{z,l)U I(w,t) means the union of the subsets 

I{z) and I{w) when the respective subscripts take the values ).. and t 

respectively. The dot means sununation over the subset complement to 

I{z,l)U I(w,t). 

n(w,tlz,1) is also equivalent to the coefficient of F{w)I{w,t} in 

the expectation of y 
I{z,l)•• 

if the effects F(w)I(w,t} are, for only 

such purpose, assumed as fixed. This property can be helpful to obtain 

the n ( w , t I z , A) • 

If K[o-2 IE(U ) 1 w z 
stands for the coefficient of the component of 

variance a;(w) _ in the expectation of U, it 
z 

0 
Ael(z) 

E n2 (w ,ti z ,)..) 
t 

°r(z,)..) • 

can be seen that 

(9) 

expression valid for all z and w for the random model (3). The 

inside summation is over the levels ! = 1,2, ••• , L(w) of the subscripts 

in I(w) for each of the levels )., in I{z). 

The coefficients K{a2 jE{U )] attain simpler expressions in w z 

particular circumstances. These are given in Table 1 and are easily 

obtained from the general expression (9). With the knowledge of all those 

coefficients the expectations of the uncorrected sums of squares for all 

sources can be written as follows: 

f 
E(U ) = L(z)a2 + ~ K[a2 IE(U )]aF2 ( ) z l w z w W= 

f for z = 1,2, ••• , f 
(10) 

E(Ut) = n[a2 + ~ a:(w)] 
. W=l 
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6.3 Estimation of components of variance. 

The usual procedure is to calculate the corrected sums of squares 

for each of the f sources of variation F(z), z = 2,3, ••• , f and 

error, and equalize these sums of squares with their respective expectations. 

This procedure furnishes a system of f simultaneous equations with the 

f components of variance as unknowns. The solution of that system of 

equations is simple for the balanced case. However, when there is 

unequality in the numbers °i it can be worthwhile to proceed directly 

from the following system of f + 1 simultaneous equations, obtained 

from (10), 

z = 1,2, ••• , f (11) 

The solution from the system with corrected sums of squares and the 

solution from system (10) ~ill be identical. 

The corrected sums of squares are linear functions of the U 1 s and 
z 

UT and their expectations can be obtained from the same linear functions 

of expressions (10). Another procedure will be shown in Section 8.3. 

7. Components of Covariance. 

Let us consider the same experimental situation described in Section 5 

with the factor set F = {a,a, ••• , 8) and the index set I= {i,j, ••• , q} 

both with m elements. A one-to-one correspondence is established between 

the elements of I and those of F and the relevant subsets F{w)'s 

and their respective I(w)'s are similarly defined. However, there are 

now two characteristics measured on each experimental unit. Denote by 
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Yl, (I ,°A) ,r and y 
2,(I,°A),r 

the measurements for characteristics 1 

and 2, respectively, both measured in the same experimental or observation 

unit specified by the subscript (I,°A),r. This subscript indicates that 

the respective measurement corresponds to the r-th replicate of combination 

A of levels of the m factors 

as follows: 

a,a, ... , 8. Model (3) can be extended 

Y ( ) = 6 F ,Jw) ( ) + e 2 , I , A , r w= 1 ,_ I w, A 2 , { l , A) , r 

Fv(w)I(w,l)' (where v equals 1 or 2), is the effect, main effect or 

interaction,of factor(s) involved in set F(w) for characteristic v, 

at levels of subscripts in I(w). The summation sign in the above expression 

extends over the relevant subsets F{w) according to the experimenter's 

assumptions. In general 
m 

w = 1,2, ••• , f ~ 2 • When w = 1 then we follow 

the rule F(l) = 1(1) = ~, the null set, and 

where µ,1 and 

characteristics 

There are 

are the overall true means of 

and 2, respectively. 

n{I,°A) units for each combination 

measurements of 

(1,°A) of the m 

factors. We assume that the 2 models written above are random, that is, 

all of the terms on the right-side, except 

with means zero and variances 

and are random variables 

where v = 1 or 2. We also assume that the only covariances, between 

pairs of those random variables, not zero, are the following, 

- 13 -



-
.;.\_ 

for w = 2,3, ••• , f; and 

It is to be noticed that the covariances written above are only defined 

for exactly the same combination of subscripts corresponding to F(w)'s, 

and e's. 

The uncorrected sum of cross products for source of variation F(z), 

called UC , can be written z 

UC z 
= ~ (Yl,I(z,X) .HY2,I(z,X).) 

X 1\(z,X)• 

If KC(wlz) denotes the coefficient of the component of covariance 

°ፈ
F 
1 

(w)F
2

(w) in the expectation of UC, it can be shown that z 

KC(w I z) = F [ ~ ~(w ,.t)U I(z,:1.) .J /"t(z,:I.) • 

which is identical to K{a2 lz) given in (9). In other words, the w 

coefficient of the component of covariance 

same as of component of variance cr:(w) 

the ucz's and uct (for total) are 

a ( ( in UC is the F 
1 

w)F 
2 

w) z 

in U. The expectations of 
z 

E(UC ) = L(z)a + ~ KC(wlz)crFl(w)F
2

(·w) 
z e,e2 w=l 

E(UCT) = n[cr + :E aF ( )F ( )] 
e,e2 w=l 1 w 2 w 

8. Variances and Covariances of Components of Variance. 

8.1 Means, variances and covariances of sums of squares. 

Here we present a procedure to obtain the expectations, variances 

and covariances of sums of squares in an analysis of variance for the 
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random model (3). Section 6 dealt only with the expectations of the sums 

of squares, which will be obtained here also but as a step to arrive at 

the expressions for the variances and covariances. The method is justified 

itself for the procedures follow exactly the definition of a summation 

YI(z,A)•/nI(z,A)• but taking into account the obvious consequences of 

these successive operations on each of the effects F(w) contained in 

model (3). This reason made the writer eliminate unnecessary justification 

in the assertions that will follow. 

i) If E(YI(z,l)••IF(w)1{w)) stands for the expectation of 

YI(z,l)•• when the effects F(w)I(w,t)' for all t = 1,2, ••• , L(w), are 

fixed and all others are random variables with mean zero, then 

Call N'{wjz,l) 

n(w,tlz,11.) • 

the row vector with L{w) elements, its t-th element being 

The ordering of elements must be kept throughout. In 

similar manner we define the row vector N'(sjz,A) related to the effects 

F(s)I(s) in the expectation of the same summation Y ( ) I z,11. • • • 

ii) Obtain the matrix 

N(w,slz,1) = [N(wjz,11.)N'{slz,11.)]/1\(z,l)• • 

The colunm vector N(wlz,l) with L{w) elements is multiplied by the 

row vector N'{sjz,11.) with L(s) elements giving a matrix of order 

L(w) x L(s), which is then divided by the scalar °t{z,l)• • 

iii) Obtain the matrix 

N(w,slz) = ~ N{w-,slz,11.) 
A 

(13) 

a matrix of order L(w) x. L{s). Matrix N(w,sjz) contains the numbers 

of each of the terms F(w)I(w,t)F(s)1(s,m) in Uz, the uncorrected sum 

of squares for component F(z). 
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Matrix (13) is defined for all values of w,s = 2,3, ••• , f for 

effects; wand s will be also referred to the error term, a total of 

f values. Matrix N(w,sfz) is also valid for all U where z = 1,2, ••• , f z 

for components F(z) and also valid for z = t or Ut' uncorrected sum 

of squares for total. There exists then f(f+1) 2 /2 matrices N(w,slz). 

However, many of them attain simple forms easily to write down without· 

the necessity of going through steps (i) to (iii). 

iv) It can be seen that the coefficient of a;(w) in the expectation 

of U is 
z 

(14 )· 

v) Consider the following two matrices of the form (13), N{w,sjz) 

and N(w,sfv). Both referred to the same terms F{w) x F(s) in U and z 

U respectively. Obtain the Hadamard product 
V 

H(w,slz,v) = N(w,slz)*N(w,slv) • (15) 

H(w,slz,v) is a matrix of order L(w} x L(s). Expression (15) is valid 

for w,s = 2,3, ••• , f, and error (f values); z,v = 1,2, ••• , f and total 

{f+l values), giving a total of f(f+1) 2 (f+2)/4 different matrices 

N(w,slz,v). Fortunately, many of them have simple forms which can be 

written directly without need of following previous steps. These cases 

are shown in Table 1. · 

vi) We make the assumption that all terms, except ~ = F(l)I(l)' in 

model (3) are normally and independently distributed with means zero and 

variances as stated in (6). The normality assumption is made in order 

that the fourth moment of the F(w)I(w)'s and e( ) attain the I ,A ,r 

simple form of being equal to 3 times the square of the respective variance, 

reducing the derivations that follow. 
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vii) 4 Let K[a lcov(U, U )] 
W Z V 

and K[cr2 a 2 lcov{U, U )] 
W S Z V 

be the coefficients of terms d 2 2 
an aF(wfF{s) in the covariance 

between the uncorrected sums of squares U and U. 
Z V 

viii) We remind here notation introduced in (2) that if A= (a .. ) is 
l.J 

a matrix then I:A represents the summation of all elements in A, that 

is, 

and 

and 

rA = Ea . .• 
l.J 

ix) It can be shown that 

K[a2a 2 jcov{U, U )] = 4E H{w,slz,v) 
W S Z V 

4 K[a !cov{U, U )] = 2E H(w,wlz,v} 
W Z V 

Special cases of (16) are 

K[a2a 2 IV(U )] = 4E H(w,slz,z) w s z 

K[a4Jv(u )] = 21:·H{w,wlz,z) w z 

means the variance of U. z 

(16) 

(17) 

Formulas (16) and (17) are valid for all w,s = 2,3, ••• , f and error; 

also for all z,v = 1,2, ••• , f and total (UT). 

x) The variance of an uncorrected sum of squares U 
z 

between U
2 

and U can be written as follows: 
V 

Cov(U , U ) = ~ K[a2 a 2 I cov(U , U ) ]cr.F2 ( )aF2 ( ) 
V Z WS Z V W S w,s 

or the covariance 

where the sunnnation is over all values w,s = 2,3, ••• , f and error. 
,. 

The estimated variance of U, V(U) is obtained by substituting the z z 

true unknown components of variance with their respective estimated values. 

A similar statement applies to the estimated 

- 17 -
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8.2 Simple expressions for some K's. 

The coefficients of the terms 4 2 2 
a and aF(w)°" in v(u) z and 

Cov{U, U) can be obtained using the general method explained in 
Z V 

Section 8.1 which leads to fornrulas (16) and (17). The terms a4 and 

ai(w)a2 involve the error terms e(I,i),r of model (3), and for this 

reason the matrices required are of order n x n or L(w) x n. Fortunately 

and due to the fact that to each observation there corresponds one 

single error the matrices N(e,elz,1) and N(w,elz,A) have elements, 

which are either one or zero, nn1ltiplied, such matrices, by the scalar 

1/1\(z,A)• • This feature simplifies the derivation of the respective 

K's. It can be shown that 

4 
K[a I cov{U ,U )] = 2 0 

z V A,1 
(~(z,1)U I(v,1)•)

2 

(~(z,A)•)(1\(v,t)•) • 
( 18) 

For the application of the above formula we construct a two-way 

table with colunms 1,2, ••• , L(z); and rows 1,2, ••• , L(v). The cell 

A, t would contain the number °i(z,A)U I(v,t)• which is the common 

number of observations. The marginal table would contain the numbers 

°I(z,A)• and °I(v,t)• for columns and rows respectively. 

It is also not difficult to see that 

K[a2a2 jcov(U ,U )] 
W Z V (19) 

= 4 

The calculation involves a two-way table with L(z) colunms and L(v) 

rows which is equal t:o the one constructed for the solution of (18). But 

now in each cell the number indicated by the inside summation in (19) have 
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- to be indicated. The operations indicated by (19) can then follow to 

arrive at the value of the corresponding K. 

A simplified version of (19) is obtained when the set I{v) is 

equal to I(w). The same result is obtained when I(v) = I(z) in (19). 
~ ( )2 
m 1\(w,m)U I(z,l)• 

K[a2a 2 lv(u )] = K[a2a 2 lcov(U ,u )] = 4!) 
w z w w z A. 

1,:(z,1) • 

More special cases of expressions (18) to (20) are given in Table 1. 

However, it must be emphasized that the procedures indicated in Section 

8.1 can be developed in a routine and systematic manner, especially with 

the help of processing of data devices, which make. unnecessary these 

formulas (18) to (20), and thme other special cases shown in Table 1. 

8.3 Mean and variance of a linear function of U 's. ---------------------z-
A corrected sum of squares in an analysis of variance as well as 

the estimator of a component of variance are linear functions of the 

U 1s, uncorrected sums of squares, defined by (4) and (5). Let us z . 

consider the linear function 

L = I: U a z 
g g 

(21) 

Our aim is to obtain E(L) and V(L), for which we find coefficients 

K[a2 IE(L)], K[a41v(L)] and K[a2a 2 IV(L)], as follows: 
w w w s 

i) For each u in (21) we obtain. the matrices N{w,wlz) and 
z g g 

N{w,slz) for all w,s = 2, ••• , f and error e. 
g 

ii) Construct the matrices 

N{w,wlL). =Ea N(w,wlz ), and N(w,slL) =Ea N{w,slz ). (22) g g g g 
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iii) Calculate the Hadamard products, 

H{w,wlL,L) = N{w,wlL)*N{w,wlL) and H(w,s IL,L) = N{w,s IL)*N{w,s IL). c~·1) 

iv) The coefficients K we are searching for are 

K[a2 IE(L) = tr[N(w,wlL)] w 

4 
K[o lv(L)] = 21:H{w,wlL,L) w 

(24) 

K[a2a2 JV(L)] = 4ra{w,s1L,L) 
w s 

v) Formulas (24) assume that we have actually obtained matrices 

N{w,wlL), H(w,wlL,L), and H(w,slL,L) as stated in steps {ii) and {iii) 

above. There is also the following way which may be easier to apply in 

certain cases. First, it is easy to see that 

K[a2 IE(L)] =Ea tr[N(w,wlz )] • w g g (25) 

Also, using (1) in (22) 

H(w,slL,L) =Ea aj N{w,sfz )*N(w,slz.) =Ea a. H(w,slz ,z.) • 
g g J SJ g J 

The su11111ation extending over all g's and j's. Substituting this result 

in (24): 

K[o
4

lv(L)] = 2 ~ a a.[EH(w,wlz ,zj)] J 
w g,j g J . g { 

K[o2a2 IV(L) = 4 ~a a.[EH(w,slz ,zj)] ( 
WS jgJ g , 

g, .. 

(26) 

where EH(w,slz ,z.), we emphasize it, represents the summation of all 
g J 

elements in matrix H{w,slz
8

,zj}, following notation (2). 

Formulas (25) and (26) are to be reconmended when we are interested 

in the expectations and variances of a few linear functions. 
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- We are now able to write down E(L) and V(L), 

E(L) = n(Ea )µ,2 + 'E K[o-2 IE(L) ]cr.F2 ( ) g 
2 

w w 
w= 

(27) 

where the sutllllation is over. w,s = 2,3, ••• , f and error (e). 

8.4 Variances and covariances of estimated components of variance. 

Expression (27) provides the variance of the estimator of any 

component of variance as long as the corresponding linear function 

(21) is known. There is, however, a more general and compact presentation 

of the variance-covariance matrix of the vector of estimators of the 

components of variance. 

Let us write down the system of f + 1 simultaneous equations (11) 

in matrix form 

"' AO= U (28) 

A 

where O is the column vector of unknowns with f + 1 elements: µ2 and 

f components of variance 6:(w) (including o-2
). A is the matrix of 

coefficients, square of order f + 1. U is the column vector of f + 1 

U 's. The solution of (28) is z 
,. -1 
n = A U • (29) 

A A 

If v(n) denotes the variance-covariance matrix of n and v(u) 

is the variance-covariance matrix of the 

But V(U) can be written as follows: 
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(31) 

f + 1 whose elements are the coefficients 

K[a2a 2 lv(u )] for all z,v = 1,2, ••• , f 

is a square matrix of order 

~[a2 cr2 lcov{U ,U )] and 
W S Z V 

w s z and total, {UT). Expression 

(31) indicates that the V(U) is equal to the summation of f{f+l)/2 

variance-covariance matrices M(w,s) 4 
for each one of the terms crF(w)' 

w = 2,3, ••• , f, and error, and for each a;(w)a;(s)' w + s = 2,3, ••• , f 

and error. Substituting (31) in (30) we find 

( ,..) """ 2 r.1 -1 ( )( -1)' VO = LJ aF(w)aF(s)A M w,s A • 
w,s 

(32) 

Elements of w.atrices M(w,s) are obtained by the general expressions 

(16) and (17), by using the expressions (18) to (20) for special cases 

and by making reference to Table 1 for the simpler cases. 

Expression (32) contains the variance of a2 as well as the covariance 

of a2 with all estimated components of variance. If this information 

about -1 is of no interest we then partition matrix A and take the 

f rows corresponding to the f components of variance. Call B this 

partitioned submatrix of -1 
A • B is rectangular of order f X {f+l). 

,.. 
Denote by o

1 
the partitioned column vector of f elements drawn from 

,.. 
O, by eliminating µ2 • We can write 

(33) 

,.. 
For the estimator of the variance-covariance matrix of o1 

we use 

(34) 
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TABLE 1: K COEFFICIENTS 

Coefficient Condition for Formula or 
of in Validity Value 

E(U) z 
any wand z (9), ( 14) 

0"2 E(Uz), E(Ut) I(w) c I(z) n 
F(w) 

E(C.F.) any w k 
w 

0'2 E(Uz) any z L(z) 

µ,2 E(U) any z n 
z 

Cov(U ,U) 
Z V 

any w,z and v (16) 

v(u) z 
any wand z (17) 

4 v(u) any w 2k n 
aF(w) w w 

Cov(U ,U) I(w) C I(z) 2k n 
w z w 

Cov{Uw,Ut) any w 2k n 
w 

Cov(U ,U) l(w} C I(z) C I{v) 2k n 
Z V w 

Cov(U ,U) 
Z V 

any w, s, z, and v (16) 

v(u) z 
any w,s and z (17) 

v(u) and v(u) l{w) c I(s) 4k n w s s 
0'20"2 Cov{U ,U) l(w) c I{s) 4k n w s w s s 

Cov(U ,U} I(w} C l(s) C I(z) 4k n 
s z s 

Cov(U
8

,Ut) l(w) c l(s) 4k n 
s 

Cov(Uw,Ut) I(w} c l(s) 4k n 
s 

Cov(U ,U) 
Z V 

any w,z and v (19) 
Cov(U ,C.F.) any wand z 4k z w 
Cov(U ,U} I(w) c l(z) c: I(v) 4n 

Z V 

2 2 Cov(U ,U) any wand z (20) 
aF(wf w z 

Cov(U ,U) I(w) c I(z) 4n w z 
Cov(Uw,Ut) any w 4n 

Cov(U ,c. :r•. ) any w 4k w w 
v(uz), v(ut) any wand z 4n 

v(c.F.) any w 4k w 

Cov(U ,U) any z and v (16), (18) 
Z V 

Cov{U ,U) I{z) c l{v) 2L{z) 
4 Z V 

a Cov(Uz,Ut) any z 2L(z) 

Cov(uz,C.F.) any z 2 
V(U) z any z 2L(z) 

w,s= 2,3, ••• , f; z,v = 1,2, ••• , f and total (t); u1 = C.F. , k = (r n~( ) )In, 
ks=(~ n~(s,m)• )/n • w m w,m • 

- 23 -



-
... 

-

, 
' 

I 

Example. 

A very simple case of a two-way crossed classification is presented 

to show the methodology developed in this paper. We assume the model 

where the number of levels for i and j are equal to 2. The numbers 

n .. , n. and nij are given in Table 2. The sets F = {a, a) and 
1J 1• 

I(i,j) give rise to the subsets, relevant to the above model, shown in 

Table 3, which also includes the values L(w). 

TABLE 2: VALUES OF nij TABLE 3: SET N<YrATION 

(l'l a2 n . 
•J 

w 1 2 3 

a1 2 4 6 F(w) ~ a a 

a2 3 5 8 F(w) ~ i j 

L(w) 1 2 2 

ni• 5 9 14 = n 

Table 3 expresses the fact that F(l), F(2) and F(3) are the mean 

~, and the effects a and a respectively. Also U, for w = 1,2,3 w 

and t will be as follows. u1 is the correction factor; u2 , U
5 

and Ut 

are the uncorrected sums of squares for colunms (a), rows (a), and for 

total, respectively. 

We will show now how to obtain several N(w,slz) matrices. The 

matrices for z = 2 are N(2,2J2), N(3,3j2), N(2,3l2), N(2,el2), N(j,el2), 

and N(e,el2). Matrices N(2,2!2), N(3,3j2) and N(2,3l2), for example 

are those including forms and a.a. , respectively in U
0 1 J ~ 

and these are obtained from the expectations of the Y. 1 s (i = 1,2) 1•• 
assuming that effects a 1 

and a. (in this case) are the only ones to be 
J 

fixed, all others, including µ, have expectation zero: 
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To obtain all the 6 matrices N{w,s12) indicated above we would use 

E(Yi••la,S,c) for all i's. Now according to expression (13) we can write 

N(2 , 2 l2) = (5,0);(5,0) + (0,9)~(0,9) (5 0) 
= v 9 

N(3, 312) = (2,3)'(2,3) + (4,5)'(4,5) _ (2.5778 
5 9 - 3,4222 

3.4222) 
4.5778 

where {5,0)' is the transpose of the row vector (5,0). In the same 

manner 

N(2,3l2) 

(

2 1 

N{3,el2) = I 5 

5 1
5 

{~ 3) ( 16 O ) = \4 5 ; N{2,el2) = 0 19 

!!:1) (!J § 9 ; N(c,el2) = 5 5x5 
9 19 \ 0 

where 1 is a row vector with all of its m elements being one. J 
m m~ 

is a matrix of order m x p with all of its elements being one. 

The K coefficients for the expectation of u
2 

and for the variance 

of u2 can be calculated by simply using f~rmulas (14) and (17). Similar 

matrices are calculated for each of the U 's. 
z 

Table 4 includes the K coefficients for the expectations of the 

4 U 's z • Table 5 gives the K's for the variance of u
2 

and for the 

covariances of u2 with the other Uz's. These K's are obtained from 

(14), (16) and (17). 
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TABLE 4: COEFFICIENTS K(a2 IE(U) w z TABLE 5: COEFFICIENTS K[a2a 2 jCov{u2u )] w s z 

u z 

ul 

u2 

u3 

ut 

Component 
a2 CT2 a2 

2 3 

1 7.57 7.14 

2 14 7.15 

2 7.58 14 

14 14 14 

Component 

4 
a2 

4 
CT3 

4 
CT 

CT2CT2 
2 3 

CT2CT2 
2 

CT2CT2 3 . 

ul u2 u3 ut 

122 212 122.17 212 

102.04 102.o4 104.18 104.18 

2 4 2.00 4 

216· 216 216 216 

30.28 56 30.33 56 

28.57 28.62 28.62 28.62 
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